| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssh |
| |
| import ( |
| "crypto/rand" |
| "errors" |
| "fmt" |
| "io" |
| "log" |
| "net" |
| "strings" |
| "sync" |
| ) |
| |
| // debugHandshake, if set, prints messages sent and received. Key |
| // exchange messages are printed as if DH were used, so the debug |
| // messages are wrong when using ECDH. |
| const debugHandshake = false |
| |
| // chanSize sets the amount of buffering SSH connections. This is |
| // primarily for testing: setting chanSize=0 uncovers deadlocks more |
| // quickly. |
| const chanSize = 16 |
| |
| // keyingTransport is a packet based transport that supports key |
| // changes. It need not be thread-safe. It should pass through |
| // msgNewKeys in both directions. |
| type keyingTransport interface { |
| packetConn |
| |
| // prepareKeyChange sets up a key change. The key change for a |
| // direction will be effected if a msgNewKeys message is sent |
| // or received. |
| prepareKeyChange(*algorithms, *kexResult) error |
| |
| // setStrictMode sets the strict KEX mode, notably triggering |
| // sequence number resets on sending or receiving msgNewKeys. |
| // If the sequence number is already > 1 when setStrictMode |
| // is called, an error is returned. |
| setStrictMode() error |
| |
| // setInitialKEXDone indicates to the transport that the initial key exchange |
| // was completed |
| setInitialKEXDone() |
| } |
| |
| // handshakeTransport implements rekeying on top of a keyingTransport |
| // and offers a thread-safe writePacket() interface. |
| type handshakeTransport struct { |
| conn keyingTransport |
| config *Config |
| |
| serverVersion []byte |
| clientVersion []byte |
| |
| // hostKeys is non-empty if we are the server. In that case, |
| // it contains all host keys that can be used to sign the |
| // connection. |
| hostKeys []Signer |
| |
| // publicKeyAuthAlgorithms is non-empty if we are the server. In that case, |
| // it contains the supported client public key authentication algorithms. |
| publicKeyAuthAlgorithms []string |
| |
| // hostKeyAlgorithms is non-empty if we are the client. In that case, |
| // we accept these key types from the server as host key. |
| hostKeyAlgorithms []string |
| |
| // On read error, incoming is closed, and readError is set. |
| incoming chan []byte |
| readError error |
| |
| mu sync.Mutex |
| writeError error |
| sentInitPacket []byte |
| sentInitMsg *kexInitMsg |
| pendingPackets [][]byte // Used when a key exchange is in progress. |
| writePacketsLeft uint32 |
| writeBytesLeft int64 |
| |
| // If the read loop wants to schedule a kex, it pings this |
| // channel, and the write loop will send out a kex |
| // message. |
| requestKex chan struct{} |
| |
| // If the other side requests or confirms a kex, its kexInit |
| // packet is sent here for the write loop to find it. |
| startKex chan *pendingKex |
| kexLoopDone chan struct{} // closed (with writeError non-nil) when kexLoop exits |
| |
| // data for host key checking |
| hostKeyCallback HostKeyCallback |
| dialAddress string |
| remoteAddr net.Addr |
| |
| // bannerCallback is non-empty if we are the client and it has been set in |
| // ClientConfig. In that case it is called during the user authentication |
| // dance to handle a custom server's message. |
| bannerCallback BannerCallback |
| |
| // Algorithms agreed in the last key exchange. |
| algorithms *algorithms |
| |
| // Counters exclusively owned by readLoop. |
| readPacketsLeft uint32 |
| readBytesLeft int64 |
| |
| // The session ID or nil if first kex did not complete yet. |
| sessionID []byte |
| |
| // strictMode indicates if the other side of the handshake indicated |
| // that we should be following the strict KEX protocol restrictions. |
| strictMode bool |
| } |
| |
| type pendingKex struct { |
| otherInit []byte |
| done chan error |
| } |
| |
| func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport { |
