Since the introduction of the append
built-in, most of the functionality of the container/vector
package, which was removed in Go 1, can be replicated using append
and copy
.
Since the introduction of generics, generic implementations of several of these functions are available in the golang.org/x/exp/slices
package.
Here are the vector methods and their slice-manipulation analogues:
a = append(a, b...)
b := make([]T, len(a)) copy(b, a) // These two are often a little slower than the above one, // but they would be more efficient if there are more // elements to be appended to b after copying. b = append([]T(nil), a...) b = append(a[:0:0], a...) // This one-line implementation is equivalent to the above // two-line make+copy implementation logically. But it is // actually a bit slower (as of Go toolchain v1.16). b = append(make([]T, 0, len(a)), a...)
a = append(a[:i], a[j:]...)
a = append(a[:i], a[i+1:]...) // or a = a[:i+copy(a[i:], a[i+1:])]
a[i] = a[len(a)-1]
a = a[:len(a)-1]
NOTE If the type of the element is a pointer or a struct with pointer fields, which need to be garbage collected, the above implementations of Cut
and Delete
have a potential memory leak problem: some elements with values are still referenced by slice a
and thus can not be collected. The following code can fix this problem:
Cut
copy(a[i:], a[j:]) for k, n := len(a)-j+i, len(a); k < n; k++ { a[k] = nil // or the zero value of T } a = a[:len(a)-j+i]
Delete
copy(a[i:], a[i+1:]) a[len(a)-1] = nil // or the zero value of T a = a[:len(a)-1]
Delete without preserving order
a[i] = a[len(a)-1]
a[len(a)-1] = nil
a = a[:len(a)-1]
Insert n
elements at position i
:
a = append(a[:i], append(make([]T, n), a[i:]...)...)
Append n
elements:
a = append(a, make([]T, n)...)
Make sure there is space to append n
elements without re-allocating:
if cap(a)-len(a) < n {
a = append(make([]T, 0, len(a)+n), a...)
}
n := 0
for _, x := range a {
if keep(x) {
a[n] = x
n++
}
}
a = a[:n]
a = append(a[:i], append([]T{x}, a[i:]...)...)
NOTE: The second append
creates a new slice with its own underlying storage and copies elements in a[i:]
to that slice, and these elements are then copied back to slice a
(by the first append
). The creation of the new slice (and thus memory garbage) and the second copy can be avoided by using an alternative way:
Insert
s = append(s, 0 /* use the zero value of the element type */) copy(s[i+1:], s[i:]) s[i] = x
a = append(a[:i], append(b, a[i:]...)...) // The above one-line way copies a[i:] twice and // allocates at least once. // The following verbose way only copies elements // in a[i:] once and allocates at most once. // But, as of Go toolchain 1.16, due to lacking of // optimizations to avoid elements clearing in the // "make" call, the verbose way is not always faster. // // Future compiler optimizations might implement // both in the most efficient ways. // // Assume element type is int. func Insert(s []int, k int, vs ...int) []int { if n := len(s) + len(vs); n <= cap(s) { s2 := s[:n] copy(s2[k+len(vs):], s[k:]) copy(s2[k:], vs) return s2 } s2 := make([]int, len(s) + len(vs)) copy(s2, s[:k]) copy(s2[k:], vs) copy(s2[k+len(vs):], s[k:]) return s2 } a = Insert(a, i, b...)
a = append(a, x)
x, a = a[len(a)-1], a[:len(a)-1]
a = append([]T{x}, a...)
x, a = a[0], a[1:]
This trick uses the fact that a slice shares the same backing array and capacity as the original, so the storage is reused for the filtered slice. Of course, the original contents are modified.
b := a[:0]
for _, x := range a {
if f(x) {
b = append(b, x)
}
}
For elements which must be garbage collected, the following code can be included afterwards:
for i := len(b); i < len(a); i++ { a[i] = nil // or the zero value of T }
To replace the contents of a slice with the same elements but in reverse order:
for i := len(a)/2-1; i >= 0; i-- {
opp := len(a)-1-i
a[i], a[opp] = a[opp], a[i]
}
The same thing, except with two indices:
for left, right := 0, len(a)-1; left < right; left, right = left+1, right-1 {
a[left], a[right] = a[right], a[left]
}
Fisher–Yates algorithm:
Since go1.10, this is available at math/rand.Shuffle
for i := len(a) - 1; i > 0; i-- {
j := rand.Intn(i + 1)
a[i], a[j] = a[j], a[i]
}
Useful if you want to do batch processing on large slices.
actions := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
batchSize := 3
batches := make([][]int, 0, (len(actions) + batchSize - 1) / batchSize)
for batchSize < len(actions) {
actions, batches = actions[batchSize:], append(batches, actions[0:batchSize:batchSize])
}
batches = append(batches, actions)
Yields the following:
[[0 1 2] [3 4 5] [6 7 8] [9]]
import "sort" in := []int{3,2,1,4,3,2,1,4,1} // any item can be sorted sort.Ints(in) j := 0 for i := 1; i < len(in); i++ { if in[j] == in[i] { continue } j++ // preserve the original data // in[i], in[j] = in[j], in[i] // only set what is required in[j] = in[i] } result := in[:j+1] fmt.Println(result) // [1 2 3 4]
// moveToFront moves needle to the front of haystack, in place if possible. func moveToFront(needle string, haystack []string) []string { if len(haystack) != 0 && haystack[0] == needle { return haystack } prev := needle for i, elem := range haystack { switch { case i == 0: haystack[0] = needle prev = elem case elem == needle: haystack[i] = prev return haystack default: haystack[i] = prev prev = elem } } return append(haystack, prev) } haystack := []string{"a", "b", "c", "d", "e"} // [a b c d e] haystack = moveToFront("c", haystack) // [c a b d e] haystack = moveToFront("f", haystack) // [f c a b d e]
func slidingWindow(size int, input []int) [][]int { // returns the input slice as the first element if len(input) <= size { return [][]int{input} } // allocate slice at the precise size we need r := make([][]int, 0, len(input)-size+1) for i, j := 0, size; j <= len(input); i, j = i+1, j+1 { r = append(r, input[i:j]) } return r }