go.tools/pointer: inclusion-based pointer analysis for Go.

Suggested reading order:
- doc.go
- api.go, analysis.go, callgraph.go, labels.go
- print.go, util.go
- gen.go
- solve.go
- pointer_test.go, testdata/*
- intrinsics.go (none are implemented yet)

R=dannyb, gri, crawshaw, 0xjnml
CC=golang-dev
https://golang.org/cl/10618043
diff --git a/pointer/gen.go b/pointer/gen.go
new file mode 100644
index 0000000..b13d47a
--- /dev/null
+++ b/pointer/gen.go
@@ -0,0 +1,1069 @@
+package pointer
+
+// This file defines the constraint generation phase.
+
+import (
+	"fmt"
+	"go/ast"
+	"go/token"
+
+	"code.google.com/p/go.tools/go/types"
+	"code.google.com/p/go.tools/ssa"
+)
+
+var (
+	tEface     = types.NewInterface(nil)
+	tInvalid   = types.Typ[types.Invalid]
+	tUnsafePtr = types.Typ[types.UnsafePointer]
+)
+
+// ---------- Node creation ----------
+
+// nextNode returns the index of the next unused node.
+func (a *analysis) nextNode() nodeid {
+	return nodeid(len(a.nodes))
+}
+
+// addNodes creates nodes for all scalar elements in type typ, and
+// returns the id of the first one, or zero if the type was
+// analytically uninteresting.
+//
+// comment explains the origin of the nodes, as a debugging aid.
+//
+func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
+	id := a.nextNode()
+	for _, fi := range a.flatten(typ) {
+		a.addOneNode(fi.typ, comment, fi)
+	}
+	if id == a.nextNode() {
+		return 0 // type contained no pointers
+	}
+	return id
+}
+
+// addOneNode creates a single node with type typ, and returns its id.
+//
+// typ should generally be scalar (except for interface.conctype nodes
+// and struct/array identity nodes).  Use addNodes for non-scalar types.
+//
+// comment explains the origin of the nodes, as a debugging aid.
+// subelement indicates the subelement, e.g. ".a.b[*].c".
+//
+func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
+	id := a.nextNode()
+	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement})
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
+			id, typ, comment, subelement.path())
+	}
+	return id
+}
+
+// setValueNode associates node id with the value v.
+// TODO(adonovan): disambiguate v by its CallGraphNode, if it's a local.
+func (a *analysis) setValueNode(v ssa.Value, id nodeid) {
+	a.valNode[v] = id
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
+	}
+
+	// Record the (v, id) relation if the client has queried v.
+	qv := a.config.QueryValues
+	if ptrs, ok := qv[v]; ok {
+		qv[v] = append(ptrs, ptr{a, id})
+	}
+}
+
+// endObject marks the end of a sequence of calls to addNodes denoting
+// a single object allocation.
+//
+// obj is the start node of the object, from a prior call to nextNode.
+// Its size, flags and (optionally) data will be updated.
+//
+func (a *analysis) endObject(obj nodeid, data ssa.Value) {
+	// Ensure object is non-empty by padding;
+	// the pad will be the object node.
+	size := uint32(a.nextNode() - obj)
+	if size == 0 {
+		a.addOneNode(tInvalid, "padding", nil)
+	}
+	objNode := a.nodes[obj]
+	objNode.size = size // excludes padding
+	objNode.flags = ntObject
+
+	if data != nil {
+		objNode.data = data
+		if a.log != nil {
+			fmt.Fprintf(a.log, "\tobj[%s] = n%d\n", data, obj)
+		}
+	}
+}
+
+// makeFunctionObject creates and returns a new function object for
+// fn, and returns the id of its first node.  It also enqueues fn for
+// subsequent constraint generation.
+//
+func (a *analysis) makeFunctionObject(fn *ssa.Function) nodeid {
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
+	}
+
+	// obj is the function object (identity, params, results).
+	obj := a.nextNode()
+	sig := fn.Signature
+	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
+	if recv := sig.Recv(); recv != nil {
+		a.addNodes(recv.Type(), "func.recv")
+	}
+	a.addNodes(sig.Params(), "func.params")
+	a.addNodes(sig.Results(), "func.results")
+	a.endObject(obj, fn)
+
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t----\n")
+	}
+
+	cgn := &cgnode{fn: fn, obj: obj}
+	a.nodes[obj].flags |= ntFunction
+	a.nodes[obj].data = cgn
+
+	// Queue it up for constraint processing.
