go.tools: add missing files ssa/*.go

R=golang-dev, adonovan
CC=golang-dev
https://golang.org/cl/9500043
diff --git a/ssa/ssa.go b/ssa/ssa.go
new file mode 100644
index 0000000..a25766e
--- /dev/null
+++ b/ssa/ssa.go
@@ -0,0 +1,1400 @@
+package ssa
+
+// This package defines a high-level intermediate representation for
+// Go programs using static single-assignment (SSA) form.
+
+import (
+	"fmt"
+	"go/ast"
+	"go/token"
+	"sync"
+
+	"code.google.com/p/go.tools/go/exact"
+	"code.google.com/p/go.tools/go/types"
+)
+
+// A Program is a partial or complete Go program converted to SSA form.
+// Each Builder creates and populates a single Program during its
+// lifetime.
+//
+type Program struct {
+	Files    *token.FileSet            // position information for the files of this Program
+	Packages map[string]*Package       // all loaded Packages, keyed by import path
+	Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
+
+	methodSets      map[types.Type]MethodSet    // concrete method sets for all needed types  [TODO(adonovan): de-dup]
+	methodSetsMu    sync.Mutex                  // serializes all accesses to methodSets
+	concreteMethods map[*types.Method]*Function // maps named concrete methods to their code
+	mode            BuilderMode                 // set of mode bits
+}
+
+// A Package is a single analyzed Go package containing Members for
+// all package-level functions, variables, constants and types it
+// declares.  These may be accessed directly via Members, or via the
+// type-specific accessor methods Func, Type, Var and Const.
+//
+type Package struct {
+	Prog    *Program          // the owning program
+	Types   *types.Package    // the type checker's package object for this package.
+	Members map[string]Member // all exported and unexported members of the package
+	Init    *Function         // the package's (concatenated) init function
+
+	// These fields are available between package creation and SSA
+	// building, but are then cleared unless Context.RetainAST(pkg).
+	Files    []*ast.File // abstract syntax for the package's files
+	TypeInfo             // type-checker intermediate results
+
+	// The following fields are set transiently during building,
+	// then cleared.
+	started  int32                   // atomically tested and set at start of build phase
+	nTo1Vars map[*ast.ValueSpec]bool // set of n:1 ValueSpecs already built
+}
+
+// A Member is a member of a Go package, implemented by *Constant,
+// *Global, *Function, or *Type; they are created by package-level
+// const, var, func and type declarations respectively.
+//
+type Member interface {
+	Name() string      // the declared name of the package member
+	String() string    // human-readable information about the value
+	Posn() token.Pos   // position of member's declaration, if known
+	Type() types.Type  // the type of the package member
+	ImplementsMember() // dummy method to indicate the "implements" relation.
+}
+
+// An Id identifies the name of a field of a struct type, or the name
+// of a method of an interface or a named type.
+//
+// For exported names, i.e. those beginning with a Unicode upper-case
+// letter, a simple string is unambiguous.
+//
+// However, a method set or struct may contain multiple unexported
+// names with identical spelling that are logically distinct because
+// they originate in different packages.  Unexported names must
+// therefore be disambiguated by their package too.
+//
+// The Pkg field of an Id is therefore nil iff the name is exported.
+//
+// This type is suitable for use as a map key because the equivalence
+// relation == is consistent with identifier equality.
+type Id struct {
+	Pkg  *types.Package
+	Name string
+}
+
+// A MethodSet contains all the methods for a particular type.
+// The method sets for T and *T are distinct entities.
+// The methods for a non-pointer type T all have receiver type T, but
+// the methods for pointer type *T may have receiver type *T or T.
+//
+type MethodSet map[Id]*Function
+
+// A Type is a Member of a Package representing the name, underlying
+// type and method set of a named type declared at package scope.
+//
+type Type struct {
+	NamedType  *types.NamedType
+	Methods    MethodSet // concrete method set of N
+	PtrMethods MethodSet // concrete method set of (*N)
+}
+
+// A Constant is a Member of Package representing a package-level
+// constant value.
+//
+type Constant struct {
+	Name_ string
+	Value *Literal
+	Pos   token.Pos
+}
+
+// An SSA value that can be referenced by an instruction.
+type Value interface {
+	// Name returns the name of this value, and determines how
+	// this Value appears when used as an operand of an
+	// Instruction.
+	//
+	// This is the same as the source name for Parameters,
+	// Builtins, Functions, Captures, Globals and some Allocs.
+	// For literals, it is a representation of the literal's value
+	// and type.  For all other Values this is the name of the
+	// virtual register defined by the instruction.
+	//
+	// The name of an SSA Value is not semantically significant,
+	// and may not even be unique within a function.
+	Name() string
+
+	// If this value is an Instruction, String returns its
+	// disassembled form; otherwise it returns unspecified
+	// human-readable information about the Value, such as its
+	// kind, name and type.
+	String() string
+
+	// Type returns the type of this value.  Many instructions
+	// (e.g. IndexAddr) change the behaviour depending on the
+	// types of their operands.
+	Type() types.Type
+
+	// Referrers returns the list of instructions that have this
+	// value as one of their operands; it may contain duplicates
+	// if an instruction has a repeated operand.
+	//
+	// Referrers actually returns a pointer through which the
+	// caller may perform mutations to the object's state.
+	//
+	// Referrers is currently only defined for the function-local
+	// values Capture, Parameter and all value-defining instructions.
+	// It returns nil for Function, Builtin, Literal and Global.
+	//
+	// Instruction.Operands contains the inverse of this relation.
