| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package bn256 |
| |
| // For details of the algorithms used, see "Multiplication and Squaring on |
| // Pairing-Friendly Fields", Devegili et al. |
| // http://eprint.iacr.org/2006/471.pdf. |
| |
| import ( |
| "math/big" |
| ) |
| |
| // gfP12 implements the field of size p¹² as a quadratic extension of gfP6 |
| // where ω²=τ. |
| type gfP12 struct { |
| x, y *gfP6 // value is xω + y |
| } |
| |
| func newGFp12(pool *bnPool) *gfP12 { |
| return &gfP12{newGFp6(pool), newGFp6(pool)} |
| } |
| |
| func (e *gfP12) String() string { |
| return "(" + e.x.String() + "," + e.y.String() + ")" |
| } |
| |
| func (e *gfP12) Put(pool *bnPool) { |
| e.x.Put(pool) |
| e.y.Put(pool) |
| } |
| |
| func (e *gfP12) Set(a *gfP12) *gfP12 { |
| e.x.Set(a.x) |
| e.y.Set(a.y) |
| return e |
| } |
| |
| func (e *gfP12) SetZero() *gfP12 { |
| e.x.SetZero() |
| e.y.SetZero() |
| return e |
| } |
| |
| func (e *gfP12) SetOne() *gfP12 { |
| e.x.SetZero() |
| e.y.SetOne() |
| return e |
| } |
| |
| func (e *gfP12) Minimal() { |
| e.x.Minimal() |
| e.y.Minimal() |
| } |
| |
| func (e *gfP12) IsZero() bool { |
| e.Minimal() |
| return e.x.IsZero() && e.y.IsZero() |
| } |
| |
| func (e *gfP12) IsOne() bool { |
| e.Minimal() |
| return e.x.IsZero() && e.y.IsOne() |
| } |
| |
| func (e *gfP12) Conjugate(a *gfP12) *gfP12 { |
| e.x.Negative(a.x) |
| e.y.Set(a.y) |
| return a |
| } |
| |
| func (e *gfP12) Negative(a *gfP12) *gfP12 { |
| e.x.Negative(a.x) |
| e.y.Negative(a.y) |
| return e |
| } |
| |
| // Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p |
| func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 { |
| e.x.Frobenius(a.x, pool) |
| e.y.Frobenius(a.y, pool) |
| e.x.MulScalar(e.x, xiToPMinus1Over6, pool) |
| return e |
| } |
| |
| // FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² |
| func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 { |
| e.x.FrobeniusP2(a.x) |
| e.x.MulGFP(e.x, xiToPSquaredMinus1Over6) |
| e.y.FrobeniusP2(a.y) |
| return e |
| } |
| |
| func (e *gfP12) Add(a, b *gfP12) *gfP12 { |
| e.x.Add(a.x, b.x) |
| e.y.Add(a.y, b.y) |
| return e |
| } |
| |
| func (e *gfP12) Sub(a, b *gfP12) *gfP12 { |
| e.x.Sub(a.x, b.x) |
| e.y.Sub(a.y, b.y) |
| return e |
| } |
| |
| func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 { |
| tx := newGFp6(pool) |
| tx.Mul(a.x, b.y, pool) |
| t := newGFp6(pool) |
| t.Mul(b.x, a.y, pool) |
| tx.Add(tx, t) |
| |
| ty := newGFp6(pool) |
| ty.Mul(a.y, b.y, pool) |
| t.Mul(a.x, b.x, pool) |
| t.MulTau(t, pool) |
| e.y.Add(ty, t) |
| e.x.Set(tx) |
| |
| tx.Put(pool) |
| ty.Put(pool) |
| t.Put(pool) |
| return e |
| } |
| |
| func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 { |
| e.x.Mul(a.x, b, pool) |
| e.y.Mul(a.y, b, pool) |
| return e |
| } |
| |
| func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 { |
| sum := newGFp12(pool) |
| sum.SetOne() |
| t := newGFp12(pool) |
| |
| for i := power.BitLen() - 1; i >= 0; i-- { |
| t.Square(sum, pool) |
| if power.Bit(i) != 0 { |
| sum.Mul(t, a, pool) |
| } else { |
| sum.Set(t) |
| } |
| } |
| |
| c.Set(sum) |
| |
| sum.Put(pool) |
| t.Put(pool) |
| |
| return c |
| } |
| |
| func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 { |
| // Complex squaring algorithm |
| v0 := newGFp6(pool) |
| v0.Mul(a.x, a.y, pool) |
| |
| t := newGFp6(pool) |
| t.MulTau(a.x, pool) |
| t.Add(a.y, t) |
| ty := newGFp6(pool) |
| ty.Add(a.x, a.y) |
| ty.Mul(ty, t, pool) |
| ty.Sub(ty, v0) |
| t.MulTau(v0, pool) |
| ty.Sub(ty, t) |
| |
| e.y.Set(ty) |
| e.x.Double(v0) |
| |
| v0.Put(pool) |
| t.Put(pool) |
| ty.Put(pool) |
| |
| return e |
| } |
| |
| func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 { |
| // See "Implementing cryptographic pairings", M. Scott, section 3.2. |
| // ftp://136.206.11.249/pub/crypto/pairings.pdf |
| t1 := newGFp6(pool) |
| t2 := newGFp6(pool) |
| |
| t1.Square(a.x, pool) |
| t2.Square(a.y, pool) |
| t1.MulTau(t1, pool) |
| t1.Sub(t2, t1) |
| t2.Invert(t1, pool) |
| |
| e.x.Negative(a.x) |
| e.y.Set(a.y) |
| e.MulScalar(e, t2, pool) |
| |
| t1.Put(pool) |
| t2.Put(pool) |
| |
| return e |
| } |