+	a.genq = append(a.genq, cgn)
+
+	return obj
+}
+
+// makeFunction creates the shared function object (aka contour) for
+// function fn and returns a 'func' value node that points to it.
+//
+func (a *analysis) makeFunction(fn *ssa.Function) nodeid {
+	obj := a.makeFunctionObject(fn)
+	a.funcObj[fn] = obj
+
+	var comment string
+	if a.log != nil {
+		comment = fn.String()
+	}
+	id := a.addOneNode(fn.Type(), comment, nil)
+	a.addressOf(id, obj)
+	return id
+}
+
+// makeGlobal creates the value node and object node for global g,
+// and returns the value node.
+//
+// The value node represents the address of the global variable, and
+// points to the object (and nothing else).
+//
+// The object consists of the global variable itself (conceptually,
+// the BSS address).
+//
+func (a *analysis) makeGlobal(g *ssa.Global) nodeid {
+	var comment string
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t---- makeGlobal %s\n", g)
+		comment = g.FullName()
+	}
+
+	// The nodes representing the object itself.
+	obj := a.nextNode()
+	a.addNodes(mustDeref(g.Type()), "global")
+	a.endObject(obj, g)
+
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t----\n")
+	}
+
+	// The node representing the address of the global.
+	id := a.addOneNode(g.Type(), comment, nil)
+	a.addressOf(id, obj)
+
+	return id
+}
+
+// makeConstant creates the value node and object node (if needed) for
+// constant c, and returns the value node.
+// An object node is created only for []byte or []rune constants.
+// The value node points to the object node, iff present.
+//
+func (a *analysis) makeConstant(l *ssa.Const) nodeid {
+	id := a.addNodes(l.Type(), "const")
+	if !l.IsNil() {
+		// []byte or []rune?
+		if t, ok := l.Type().Underlying().(*types.Slice); ok {
+			// Treat []T like *[1]T, 'make []T' like new([1]T).
+			obj := a.nextNode()
+			a.addNodes(sliceToArray(t), "array in slice constant")
+			a.endObject(obj, l)
+
+			a.addressOf(id, obj)
+		}
+	}
+	return id
+}
+
+// valueNode returns the id of the value node for v, creating it (and
+// the association) as needed.  It may return zero for uninteresting
+// values containing no pointers.
+//
+// Nodes for locals are created en masse during genFunc and are
+// implicitly contextualized by the function currently being analyzed
+// (i.e. parameter to genFunc).
+//
+func (a *analysis) valueNode(v ssa.Value) nodeid {
+	id, ok := a.valNode[v]
+	if !ok {
+		switch v := v.(type) {
+		case *ssa.Function:
+			id = a.makeFunction(v)
+
+		case *ssa.Global:
+			id = a.makeGlobal(v)
+
+		case *ssa.Const:
+			id = a.makeConstant(v)
+
+		case *ssa.Capture:
+			// TODO(adonovan): treat captures context-sensitively.
+			id = a.addNodes(v.Type(), "capture")
+
+		default:
+			// *ssa.Parameters and ssa.Instruction values
+			// are created by genFunc.
+			// *Builtins are not true values.
+			panic(v)
+		}
+		a.setValueNode(v, id)
+	}
+	return id
+}
+
+// valueOffsetNode ascertains the node for tuple/struct value v,
+// then returns the node for its subfield #index.
+//
+func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
+	id := a.valueNode(v)
+	if id == 0 {
+		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
+	}
+	return id + nodeid(a.offsetOf(v.Type(), index))
+}
+
+// interfaceValue returns the (first node of) the value, and the
+// concrete type, of the interface object (flags&ntInterface) starting
+// at id.
+//
+func (a *analysis) interfaceValue(id nodeid) (nodeid, types.Type) {
+	n := a.nodes[id]
+	if n.flags&ntInterface == 0 {
+		panic(fmt.Sprintf("interfaceValue(n%d): not an interface object; typ=%s", id, n.typ))
+	}
+	return id + 1, n.typ
+}
+
+// funcParams returns the first node of the params block of the
+// function whose object node (flags&ntFunction) is id.