+	Referrers() *[]Instruction
+
+	// Dummy method to indicate the "implements" relation.
+	ImplementsValue()
+}
+
+// An Instruction is an SSA instruction that computes a new Value or
+// has some effect.
+//
+// An Instruction that defines a value (e.g. BinOp) also implements
+// the Value interface; an Instruction that only has an effect (e.g. Store)
+// does not.
+//
+type Instruction interface {
+	// String returns the disassembled form of this value.  e.g.
+	//
+	// Examples of Instructions that define a Value:
+	// e.g.  "x + y"     (BinOp)
+	//       "len([])"   (Call)
+	// Note that the name of the Value is not printed.
+	//
+	// Examples of Instructions that do define (are) Values:
+	// e.g.  "ret x"     (Ret)
+	//       "*y = x"    (Store)
+	//
+	// (This separation is useful for some analyses which
+	// distinguish the operation from the value it
+	// defines. e.g. 'y = local int' is both an allocation of
+	// memory 'local int' and a definition of a pointer y.)
+	String() string
+
+	// Block returns the basic block to which this instruction
+	// belongs.
+	Block() *BasicBlock
+
+	// SetBlock sets the basic block to which this instruction
+	// belongs.
+	SetBlock(*BasicBlock)
+
+	// Operands returns the operands of this instruction: the
+	// set of Values it references.
+	//
+	// Specifically, it appends their addresses to rands, a
+	// user-provided slice, and returns the resulting slice,
+	// permitting avoidance of memory allocation.
+	//
+	// The operands are appended in undefined order; the addresses
+	// are always non-nil but may point to a nil Value.  Clients
+	// may store through the pointers, e.g. to effect a value
+	// renaming.
+	//
+	// Value.Referrers is a subset of the inverse of this
+	// relation.  (Referrers are not tracked for all types of
+	// Values.)
+	Operands(rands []*Value) []*Value
+
+	// Dummy method to indicate the "implements" relation.
+	ImplementsInstruction()
+}
+
+// Function represents the parameters, results and code of a function
+// or method.
+//
+// If Blocks is nil, this indicates an external function for which no
+// Go source code is available.  In this case, Captures and Locals
+// will be nil too.  Clients performing whole-program analysis must
+// handle external functions specially.
+//
+// Functions are immutable values; they do not have addresses.
+//
+// Blocks[0] is the function entry point; block order is not otherwise
+// semantically significant, though it may affect the readability of
+// the disassembly.
+//
+// A nested function that refers to one or more lexically enclosing
+// local variables ("free variables") has Capture parameters.  Such
+// functions cannot be called directly but require a value created by
+// MakeClosure which, via its Bindings, supplies values for these
+// parameters.  Captures are always addresses.
+//
+// If the function is a method (Signature.Recv != nil) then the first
+// element of Params is the receiver parameter.
+//
+// Type() returns the function's Signature.
+//
+type Function struct {
+	Name_     string
+	Signature *types.Signature
+
+	Pos       token.Pos    // location of the definition
+	Enclosing *Function    // enclosing function if anon; nil if global
+	Pkg       *Package     // enclosing package for Go source functions; otherwise nil
+	Prog      *Program     // enclosing program
+	Params    []*Parameter // function parameters; for methods, includes receiver
+	FreeVars  []*Capture   // free variables whose values must be supplied by closure
+	Locals    []*Alloc
+	Blocks    []*BasicBlock // basic blocks of the function; nil => external
+	AnonFuncs []*Function   // anonymous functions directly beneath this one
+
+	// The following fields are set transiently during building,
+	// then cleared.
+	currentBlock *BasicBlock             // where to emit code
+	objects      map[types.Object]Value  // addresses of local variables
+	namedResults []*Alloc                // tuple of named results
+	syntax       *funcSyntax             // abstract syntax trees for Go source functions
+	targets      *targets                // linked stack of branch targets
+	lblocks      map[*ast.Object]*lblock // labelled blocks
+}
+
+// An SSA basic block.
+//
+// The final element of Instrs is always an explicit transfer of
+// control (If, Jump, Ret or Panic).
+//
+// A block may contain no Instructions only if it is unreachable,
+// i.e. Preds is nil.  Empty blocks are typically pruned.
+//
+// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
+// graph independent of the SSA Value graph.  It is illegal for
+// multiple edges to exist between the same pair of blocks.
+//
+// The order of Preds and Succs are significant (to Phi and If
+// instructions, respectively).
+//
+type BasicBlock struct {
+	Index        int            // index of this block within Func.Blocks
+	Comment      string         // optional label; no semantic significance
+	Func         *Function      // containing function
+	Instrs       []Instruction  // instructions in order
+	Preds, Succs []*BasicBlock  // predecessors and successors
+	succs2       [2]*BasicBlock // initial space for Succs.
+	dom          *domNode       // node in dominator tree; optional.
+	gaps         int            // number of nil Instrs (transient).
+	rundefers    int            // number of rundefers (transient)
+}
+
+// Pure values ----------------------------------------
+
+// A Capture is a pointer to a lexically enclosing local variable.
+//
+// The referent of a capture is an Alloc or another Capture and is
+// always considered potentially escaping, so Captures are always
+// addresses in the heap, and have pointer types.
+//
+type Capture struct {
+	Outer     Value // the Value captured from the enclosing context.
+	referrers []Instruction
+}
+
+// A Parameter represents an input parameter of a function.