| t := &handshakeTransport{ |
| conn: conn, |
| serverVersion: serverVersion, |
| clientVersion: clientVersion, |
| incoming: make(chan []byte, chanSize), |
| requestKex: make(chan struct{}, 1), |
| startKex: make(chan *pendingKex), |
| kexLoopDone: make(chan struct{}), |
| |
| config: config, |
| } |
| t.resetReadThresholds() |
| t.resetWriteThresholds() |
| |
| // We always start with a mandatory key exchange. |
| t.requestKex <- struct{}{} |
| return t |
| } |
| |
| func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport { |
| t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion) |
| t.dialAddress = dialAddr |
| t.remoteAddr = addr |
| t.hostKeyCallback = config.HostKeyCallback |
| t.bannerCallback = config.BannerCallback |
| if config.HostKeyAlgorithms != nil { |
| t.hostKeyAlgorithms = config.HostKeyAlgorithms |
| } else { |
| t.hostKeyAlgorithms = supportedHostKeyAlgos |
| } |
| go t.readLoop() |
| go t.kexLoop() |
| return t |
| } |
| |
| func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport { |
| t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion) |
| t.hostKeys = config.hostKeys |
| t.publicKeyAuthAlgorithms = config.PublicKeyAuthAlgorithms |
| go t.readLoop() |
| go t.kexLoop() |
| return t |
| } |
| |
| func (t *handshakeTransport) getSessionID() []byte { |
| return t.sessionID |
| } |
| |
| // waitSession waits for the session to be established. This should be |
| // the first thing to call after instantiating handshakeTransport. |
| func (t *handshakeTransport) waitSession() error { |
| p, err := t.readPacket() |
| if err != nil { |
| return err |
| } |
| if p[0] != msgNewKeys { |
| return fmt.Errorf("ssh: first packet should be msgNewKeys") |
| } |
| |
| return nil |
| } |
| |
| func (t *handshakeTransport) id() string { |
| if len(t.hostKeys) > 0 { |
| return "server" |
| } |
| return "client" |
| } |
| |
| func (t *handshakeTransport) printPacket(p []byte, write bool) { |
| action := "got" |
| if write { |
| action = "sent" |
| } |
| |
| if p[0] == msgChannelData || p[0] == msgChannelExtendedData { |
| log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p)) |
| } else { |
| msg, err := decode(p) |
| log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err) |
| } |
| } |
| |
| func (t *handshakeTransport) readPacket() ([]byte, error) { |
| p, ok := <-t.incoming |
| if !ok { |
| return nil, t.readError |
| } |
| return p, nil |
| } |
| |
| func (t *handshakeTransport) readLoop() { |
| first := true |
| for { |
| p, err := t.readOnePacket(first) |
| first = false |
| if err != nil { |
| t.readError = err |
| close(t.incoming) |
| break |
| } |
| // If this is the first kex, and strict KEX mode is enabled, |
| // we don't ignore any messages, as they may be used to manipulate |
| // the packet sequence numbers. |
| if !(t.sessionID == nil && t.strictMode) && (p[0] == msgIgnore || p[0] == msgDebug) { |
| continue |
| } |
| t.incoming <- p |
| } |
| |
| // Stop writers too. |
| t.recordWriteError(t.readError) |
| |
| // Unblock the writer should it wait for this. |
| close(t.startKex) |
| |
| // Don't close t.requestKex; it's also written to from writePacket. |
| } |
| |
| func (t *handshakeTransport) pushPacket(p []byte) error { |
| if debugHandshake { |
| t.printPacket(p, true) |
| } |
| return t.conn.writePacket(p) |
| } |
| |
| func (t *handshakeTransport) getWriteError() error { |
| t.mu.Lock() |
| defer t.mu.Unlock() |
| return t.writeError |
| } |
| |
| func (t *handshakeTransport) recordWriteError(err error) { |
| t.mu.Lock() |
| defer t.mu.Unlock() |
| if t.writeError == nil && err != nil { |
| t.writeError = err |
| } |
| } |
| |
| func (t *handshakeTransport) requestKeyExchange() { |
| select { |
| case t.requestKex <- struct{}{}: |
| default: |
| // something already requested a kex, so do nothing. |
| } |
| } |
| |
| func (t *handshakeTransport) resetWriteThresholds() { |