+//
+func (a *analysis) funcParams(id nodeid) nodeid {
+	if a.nodes[id].flags&ntFunction == 0 {
+		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
+	}
+	return id + 1
+}
+
+// funcResults returns the first node of the results block of the
+// function whose object node (flags&ntFunction) is id.
+//
+func (a *analysis) funcResults(id nodeid) nodeid {
+	n := a.nodes[id]
+	if n.flags&ntFunction == 0 {
+		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
+	}
+	sig := n.typ.(*types.Signature)
+	id += 1 + nodeid(a.sizeof(sig.Params()))
+	if sig.Recv() != nil {
+		id += nodeid(a.sizeof(sig.Recv().Type()))
+	}
+	return id
+}
+
+// ---------- Constraint creation ----------
+
+// copy creates a constraint of the form dst = src.
+// sizeof is the width (in logical fields) of the copied type.
+//
+func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
+	if src == dst || sizeof == 0 {
+		return // trivial
+	}
+	if src == 0 || dst == 0 {
+		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
+	}
+	for i := uint32(0); i < sizeof; i++ {
+		a.addConstraint(&copyConstraint{dst, src})
+		src++
+		dst++
+	}
+}
+
+// addressOf creates a constraint of the form id = &obj.
+func (a *analysis) addressOf(id, obj nodeid) {
+	if id == 0 {
+		panic("addressOf: zero id")
+	}
+	if obj == 0 {
+		panic("addressOf: zero obj")
+	}
+	a.addConstraint(&addrConstraint{id, obj})
+}
+
+// load creates a load constraint of the form dst = *src.
+// sizeof is the width (in logical fields) of the loaded type.
+//
+func (a *analysis) load(dst, src nodeid, sizeof uint32) {
+	a.loadOffset(dst, src, 0, sizeof)
+}
+
+// loadOffset creates a load constraint of the form dst = src[offset].
+// offset is the pointer offset in logical fields.
+// sizeof is the width (in logical fields) of the loaded type.
+//
+func (a *analysis) loadOffset(dst, src nodeid, offset uint32, sizeof uint32) {
+	if dst == 0 {
+		return // load of non-pointerlike value
+	}
+	if src == 0 && dst == 0 {
+		return // non-pointerlike operation
+	}
+	if src == 0 || dst == 0 {
+		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
+	}
+	for i := uint32(0); i < sizeof; i++ {
+		a.addConstraint(&loadConstraint{offset, dst, src})
+		offset++
+		dst++
+	}
+}
+
+// store creates a store constraint of the form *dst = src.
+// sizeof is the width (in logical fields) of the stored type.
+//
+func (a *analysis) store(dst, src nodeid, sizeof uint32) {
+	a.storeOffset(dst, src, 0, sizeof)
+}
+
+// storeOffset creates a store constraint of the form dst[offset] = src.
+// offset is the pointer offset in logical fields.
+// sizeof is the width (in logical fields) of the stored type.
+//
+func (a *analysis) storeOffset(dst, src nodeid, offset uint32, sizeof uint32) {
+	if src == 0 {
+		return // store of non-pointerlike value
+	}
+	if src == 0 && dst == 0 {
+		return // non-pointerlike operation
+	}
+	if src == 0 || dst == 0 {
+		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
+	}
+	for i := uint32(0); i < sizeof; i++ {
+		a.addConstraint(&storeConstraint{offset, dst, src})
+		offset++
+		src++
+	}
+}
+
+// offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
+// offset is the field offset in logical fields.
+//
+func (a *analysis) offsetAddr(dst, src nodeid, offset uint32) {
+	if offset == 0 {
+		// Simplify  dst = &src->f0
+		//       to  dst = src
+		// (NB: this optimisation is defeated by the identity
+		// field prepended to struct and array objects.)
+		a.copy(dst, src, 1)
+	} else {
+		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
+	}
+}
+
+// addConstraint adds c to the constraint set.
+func (a *analysis) addConstraint(c constraint) {
+	a.constraints = append(a.constraints, c)
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t%s\n", c)
+	}
+}
+
+// copyElems generates load/store constraints for *dst = *src,
+// where src and dst are slices or *arrays.
+// (If pts(·) of either is a known singleton, this is suboptimal.)