+//
+type Parameter struct {
+	Name_     string
+	Type_     types.Type
+	referrers []Instruction
+}
+
+// A Literal represents a literal nil, boolean, string or numeric
+// (integer, fraction or complex) value.
+//
+// A literal's underlying Type() can be a basic type, possibly one of
+// the "untyped" types.  A nil literal can have any reference type:
+// interface, map, channel, pointer, slice, or function---but not
+// "untyped nil".
+//
+// All source-level constant expressions are represented by a Literal
+// of equal type and value.
+//
+// Value holds the exact value of the literal, independent of its
+// Type(), using the same representation as package go/types uses for
+// constants.
+//
+// Example printed form:
+// 	42:int
+//	"hello":untyped string
+//	3+4i:MyComplex
+//
+type Literal struct {
+	Type_ types.Type
+	Value exact.Value
+}
+
+// A Global is a named Value holding the address of a package-level
+// variable.
+//
+type Global struct {
+	Name_ string
+	Type_ types.Type
+	Pkg   *Package
+	Pos   token.Pos
+
+	// The following fields are set transiently during building,
+	// then cleared.
+	spec *ast.ValueSpec // explained at buildGlobal
+}
+
+// A built-in function, e.g. len.
+//
+// Builtins are immutable values; they do not have addresses.
+//
+// Type() returns an inscrutable *types.builtin.  Built-in functions
+// may have polymorphic or variadic types that are not expressible in
+// Go's type system.
+//
+type Builtin struct {
+	Object *types.Func // canonical types.Universe object for this built-in
+}
+
+// Value-defining instructions  ----------------------------------------
+
+// The Alloc instruction reserves space for a value of the given type,
+// zero-initializes it, and yields its address.
+//
+// Alloc values are always addresses, and have pointer types, so the
+// type of the allocated space is actually indirect(Type()).
+//
+// If Heap is false, Alloc allocates space in the function's
+// activation record (frame); we refer to an Alloc(Heap=false) as a
+// "local" alloc.  Each local Alloc returns the same address each time
+// it is executed within the same activation; the space is
+// re-initialized to zero.
+//
+// If Heap is true, Alloc allocates space in the heap, and returns; we
+// refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
+// returns a different address each time it is executed.
+//
+// When Alloc is applied to a channel, map or slice type, it returns
+// the address of an uninitialized (nil) reference of that kind; store
+// the result of MakeSlice, MakeMap or MakeChan in that location to
+// instantiate these types.
+//
+// Example printed form:
+// 	t0 = local int
+// 	t1 = new int
+//
+type Alloc struct {
+	anInstruction
+	Name_     string
+	Type_     types.Type
+	Heap      bool
+	Pos       token.Pos
+	referrers []Instruction
+	index     int // dense numbering; for lifting
+}
+
+// Phi represents an SSA φ-node, which combines values that differ
+// across incoming control-flow edges and yields a new value.  Within
+// a block, all φ-nodes must appear before all non-φ nodes.
+//
+// Example printed form:
+// 	t2 = phi [0.start: t0, 1.if.then: t1, ...]
+//
+type Phi struct {
+	Register
+	Comment string  // a hint as to its purpose
+	Edges   []Value // Edges[i] is value for Block().Preds[i]
+}
+
+// Call represents a function or method call.
+//
+// The Call instruction yields the function result, if there is
+// exactly one, or a tuple (empty or len>1) whose components are
+// accessed via Extract.
+//
+// See CallCommon for generic function call documentation.
+//
+// Example printed form:
+// 	t2 = println(t0, t1)
+// 	t4 = t3()
+// 	t7 = invoke t5.Println(...t6)
+//
+type Call struct {
+	Register
+	Call CallCommon
+}
+
+// BinOp yields the result of binary operation X Op Y.
+//
+// Example printed form:
+// 	t1 = t0 + 1:int
+//
+type BinOp struct {
+	Register
+	// One of:
+	// ADD SUB MUL QUO REM          + - * / %
+	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &~
+	// EQL LSS GTR NEQ LEQ GEQ      == != < <= < >=
+	Op   token.Token
+	X, Y Value
+}
+
+// UnOp yields the result of Op X.
+// ARROW is channel receive.
+// MUL is pointer indirection (load).
+// XOR is bitwise complement.
+// SUB is negation.
+//
+// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
+// and a boolean indicating the success of the receive.  The
+// components of the tuple are accessed using Extract.
+//
+// Example printed form:
+// 	t0 = *x
+// 	t2 = <-t1,ok
+//
+type UnOp struct {
+	Register
+	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
+	X       Value
+	CommaOk bool
+}
+
+// Conv yields the conversion of X to type Type().
+//
+// A conversion is one of the following kinds.  The behaviour of the
+// conversion operator may depend on both Type() and X.Type(), as well
+// as the dynamic value.
+//
+// A '+' indicates that a dynamic representation change may occur.
+// A '-' indicates that the conversion is a value-preserving change
+// to types only.
+//
+// 1. implicit conversions (arising from assignability rules):
+//    - adding/removing a name, same underlying types.
+//    - channel type restriction, possibly adding/removing a name.
+// 2. explicit conversions (in addition to the above):
+//    - changing a name, same underlying types.
+//    - between pointers to identical base types.
+//    + conversions between real numeric types.
+//    + conversions between complex numeric types.
+//    + integer/[]byte/[]rune -> string.
+//    + string -> []byte/[]rune.
+//
+// TODO(adonovan): split into two cases:
+// - rename value (ChangeType)
+// + value to type with different representation (Conv)
+//
+// Conversions of untyped string/number/bool constants to a specific
+// representation are eliminated during SSA construction.