| t.writePacketsLeft = packetRekeyThreshold |
| if t.config.RekeyThreshold > 0 { |
| t.writeBytesLeft = int64(t.config.RekeyThreshold) |
| } else if t.algorithms != nil { |
| t.writeBytesLeft = t.algorithms.w.rekeyBytes() |
| } else { |
| t.writeBytesLeft = 1 << 30 |
| } |
| } |
| |
| func (t *handshakeTransport) kexLoop() { |
| |
| write: |
| for t.getWriteError() == nil { |
| var request *pendingKex |
| var sent bool |
| |
| for request == nil || !sent { |
| var ok bool |
| select { |
| case request, ok = <-t.startKex: |
| if !ok { |
| break write |
| } |
| case <-t.requestKex: |
| break |
| } |
| |
| if !sent { |
| if err := t.sendKexInit(); err != nil { |
| t.recordWriteError(err) |
| break |
| } |
| sent = true |
| } |
| } |
| |
| if err := t.getWriteError(); err != nil { |
| if request != nil { |
| request.done <- err |
| } |
| break |
| } |
| |
| // We're not servicing t.requestKex, but that is OK: |
| // we never block on sending to t.requestKex. |
| |
| // We're not servicing t.startKex, but the remote end |
| // has just sent us a kexInitMsg, so it can't send |
| // another key change request, until we close the done |
| // channel on the pendingKex request. |
| |
| err := t.enterKeyExchange(request.otherInit) |
| |
| t.mu.Lock() |
| t.writeError = err |
| t.sentInitPacket = nil |
| t.sentInitMsg = nil |
| |
| t.resetWriteThresholds() |
| |
| // we have completed the key exchange. Since the |
| // reader is still blocked, it is safe to clear out |
| // the requestKex channel. This avoids the situation |
| // where: 1) we consumed our own request for the |
| // initial kex, and 2) the kex from the remote side |
| // caused another send on the requestKex channel, |
| clear: |
| for { |
| select { |
| case <-t.requestKex: |
| // |
| default: |
| break clear |
| } |
| } |
| |
| request.done <- t.writeError |
| |
| // kex finished. Push packets that we received while |
| // the kex was in progress. Don't look at t.startKex |
| // and don't increment writtenSinceKex: if we trigger |
| // another kex while we are still busy with the last |
| // one, things will become very confusing. |
| for _, p := range t.pendingPackets { |
| t.writeError = t.pushPacket(p) |
| if t.writeError != nil { |
| break |
| } |
| } |
| t.pendingPackets = t.pendingPackets[:0] |
| t.mu.Unlock() |
| } |
| |
| // Unblock reader. |
| t.conn.Close() |
| |
| // drain startKex channel. We don't service t.requestKex |
| // because nobody does blocking sends there. |
| for request := range t.startKex { |
| request.done <- t.getWriteError() |
| } |
| |
| // Mark that the loop is done so that Close can return. |
| close(t.kexLoopDone) |
| } |
| |
| // The protocol uses uint32 for packet counters, so we can't let them |
| // reach 1<<32. We will actually read and write more packets than |
| // this, though: the other side may send more packets, and after we |
| // hit this limit on writing we will send a few more packets for the |
| // key exchange itself. |
| const packetRekeyThreshold = (1 << 31) |
| |
| func (t *handshakeTransport) resetReadThresholds() { |
| t.readPacketsLeft = packetRekeyThreshold |
| if t.config.RekeyThreshold > 0 { |
| t.readBytesLeft = int64(t.config.RekeyThreshold) |
| } else if t.algorithms != nil { |
| t.readBytesLeft = t.algorithms.r.rekeyBytes() |
| } else { |
| t.readBytesLeft = 1 << 30 |
| } |
| } |
| |
| func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) { |
| p, err := t.conn.readPacket() |
| if err != nil { |
| return nil, err |
| } |
| |
| if t.readPacketsLeft > 0 { |
| t.readPacketsLeft-- |
| } else { |
| t.requestKeyExchange() |
| } |
| |
| if t.readBytesLeft > 0 { |
| t.readBytesLeft -= int64(len(p)) |
| } else { |
| t.requestKeyExchange() |
| } |
| |
| if debugHandshake { |
| t.printPacket(p, false) |
| } |
| |
| if first && p[0] != msgKexInit { |
| return nil, fmt.Errorf("ssh: first packet should be msgKexInit") |
| } |
| |
| if p[0] != msgKexInit { |
| return p, nil |