+//
+func (a *analysis) copyElems(typ types.Type, dst, src nodeid) {
+	tmp := a.addNodes(typ, "copy")
+	sz := a.sizeof(typ)
+	a.loadOffset(tmp, src, 1, sz)
+	a.storeOffset(dst, tmp, 1, sz)
+}
+
+// ---------- Constraint generation ----------
+
+// genConv generates constraints for the conversion operation conv.
+func (a *analysis) genConv(conv *ssa.Convert) {
+	res := a.valueNode(conv)
+	if res == 0 {
+		return // result is non-pointerlike
+	}
+
+	tSrc := conv.X.Type()
+	tDst := conv.Type()
+
+	switch utSrc := tSrc.Underlying().(type) {
+	case *types.Slice:
+		// []byte/[]rune -> string?
+		return
+
+	case *types.Pointer:
+		// *T -> unsafe.Pointer?
+		if tDst == tUnsafePtr {
+			// ignore for now
+			// a.copy(res, a.valueNode(conv.X), 1)
+			return
+		}
+
+	case *types.Basic:
+		switch utDst := tDst.Underlying().(type) {
+		case *types.Pointer:
+			// unsafe.Pointer -> *T?  (currently unsound)
+			if utSrc == tUnsafePtr {
+				a.warnf(conv.Pos(),
+					"unsound: %s contains an unsafe.Pointer conversion (to %s)",
+					conv.Parent(), tDst)
+
+				// For now, we treat unsafe.Pointer->*T
+				// conversion like new(T) and create an
+				// unaliased object.  In future we may handle
+				// unsafe conversions soundly; see TODO file.
+				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
+				a.endObject(obj, conv)
+				a.addressOf(res, obj)
+				return
+			}
+
+		case *types.Slice:
+			// string -> []byte/[]rune (or named aliases)?
+			if utSrc.Info()&types.IsString != 0 {
+				obj := a.addNodes(sliceToArray(tDst), "convert")
+				a.endObject(obj, conv)
+				a.addressOf(res, obj)
+				return
+			}
+
+		case *types.Basic:
+			// TODO(adonovan):
+			// unsafe.Pointer -> uintptr?
+			// uintptr -> unsafe.Pointer
+			//
+			// The language doesn't adequately specify the
+			// behaviour of these operations, but almost
+			// all uses of these conversions (even in the
+			// spec) seem to imply a non-moving garbage
+			// collection strategy, or implicit "pinning"
+			// semantics for unsafe.Pointer conversions.
+
+			// TODO(adonovan): we need more work before we can handle
+			// cryptopointers well.
+			if utSrc == tUnsafePtr || utDst == tUnsafePtr {
+				// Ignore for now.  See TODO file for ideas.
+				return
+			}
+
+			return // ignore all other basic type conversions
+		}
+	}
+
+	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
+}
+
+// genAppend generates constraints for a call to append.
+func (a *analysis) genAppend(instr *ssa.Call) {
+	// Consider z = append(x, y).   y is optional.
+	// This may allocate a new [1]T array; call its object w.
+	// We get the following constraints:
+	// 	z = x
+	// 	z = &w
+	//     *z = *y
+
+	x := a.valueNode(instr.Call.Args[0])
+
+	z := a.valueNode(instr)
+	a.copy(z, x, 1) // z = x
+
+	if len(instr.Call.Args) == 1 {
+		return // no allocation for z = append(x) or _ = append(x).
+	}
+
+	// TODO(adonovan): test append([]byte, ...string) []byte.
+
+	y := a.valueNode(instr.Call.Args[1])
+	tArray := sliceToArray(instr.Call.Args[0].Type())
+
+	var w nodeid
+	w = a.nextNode()
+	a.addNodes(tArray, "append")
+	a.endObject(w, instr)
+
+	a.copyElems(tArray.Elem(), z, y) // *z = *y
+	a.addressOf(z, w)                //  z = &w
+}
+
+// genBuiltinCall generates contraints for a call to a built-in.
+func (a *analysis) genBuiltinCall(instr ssa.CallInstruction) {
+	call := instr.Common()
+	switch call.Value.(*ssa.Builtin).Object().Name() {
+	case "append":
+		// Safe cast: append cannot appear in a go or defer statement.
+		a.genAppend(instr.(*ssa.Call))
+
+	case "copy":
+		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
+		a.copyElems(tElem, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]))
+
+	case "panic":
+		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
+
+	case "recover":
+		if v := instr.Value(); v != nil {
+			a.copy(a.valueNode(v), a.panicNode, 1)
+		}
+
+	case "print":
+		// Analytically print is a no-op, but it's a convenient hook
+		// for testing the pts of an expression, so we notify the client.