+//
+// Example printed form:
+// 	t1 = convert interface{} <- int (t0)
+//
+type Conv struct {
+	Register
+	X Value
+}
+
+// ChangeInterface constructs a value of one interface type from a
+// value of another interface type known to be assignable to it.
+//
+// This operation cannot fail.  Use TypeAssert for interface
+// conversions that may fail dynamically.
+// TODO(adonovan): rename to "{Narrow,Restrict}Interface"?
+//
+// Example printed form:
+// 	t1 = change interface interface{} <- I (t0)
+//
+type ChangeInterface struct {
+	Register
+	X Value
+}
+
+// MakeInterface constructs an instance of an interface type from a
+// value and its method-set.
+//
+// To construct the zero value of an interface type T, use:
+// 	&Literal{types.nilType{}, T}
+//
+// Example printed form:
+// 	t1 = make interface interface{} <- int (42:int)
+//
+type MakeInterface struct {
+	Register
+	X       Value
+	Methods MethodSet // method set of (non-interface) X
+}
+
+// A MakeClosure instruction yields an anonymous function value whose
+// code is Fn and whose lexical capture slots are populated by Bindings.
+//
+// By construction, all captured variables are addresses of variables
+// allocated with 'new', i.e. Alloc(Heap=true).
+//
+// Type() returns a (possibly named) *types.Signature.
+//
+// Example printed form:
+// 	t0 = make closure anon@1.2 [x y z]
+//
+type MakeClosure struct {
+	Register
+	Fn       Value   // always a *Function
+	Bindings []Value // values for each free variable in Fn.FreeVars
+}
+
+// The MakeMap instruction creates a new hash-table-based map object
+// and yields a value of kind map.
+//
+// Type() returns a (possibly named) *types.Map.
+//
+// Example printed form:
+// 	t1 = make map[string]int t0
+//
+type MakeMap struct {
+	Register
+	Reserve Value // initial space reservation; nil => default
+	Pos     token.Pos
+}
+
+// The MakeChan instruction creates a new channel object and yields a
+// value of kind chan.
+//
+// Type() returns a (possibly named) *types.Chan.
+//
+// Example printed form:
+// 	t0 = make chan int 0
+//
+type MakeChan struct {
+	Register
+	Size Value // int; size of buffer; zero => synchronous.
+	Pos  token.Pos
+}
+
+// MakeSlice yields a slice of length Len backed by a newly allocated
+// array of length Cap.
+//
+// Both Len and Cap must be non-nil Values of integer type.
+//
+// (Alloc(types.Array) followed by Slice will not suffice because
+// Alloc can only create arrays of statically known length.)
+//
+// Type() returns a (possibly named) *types.Slice.
+//
+// Example printed form:
+// 	t1 = make slice []string 1:int t0
+//
+type MakeSlice struct {
+	Register
+	Len Value
+	Cap Value
+	Pos token.Pos
+}
+
+// Slice yields a slice of an existing string, slice or *array X
+// between optional integer bounds Low and High.
+//
+// Type() returns string if the type of X was string, otherwise a
+// *types.Slice with the same element type as X.
+//
+// Example printed form:
+// 	t1 = slice t0[1:]
+//
+type Slice struct {
+	Register
+	X         Value // slice, string, or *array
+	Low, High Value // either may be nil
+}
+
+// FieldAddr yields the address of Field of *struct  X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Example printed form:
+// 	t1 = &t0.name [#1]
+//
+type FieldAddr struct {
+	Register
+	X     Value // *struct
+	Field int   // index into X.Type().(*types.Struct).Fields
+}
+
+// Field yields the Field of struct X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X; by using numeric indices we avoid ambiguity of
+// package-local identifiers and permit compact representations.
+//
+// Example printed form:
+// 	t1 = t0.name [#1]
+//
+type Field struct {
+	Register
+	X     Value // struct
+	Field int   // index into X.Type().(*types.Struct).Fields
+}
+
+// IndexAddr yields the address of the element at index Index of
+// collection X.  Index is an integer expression.
+//
+// The elements of maps and strings are not addressable; use Lookup or
+// MapUpdate instead.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Example printed form:
+// 	t2 = &t0[t1]
+//
+type IndexAddr struct {
+	Register
+	X     Value // slice or *array,
+	Index Value // numeric index
+}
+
+// Index yields element Index of array X.
+//
+// Example printed form:
+// 	t2 = t0[t1]
+//
+type Index struct {
+	Register
+	X     Value // array
+	Index Value // integer index
+}
+
+// Lookup yields element Index of collection X, a map or string.
+// Index is an integer expression if X is a string or the appropriate
+// key type if X is a map.
+//
+// If CommaOk, the result is a 2-tuple of the value above and a
+// boolean indicating the result of a map membership test for the key.
+// The components of the tuple are accessed using Extract.
+//
+// Example printed form:
+// 	t2 = t0[t1]
+// 	t5 = t3[t4],ok
+//
+type Lookup struct {
+	Register
+	X       Value // string or map
+	Index   Value // numeric or key-typed index
+	CommaOk bool  // return a value,ok pair
+}
+
+// SelectState is a helper for Select.
+// It represents one goal state and its corresponding communication.
+//
+type SelectState struct {
+	Dir  ast.ChanDir // direction of case
+	Chan Value       // channel to use (for send or receive)
+	Send Value       // value to send (for send)
+}
+
+// Select tests whether (or blocks until) one or more of the specified
+// sent or received states is entered.