| } |
| |
| firstKex := t.sessionID == nil |
| |
| kex := pendingKex{ |
| done: make(chan error, 1), |
| otherInit: p, |
| } |
| t.startKex <- &kex |
| err = <-kex.done |
| |
| if debugHandshake { |
| log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err) |
| } |
| |
| if err != nil { |
| return nil, err |
| } |
| |
| t.resetReadThresholds() |
| |
| // By default, a key exchange is hidden from higher layers by |
| // translating it into msgIgnore. |
| successPacket := []byte{msgIgnore} |
| if firstKex { |
| // sendKexInit() for the first kex waits for |
| // msgNewKeys so the authentication process is |
| // guaranteed to happen over an encrypted transport. |
| successPacket = []byte{msgNewKeys} |
| } |
| |
| return successPacket, nil |
| } |
| |
| const ( |
| kexStrictClient = "kex-strict-c-v00@openssh.com" |
| kexStrictServer = "kex-strict-s-v00@openssh.com" |
| ) |
| |
| // sendKexInit sends a key change message. |
| func (t *handshakeTransport) sendKexInit() error { |
| t.mu.Lock() |
| defer t.mu.Unlock() |
| if t.sentInitMsg != nil { |
| // kexInits may be sent either in response to the other side, |
| // or because our side wants to initiate a key change, so we |
| // may have already sent a kexInit. In that case, don't send a |
| // second kexInit. |
| return nil |
| } |
| |
| msg := &kexInitMsg{ |
| CiphersClientServer: t.config.Ciphers, |
| CiphersServerClient: t.config.Ciphers, |
| MACsClientServer: t.config.MACs, |
| MACsServerClient: t.config.MACs, |
| CompressionClientServer: supportedCompressions, |
| CompressionServerClient: supportedCompressions, |
| } |
| io.ReadFull(rand.Reader, msg.Cookie[:]) |
| |
| // We mutate the KexAlgos slice, in order to add the kex-strict extension algorithm, |
| // and possibly to add the ext-info extension algorithm. Since the slice may be the |
| // user owned KeyExchanges, we create our own slice in order to avoid using user |
| // owned memory by mistake. |
| msg.KexAlgos = make([]string, 0, len(t.config.KeyExchanges)+2) // room for kex-strict and ext-info |
| msg.KexAlgos = append(msg.KexAlgos, t.config.KeyExchanges...) |
| |
| isServer := len(t.hostKeys) > 0 |
| if isServer { |
| for _, k := range t.hostKeys { |
| // If k is a MultiAlgorithmSigner, we restrict the signature |
| // algorithms. If k is a AlgorithmSigner, presume it supports all |
| // signature algorithms associated with the key format. If k is not |
| // an AlgorithmSigner, we can only assume it only supports the |
| // algorithms that matches the key format. (This means that Sign |
| // can't pick a different default). |
| keyFormat := k.PublicKey().Type() |
| |
| switch s := k.(type) { |
| case MultiAlgorithmSigner: |
| for _, algo := range algorithmsForKeyFormat(keyFormat) { |
| if contains(s.Algorithms(), underlyingAlgo(algo)) { |
| msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algo) |
| } |
| } |
| case AlgorithmSigner: |
| msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algorithmsForKeyFormat(keyFormat)...) |
| default: |
| msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, keyFormat) |
| } |
| } |
| |
| if t.sessionID == nil { |
| msg.KexAlgos = append(msg.KexAlgos, kexStrictServer) |
| } |
| } else { |
| msg.ServerHostKeyAlgos = t.hostKeyAlgorithms |
| |
| // As a client we opt in to receiving SSH_MSG_EXT_INFO so we know what |
| // algorithms the server supports for public key authentication. See RFC |
| // 8308, Section 2.1. |
| // |
| // We also send the strict KEX mode extension algorithm, in order to opt |
| // into the strict KEX mode. |
| if firstKeyExchange := t.sessionID == nil; firstKeyExchange { |
| msg.KexAlgos = append(msg.KexAlgos, "ext-info-c") |
| msg.KexAlgos = append(msg.KexAlgos, kexStrictClient) |
| } |
| |
| } |
| |
| packet := Marshal(msg) |
| |
| // writePacket destroys the contents, so save a copy. |
| packetCopy := make([]byte, len(packet)) |
| copy(packetCopy, packet) |
| |