+//
+// It returns a triple (index int, recv interface{}, recvOk bool)
+// whose components, described below, must be accessed via the Extract
+// instruction.
+//
+// If Blocking, select waits until exactly one state holds, i.e. a
+// channel becomes ready for the designated operation of sending or
+// receiving; select chooses one among the ready states
+// pseudorandomly, performs the send or receive operation, and sets
+// 'index' to the index of the chosen channel.
+//
+// If !Blocking, select doesn't block if no states hold; instead it
+// returns immediately with index equal to -1.
+//
+// If the chosen channel was used for a receive, 'recv' is set to the
+// received value; otherwise it is nil.
+//
+// The third component of the triple, recvOk, is a boolean whose value
+// is true iff the selected operation was a receive and the receive
+// successfully yielded a value.
+//
+// Example printed form:
+// 	t3 = select nonblocking [<-t0, t1<-t2, ...]
+// 	t4 = select blocking []
+//
+type Select struct {
+	Register
+	States   []SelectState
+	Blocking bool
+}
+
+// Range yields an iterator over the domain and range of X,
+// which must be a string or map.
+//
+// Elements are accessed via Next.
+//
+// Type() returns a (possibly named) *types.Result (tuple type).
+//
+// Example printed form:
+// 	t0 = range "hello":string
+//
+type Range struct {
+	Register
+	X Value // string or map
+}
+
+// Next reads and advances the (map or string) iterator Iter and
+// returns a 3-tuple value (ok, k, v).  If the iterator is not
+// exhausted, ok is true and k and v are the next elements of the
+// domain and range, respectively.  Otherwise ok is false and k and v
+// are undefined.
+//
+// Components of the tuple are accessed using Extract.
+//
+// The IsString field distinguishes iterators over strings from those
+// over maps, as the Type() alone is insufficient: consider
+// map[int]rune.
+//
+// Type() returns a *types.Result (tuple type) for the triple
+// (ok, k, v).  The types of k and/or v may be types.Invalid.
+//
+// Example printed form:
+// 	t1 = next t0
+//
+type Next struct {
+	Register
+	Iter     Value
+	IsString bool // true => string iterator; false => map iterator.
+}
+
+// TypeAssert tests whether interface value X has type AssertedType.
+//
+// If !CommaOk, on success it returns v, the result of the conversion
+// (defined below); on failure it panics.
+//
+// If CommaOk: on success it returns a pair (v, true) where v is the
+// result of the conversion; on failure it returns (z, false) where z
+// is AssertedType's zero value.  The components of the pair must be
+// accessed using the Extract instruction.
+//
+// If AssertedType is a concrete type, TypeAssert checks whether the
+// dynamic type in interface X is equal to it, and if so, the result
+// of the conversion is a copy of the value in the interface.
+//
+// If AssertedType is an interface, TypeAssert checks whether the
+// dynamic type of the interface is assignable to it, and if so, the
+// result of the conversion is a copy of the interface value X.
+// If AssertedType is a superinterface of X.Type(), the operation
+// cannot fail; ChangeInterface is preferred in this case.
+//
+// Type() reflects the actual type of the result, possibly a pair
+// (types.Result); AssertedType is the asserted type.
+//
+// Example printed form:
+// 	t1 = typeassert t0.(int)
+// 	t3 = typeassert,ok t2.(T)
+//
+type TypeAssert struct {
+	Register
+	X            Value
+	AssertedType types.Type
+	CommaOk      bool
+}
+
+// Extract yields component Index of Tuple.
+//
+// This is used to access the results of instructions with multiple
+// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
+// IndexExpr(Map).
+//
+// Example printed form:
+// 	t1 = extract t0 #1
+//
+type Extract struct {
+	Register
+	Tuple Value
+	Index int
+}
+
+// Instructions executed for effect.  They do not yield a value. --------------------
+
+// Jump transfers control to the sole successor of its owning block.
+//
+// A Jump instruction must be the last instruction of its containing
+// BasicBlock.
+//
+// Example printed form:
+// 	jump done
+//
+type Jump struct {
+	anInstruction
+}
+
+// The If instruction transfers control to one of the two successors
+// of its owning block, depending on the boolean Cond: the first if
+// true, the second if false.
+//
+// An If instruction must be the last instruction of its containing
+// BasicBlock.
+//
+// Example printed form:
+// 	if t0 goto done else body
+//
+type If struct {
+	anInstruction
+	Cond Value
+}
+
+// Ret returns values and control back to the calling function.
+//
+// len(Results) is always equal to the number of results in the
+// function's signature.
+//
+// If len(Results) > 1, Ret returns a tuple value with the specified
+// components which the caller must access using Extract instructions.
+//
+// There is no instruction to return a ready-made tuple like those
+// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
+// a tail-call to a function with multiple result parameters.
+//
+// Ret must be the last instruction of its containing BasicBlock.
+// Such a block has no successors.
+//
+// Example printed form:
+// 	ret
+// 	ret nil:I, 2:int
+//
+type Ret struct {
+	anInstruction
+	Results []Value
+}
+
+// RunDefers pops and invokes the entire stack of procedure calls
+// pushed by Defer instructions in this function.
+//
+// It is legal to encounter multiple 'rundefers' instructions in a
+// single control-flow path through a function; this is useful in
+// the combined init() function, for example.
+//
+// Example printed form:
+//	rundefers
+//
+type RunDefers struct {
+	anInstruction
+}
+
+// Panic initiates a panic with value X.
+//
+// A Panic instruction must be the last instruction of its containing
+// BasicBlock, which must have no successors.
+//
+// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
+// they are treated as calls to a built-in function.
+//
+// Example printed form:
+// 	panic t0
+//
+type Panic struct {
+	anInstruction
+	X Value // an interface{}
+}
+
+// Go creates a new goroutine and calls the specified function
+// within it.
+//
+// See CallCommon for generic function call documentation.
+//
+// Example printed form:
+// 	go println(t0, t1)
+// 	go t3()
+// 	go invoke t5.Println(...t6)
+//
+type Go struct {
+	anInstruction
+	Call CallCommon
+}
+
+// Defer pushes the specified call onto a stack of functions
+// to be called by a RunDefers instruction or by a panic.
+//
+// See CallCommon for generic function call documentation.
+//
+// Example printed form:
+// 	defer println(t0, t1)
+// 	defer t3()
+// 	defer invoke t5.Println(...t6)
+//
+type Defer struct {
+	anInstruction
+	Call CallCommon
+}
+
+// Send sends X on channel Chan.
+//
+// Example printed form:
+// 	send t0 <- t1
+//
+type Send struct {
+	anInstruction
+	Chan, X Value
+}
+
+// Store stores Val at address Addr.
+// Stores can be of arbitrary types.
+//
+// Example printed form:
+// 	*x = y
+//
+type Store struct {
+	anInstruction
+	Addr Value
+	Val  Value
+}
+
+// MapUpdate updates the association of Map[Key] to Value.
+//
+// Example printed form:
+//	t0[t1] = t2
+//
+type MapUpdate struct {
+	anInstruction
+	Map   Value
+	Key   Value
+	Value Value
+}
+
+// Embeddable mix-ins and helpers for common parts of other structs. -----------
+
+// Register is a mix-in embedded by all SSA values that are also
+// instructions, i.e. virtual registers, and provides implementations
+// of the Value interface's Name() and Type() methods: the name is
+// simply a numbered register (e.g. "t0") and the type is the Type_
+// field.
+//
+// Temporary names are automatically assigned to each Register on
+// completion of building a function in SSA form.
+//
+// Clients must not assume that the 'id' value (and the Name() derived
+// from it) is unique within a function.  As always in this API,
+// semantics are determined only by identity; names exist only to
+// facilitate debugging.
+//
+type Register struct {
+	anInstruction
+	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
+	Type_     types.Type // type of virtual register
+	referrers []Instruction
+}
+
+// anInstruction is a mix-in embedded by all Instructions.
+// It provides the implementations of the Block and SetBlock methods.
+type anInstruction struct {
+	Block_ *BasicBlock // the basic block of this instruction
+}
+
+// CallCommon is contained by Go, Defer and Call to hold the
+// common parts of a function or method call.
+//
+// Each CallCommon exists in one of two modes, function call and
+// interface method invocation, or "call" and "invoke" for short.
+//
+// 1. "call" mode: when Recv is nil (!IsInvoke), a CallCommon
+// represents an ordinary function call of the value in Func.
+//
+// In the common case in which Func is a *Function, this indicates a
+// statically dispatched call to a package-level function, an
+// anonymous function, or a method of a named type.  Also statically
+// dispatched, but less common, Func may be a *MakeClosure, indicating
+// an immediately applied function literal with free variables.  Any
+// other Value of Func indicates a dynamically dispatched function
+// call.  The StaticCallee method returns the callee in these cases.
+//
+// Args contains the arguments to the call.  If Func is a method,
+// Args[0] contains the receiver parameter.  Recv and Method are not
+// used in this mode.
+//
+// Example printed form:
+// 	t2 = println(t0, t1)
+// 	go t3()
+//	defer t5(...t6)
+//
+// 2. "invoke" mode: when Recv is non-nil (IsInvoke), a CallCommon
+// represents a dynamically dispatched call to an interface method.
+// In this mode, Recv is the interface value and Method is the index
+// of the method within the interface type of the receiver.
+//
+// Recv is implicitly supplied to the concrete method implementation
+// as the receiver parameter; in other words, Args[0] holds not the
+// receiver but the first true argument.  Func is not used in this
+// mode.
+//
+// If the called method's receiver has non-pointer type T, but the
+// receiver supplied by the interface value has type *T, an implicit
+// load (copy) operation is performed.
+//
+// Example printed form:
+// 	t1 = invoke t0.String()
+// 	go invoke t3.Run(t2)
+// 	defer invoke t4.Handle(...t5)
+//
+// In both modes, HasEllipsis is true iff the last element of Args is
+// a slice value containing zero or more arguments to a variadic
+// function.  (This is not semantically significant since the type of
+// the called function is sufficient to determine this, but it aids
+// readability of the printed form.)
+//
+type CallCommon struct {
+	Recv        Value     // receiver, iff interface method invocation
+	Method      int       // index of interface method; call MethodId() for its Id
+	Func        Value     // target of call, iff function call
+	Args        []Value   // actual parameters, including receiver in invoke mode
+	HasEllipsis bool      // true iff last Args is a slice of '...' args (needed?)
+	Pos         token.Pos // position of call expression
+}
+
+// IsInvoke returns true if this call has "invoke" (not "call") mode.
+func (c *CallCommon) IsInvoke() bool {
+	return c.Recv != nil
+}
+
+// StaticCallee returns the called function if this is a trivially
+// static "call"-mode call.
+func (c *CallCommon) StaticCallee() *Function {
+	switch fn := c.Func.(type) {
+	case *Function:
+		return fn
+	case *MakeClosure:
+		return fn.Fn.(*Function)
+	}
+	return nil
+}
+
+// MethodId returns the Id for the method called by c, which must
+// have "invoke" mode.