| if err := t.pushPacket(packetCopy); err != nil { |
| return err |
| } |
| |
| t.sentInitMsg = msg |
| t.sentInitPacket = packet |
| |
| return nil |
| } |
| |
| func (t *handshakeTransport) writePacket(p []byte) error { |
| switch p[0] { |
| case msgKexInit: |
| return errors.New("ssh: only handshakeTransport can send kexInit") |
| case msgNewKeys: |
| return errors.New("ssh: only handshakeTransport can send newKeys") |
| } |
| |
| t.mu.Lock() |
| defer t.mu.Unlock() |
| if t.writeError != nil { |
| return t.writeError |
| } |
| |
| if t.sentInitMsg != nil { |
| // Copy the packet so the writer can reuse the buffer. |
| cp := make([]byte, len(p)) |
| copy(cp, p) |
| t.pendingPackets = append(t.pendingPackets, cp) |
| return nil |
| } |
| |
| if t.writeBytesLeft > 0 { |
| t.writeBytesLeft -= int64(len(p)) |
| } else { |
| t.requestKeyExchange() |
| } |
| |
| if t.writePacketsLeft > 0 { |
| t.writePacketsLeft-- |
| } else { |
| t.requestKeyExchange() |
| } |
| |
| if err := t.pushPacket(p); err != nil { |
| t.writeError = err |
| } |
| |
| return nil |
| } |
| |
| func (t *handshakeTransport) Close() error { |
| // Close the connection. This should cause the readLoop goroutine to wake up |
| // and close t.startKex, which will shut down kexLoop if running. |
| err := t.conn.Close() |
| |
| // Wait for the kexLoop goroutine to complete. |
| // At that point we know that the readLoop goroutine is complete too, |
| // because kexLoop itself waits for readLoop to close the startKex channel. |
| <-t.kexLoopDone |
| |
| return err |
| } |
| |
| func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error { |
| if debugHandshake { |
| log.Printf("%s entered key exchange", t.id()) |
| } |
| |
| otherInit := &kexInitMsg{} |
| if err := Unmarshal(otherInitPacket, otherInit); err != nil { |
| return err |
| } |
| |
| magics := handshakeMagics{ |
| clientVersion: t.clientVersion, |
| serverVersion: t.serverVersion, |
| clientKexInit: otherInitPacket, |
| serverKexInit: t.sentInitPacket, |
| } |
| |
| clientInit := otherInit |
| serverInit := t.sentInitMsg |
| isClient := len(t.hostKeys) == 0 |
| if isClient { |
| clientInit, serverInit = serverInit, clientInit |
| |
| magics.clientKexInit = t.sentInitPacket |
| magics.serverKexInit = otherInitPacket |
| } |
| |
| var err error |
| t.algorithms, err = findAgreedAlgorithms(isClient, clientInit, serverInit) |
| if err != nil { |
| return err |
| } |
| |
| if t.sessionID == nil && ((isClient && contains(serverInit.KexAlgos, kexStrictServer)) || (!isClient && contains(clientInit.KexAlgos, kexStrictClient))) { |
| t.strictMode = true |
| if err := t.conn.setStrictMode(); err != nil { |
| return err |
| } |
| } |
| |
| // We don't send FirstKexFollows, but we handle receiving it. |
| // |
| // RFC 4253 section 7 defines the kex and the agreement method for |
| // first_kex_packet_follows. It states that the guessed packet |
| // should be ignored if the "kex algorithm and/or the host |
| // key algorithm is guessed wrong (server and client have |
| // different preferred algorithm), or if any of the other |
| // algorithms cannot be agreed upon". The other algorithms have |
| // already been checked above so the kex algorithm and host key |
| // algorithm are checked here. |
| if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) { |
| // other side sent a kex message for the wrong algorithm, |
| // which we have to ignore. |
| if _, err := t.conn.readPacket(); err != nil { |
| return err |
| } |
| } |
| |
| kex, ok := kexAlgoMap[t.algorithms.kex] |
| if !ok { |
| return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex) |
| } |
| |
| var result *kexResult |
| if len(t.hostKeys) > 0 { |
| result, err = t.server(kex, &magics) |
| } else { |
| result, err = t.client(kex, &magics) |
| } |
| |
| if err != nil { |
| return err |
| } |
| |
| firstKeyExchange := t.sessionID == nil |
| if firstKeyExchange { |
| t.sessionID = result.H |