+func (c *CallCommon) MethodId() Id {
+	meth := underlyingType(c.Recv.Type()).(*types.Interface).Methods[c.Method]
+	return IdFromQualifiedName(meth.QualifiedName)
+}
+
+// Description returns a description of the mode of this call suitable
+// for a user interface, e.g. "static method call".
+func (c *CallCommon) Description() string {
+	switch fn := c.Func.(type) {
+	case nil:
+		return "dynamic method call" // ("invoke" mode)
+	case *MakeClosure:
+		return "static function closure call"
+	case *Function:
+		if fn.Signature.Recv != nil {
+			return "static method call"
+		}
+		return "static function call"
+	}
+	return "dynamic function call"
+}
+
+func (v *Builtin) Type() types.Type        { return v.Object.GetType() }
+func (v *Builtin) Name() string            { return v.Object.GetName() }
+func (*Builtin) Referrers() *[]Instruction { return nil }
+
+func (v *Capture) Type() types.Type          { return v.Outer.Type() }
+func (v *Capture) Name() string              { return v.Outer.Name() }
+func (v *Capture) Referrers() *[]Instruction { return &v.referrers }
+
+func (v *Global) Type() types.Type        { return v.Type_ }
+func (v *Global) Name() string            { return v.Name_ }
+func (v *Global) Posn() token.Pos         { return v.Pos }
+func (*Global) Referrers() *[]Instruction { return nil }
+
+func (v *Function) Name() string            { return v.Name_ }
+func (v *Function) Type() types.Type        { return v.Signature }
+func (v *Function) Posn() token.Pos         { return v.Pos }
+func (*Function) Referrers() *[]Instruction { return nil }
+
+func (v *Parameter) Type() types.Type          { return v.Type_ }
+func (v *Parameter) Name() string              { return v.Name_ }
+func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
+
+func (v *Alloc) Type() types.Type          { return v.Type_ }
+func (v *Alloc) Name() string              { return v.Name_ }
+func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
+
+func (v *Register) Type() types.Type          { return v.Type_ }
+func (v *Register) setType(typ types.Type)    { v.Type_ = typ }
+func (v *Register) Name() string              { return fmt.Sprintf("t%d", v.num) }
+func (v *Register) setNum(num int)            { v.num = num }
+func (v *Register) Referrers() *[]Instruction { return &v.referrers }
+func (v *Register) asRegister() *Register     { return v }
+
+func (v *anInstruction) Block() *BasicBlock         { return v.Block_ }
+func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
+
+func (t *Type) Name() string     { return t.NamedType.Obj.Name }
+func (t *Type) Posn() token.Pos  { return t.NamedType.Obj.GetPos() }
+func (t *Type) String() string   { return t.Name() }
+func (t *Type) Type() types.Type { return t.NamedType }
+
+func (p *Package) Name() string { return p.Types.Name }
+
+func (c *Constant) Name() string     { return c.Name_ }
+func (c *Constant) Posn() token.Pos  { return c.Pos }
+func (c *Constant) String() string   { return c.Name() }
+func (c *Constant) Type() types.Type { return c.Value.Type() }
+
+// Func returns the package-level function of the specified name,
+// or nil if not found.
+//
+func (p *Package) Func(name string) (f *Function) {
+	f, _ = p.Members[name].(*Function)
+	return
+}
+
+// Var returns the package-level variable of the specified name,
+// or nil if not found.
+//
+func (p *Package) Var(name string) (g *Global) {
+	g, _ = p.Members[name].(*Global)
+	return
+}
+
+// Const returns the package-level constant of the specified name,
+// or nil if not found.
+//
+func (p *Package) Const(name string) (c *Constant) {
+	c, _ = p.Members[name].(*Constant)
+	return
+}
+
+// Type returns the package-level type of the specified name,
+// or nil if not found.
+//
+func (p *Package) Type(name string) (t *Type) {
+	t, _ = p.Members[name].(*Type)
+	return
+}
+
+// "Implements" relation boilerplate.
+// Don't try to factor this using promotion and mix-ins: the long-hand
+// form serves as better documentation, including in godoc.
+
+func (*Alloc) ImplementsValue()           {}
+func (*BinOp) ImplementsValue()           {}
+func (*Builtin) ImplementsValue()         {}
+func (*Call) ImplementsValue()            {}
+func (*Capture) ImplementsValue()         {}
+func (*ChangeInterface) ImplementsValue() {}
+func (*Conv) ImplementsValue()            {}
+func (*Extract) ImplementsValue()         {}
+func (*Field) ImplementsValue()           {}
+func (*FieldAddr) ImplementsValue()       {}
+func (*Function) ImplementsValue()        {}
+func (*Global) ImplementsValue()          {}
+func (*Index) ImplementsValue()           {}
+func (*IndexAddr) ImplementsValue()       {}
+func (*Literal) ImplementsValue()         {}
+func (*Lookup) ImplementsValue()          {}
+func (*MakeChan) ImplementsValue()        {}
+func (*MakeClosure) ImplementsValue()     {}
+func (*MakeInterface) ImplementsValue()   {}
+func (*MakeMap) ImplementsValue()         {}
+func (*MakeSlice) ImplementsValue()       {}
+func (*Next) ImplementsValue()            {}
+func (*Parameter) ImplementsValue()       {}
+func (*Phi) ImplementsValue()             {}
+func (*Range) ImplementsValue()           {}
+func (*Select) ImplementsValue()          {}
+func (*Slice) ImplementsValue()           {}
+func (*TypeAssert) ImplementsValue()      {}
+func (*UnOp) ImplementsValue()            {}
+
+func (*Constant) ImplementsMember() {}
+func (*Function) ImplementsMember() {}
+func (*Global) ImplementsMember()   {}
+func (*Type) ImplementsMember()     {}
+
+func (*Alloc) ImplementsInstruction()           {}
+func (*BinOp) ImplementsInstruction()           {}
+func (*Call) ImplementsInstruction()            {}
+func (*ChangeInterface) ImplementsInstruction() {}
+func (*Conv) ImplementsInstruction()            {}
+func (*Defer) ImplementsInstruction()           {}
+func (*Extract) ImplementsInstruction()         {}
+func (*Field) ImplementsInstruction()           {}
+func (*FieldAddr) ImplementsInstruction()       {}
+func (*Go) ImplementsInstruction()              {}
+func (*If) ImplementsInstruction()              {}
+func (*Index) ImplementsInstruction()           {}
+func (*IndexAddr) ImplementsInstruction()       {}
+func (*Jump) ImplementsInstruction()            {}
+func (*Lookup) ImplementsInstruction()          {}
+func (*MakeChan) ImplementsInstruction()        {}
+func (*MakeClosure) ImplementsInstruction()     {}
+func (*MakeInterface) ImplementsInstruction()   {}
+func (*MakeMap) ImplementsInstruction()         {}
+func (*MakeSlice) ImplementsInstruction()       {}
+func (*MapUpdate) ImplementsInstruction()       {}
+func (*Next) ImplementsInstruction()            {}
+func (*Panic) ImplementsInstruction()           {}
+func (*Phi) ImplementsInstruction()             {}
+func (*Range) ImplementsInstruction()           {}
+func (*Ret) ImplementsInstruction()             {}
+func (*RunDefers) ImplementsInstruction()       {}
+func (*Select) ImplementsInstruction()          {}
+func (*Send) ImplementsInstruction()            {}
+func (*Slice) ImplementsInstruction()           {}
+func (*Store) ImplementsInstruction()           {}
+func (*TypeAssert) ImplementsInstruction()      {}
+func (*UnOp) ImplementsInstruction()            {}
+
+// Operands.
+
+// REVIEWERS: Should this method be defined nearer each type to avoid skew?
+
+func (v *Alloc) Operands(rands []*Value) []*Value {
+	return rands
+}
+
+func (v *BinOp) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X, &v.Y)
+}
+
+func (c *CallCommon) Operands(rands []*Value) []*Value {
+	rands = append(rands, &c.Recv, &c.Func)
+	for i := range c.Args {
+		rands = append(rands, &c.Args[i])
+	}
+	return rands
+}
+
+func (s *Go) Operands(rands []*Value) []*Value {
+	return s.Call.Operands(rands)
+}
+
+func (s *Call) Operands(rands []*Value) []*Value {
+	return s.Call.Operands(rands)
+}
+
+func (s *Defer) Operands(rands []*Value) []*Value {
+	return s.Call.Operands(rands)
+}
+
+func (v *ChangeInterface) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (v *Conv) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (v *Extract) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Tuple)
+}
+
+func (v *Field) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (v *FieldAddr) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (s *If) Operands(rands []*Value) []*Value {
+	return append(rands, &s.Cond)
+}
+
+func (v *Index) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X, &v.Index)
+}
+
+func (v *IndexAddr) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X, &v.Index)
+}
+
+func (*Jump) Operands(rands []*Value) []*Value {
+	return rands
+}
+
+func (v *Lookup) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X, &v.Index)
+}
+
+func (v *MakeChan) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Size)
+}
+
+func (v *MakeClosure) Operands(rands []*Value) []*Value {
+	rands = append(rands, &v.Fn)
+	for i := range v.Bindings {
+		rands = append(rands, &v.Bindings[i])
+	}
+	return rands
+}
+
+func (v *MakeInterface) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (v *MakeMap) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Reserve)
+}
+
+func (v *MakeSlice) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Len, &v.Cap)
+}
+
+func (v *MapUpdate) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Map, &v.Key, &v.Value)
+}
+
+func (v *Next) Operands(rands []*Value) []*Value {
+	return append(rands, &v.Iter)
+}
+
+func (s *Panic) Operands(rands []*Value) []*Value {
+	return append(rands, &s.X)
+}
+
+func (v *Phi) Operands(rands []*Value) []*Value {
+	for i := range v.Edges {
+		rands = append(rands, &v.Edges[i])
+	}
+	return rands
+}
+
+func (v *Range) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (s *Ret) Operands(rands []*Value) []*Value {
+	for i := range s.Results {
+		rands = append(rands, &s.Results[i])
+	}
+	return rands
+}
+
+func (*RunDefers) Operands(rands []*Value) []*Value {
+	return rands
+}
+
+func (v *Select) Operands(rands []*Value) []*Value {
+	for i := range v.States {
+		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
+	}
+	return rands
+}
+
+func (s *Send) Operands(rands []*Value) []*Value {
+	return append(rands, &s.Chan, &s.X)
+}
+
+func (v *Slice) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X, &v.Low, &v.High)
+}
+
+func (s *Store) Operands(rands []*Value) []*Value {
+	return append(rands, &s.Addr, &s.Val)
+}
+
+func (v *TypeAssert) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}
+
+func (v *UnOp) Operands(rands []*Value) []*Value {
+	return append(rands, &v.X)
+}