| } |
| result.SessionID = t.sessionID |
| |
| if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil { |
| return err |
| } |
| if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil { |
| return err |
| } |
| |
| // On the server side, after the first SSH_MSG_NEWKEYS, send a SSH_MSG_EXT_INFO |
| // message with the server-sig-algs extension if the client supports it. See |
| // RFC 8308, Sections 2.4 and 3.1, and [PROTOCOL], Section 1.9. |
| if !isClient && firstKeyExchange && contains(clientInit.KexAlgos, "ext-info-c") { |
| supportedPubKeyAuthAlgosList := strings.Join(t.publicKeyAuthAlgorithms, ",") |
| extInfo := &extInfoMsg{ |
| NumExtensions: 2, |
| Payload: make([]byte, 0, 4+15+4+len(supportedPubKeyAuthAlgosList)+4+16+4+1), |
| } |
| extInfo.Payload = appendInt(extInfo.Payload, len("server-sig-algs")) |
| extInfo.Payload = append(extInfo.Payload, "server-sig-algs"...) |
| extInfo.Payload = appendInt(extInfo.Payload, len(supportedPubKeyAuthAlgosList)) |
| extInfo.Payload = append(extInfo.Payload, supportedPubKeyAuthAlgosList...) |
| extInfo.Payload = appendInt(extInfo.Payload, len("ping@openssh.com")) |
| extInfo.Payload = append(extInfo.Payload, "ping@openssh.com"...) |
| extInfo.Payload = appendInt(extInfo.Payload, 1) |
| extInfo.Payload = append(extInfo.Payload, "0"...) |
| if err := t.conn.writePacket(Marshal(extInfo)); err != nil { |
| return err |
| } |
| } |
| |
| if packet, err := t.conn.readPacket(); err != nil { |
| return err |
| } else if packet[0] != msgNewKeys { |
| return unexpectedMessageError(msgNewKeys, packet[0]) |
| } |
| |
| if firstKeyExchange { |
| // Indicates to the transport that the first key exchange is completed |
| // after receiving SSH_MSG_NEWKEYS. |
| t.conn.setInitialKEXDone() |
| } |
| |
| return nil |
| } |
| |
| // algorithmSignerWrapper is an AlgorithmSigner that only supports the default |
| // key format algorithm. |
| // |
| // This is technically a violation of the AlgorithmSigner interface, but it |
| // should be unreachable given where we use this. Anyway, at least it returns an |
| // error instead of panicing or producing an incorrect signature. |
| type algorithmSignerWrapper struct { |
| Signer |
| } |
| |
| func (a algorithmSignerWrapper) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) { |
| if algorithm != underlyingAlgo(a.PublicKey().Type()) { |
| return nil, errors.New("ssh: internal error: algorithmSignerWrapper invoked with non-default algorithm") |
| } |
| return a.Sign(rand, data) |
| } |
| |
| func pickHostKey(hostKeys []Signer, algo string) AlgorithmSigner { |
| for _, k := range hostKeys { |
| if s, ok := k.(MultiAlgorithmSigner); ok { |
| if !contains(s.Algorithms(), underlyingAlgo(algo)) { |
| continue |
| } |
| } |
| |
| if algo == k.PublicKey().Type() { |
| return algorithmSignerWrapper{k} |
| } |
| |
| k, ok := k.(AlgorithmSigner) |
| if !ok { |
| continue |
| } |
| for _, a := range algorithmsForKeyFormat(k.PublicKey().Type()) { |
| if algo == a { |
| return k |
| } |
| } |
| } |
| return nil |
| } |
| |
| func (t *handshakeTransport) server(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) { |
| hostKey := pickHostKey(t.hostKeys, t.algorithms.hostKey) |
| if hostKey == nil { |
| return nil, errors.New("ssh: internal error: negotiated unsupported signature type") |
| } |
| |
| r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.hostKey) |
| return r, err |
| } |
| |
| func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) { |
| result, err := kex.Client(t.conn, t.config.Rand, magics) |
| if err != nil { |
| return nil, err |
| } |
| |
| hostKey, err := ParsePublicKey(result.HostKey) |
| if err != nil { |
| return nil, err |
| } |
| |
| if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil { |
| return nil, err |
| } |
| |
| err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey) |
| if err != nil { |
| return nil, err |
| } |
| |
| return result, nil |
| } |