+		// Existing uses in Go core libraries are few and harmless.
+		if Print := a.config.Print; Print != nil {
+			// Due to context-sensitivity, we may encounter
+			// the same print() call in many contexts, so
+			// we merge them to a canonical node.
+			probe := a.probes[call]
+			t := call.Args[0].Type()
+
+			// First time?  Create the canonical probe node.
+			if probe == 0 {
+				probe = a.addNodes(t, "print")
+				a.probes[call] = probe
+				Print(call, ptr{a, probe}) // notify client
+			}
+
+			a.copy(probe, a.valueNode(call.Args[0]), a.sizeof(t))
+		}
+
+	default:
+		// No-ops: close len cap real imag complex println delete.
+	}
+}
+
+// shouldUseContext defines the context-sensitivity policy.  It
+// returns true if we should analyse all static calls to fn anew.
+//
+// Obviously this interface rather limits how much freedom we have to
+// choose a policy.  The current policy, rather arbitrarily, is true
+// for intrinsics and accessor methods (actually: short, single-block,
+// call-free functions).  This is just a starting point.
+//
+func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
+	if a.findIntrinsic(fn) != nil {
+		return true // treat intrinsics context-sensitively
+	}
+	if len(fn.Blocks) != 1 {
+		return false // too expensive
+	}
+	blk := fn.Blocks[0]
+	if len(blk.Instrs) > 10 {
+		return false // too expensive
+	}
+	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
+		return true // treat synthetic wrappers context-sensitively
+	}
+	for _, instr := range blk.Instrs {
+		switch instr := instr.(type) {
+		case ssa.CallInstruction:
+			// Disallow function calls (except to built-ins)
+			// because of the danger of unbounded recursion.
+			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
+				return false
+			}
+		}
+	}
+	return true
+}
+
+// genStaticCall generates constraints for a statically dispatched
+// function call.  It returns a node whose pts() will be the set of
+// possible call targets (in this case, a singleton).
+//
+func (a *analysis) genStaticCall(call *ssa.CallCommon, result nodeid) nodeid {
+	// Ascertain the context (contour/CGNode) for a particular call.
+	var obj nodeid
+	fn := call.StaticCallee()
+	if a.shouldUseContext(fn) {
+		obj = a.makeFunctionObject(fn) // new contour for this call
+	} else {
+		a.valueNode(fn)     // ensure shared contour was created
+		obj = a.funcObj[fn] // ordinary (shared) contour.
+	}
+
+	sig := call.Signature()
+	targets := a.addOneNode(sig, "call.targets", nil)
+	a.addressOf(targets, obj) // (a singleton)
+
+	// Copy receiver, if any.
+	params := a.funcParams(obj)
+	args := call.Args
+	if sig.Recv() != nil {
+		sz := a.sizeof(sig.Recv().Type())
+		a.copy(params, a.valueNode(args[0]), sz)
+		params += nodeid(sz)
+		args = args[1:]
+	}
+
+	// Copy actual parameters into formal params block.
+	// Must loop, since the actuals aren't contiguous.
+	for i, arg := range args {
+		sz := a.sizeof(sig.Params().At(i).Type())
+		a.copy(params, a.valueNode(arg), sz)
+		params += nodeid(sz)
+	}
+
+	// Copy formal results block to actual result.
+	if result != 0 {
+		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
+	}
+
+	return targets
+}
+
+// genDynamicCall generates constraints for a dynamic function call.
+// It returns a node whose pts() will be the set of possible call targets.
+//
+func (a *analysis) genDynamicCall(call *ssa.CallCommon, result nodeid) nodeid {
+	fn := a.valueNode(call.Value)
+	sig := call.Signature()
+
+	// We add dynamic closure rules that store the arguments into,
+	// and load the results from, the P/R block of each function
+	// discovered in pts(fn).
+
+	var offset uint32 = 1 // P/R block starts at offset 1
+	for i, arg := range call.Args {
+		sz := a.sizeof(sig.Params().At(i).Type())
+		a.storeOffset(fn, a.valueNode(arg), offset, sz)
+		offset += sz
+	}
+	if result != 0 {
+		a.loadOffset(result, fn, offset, a.sizeof(sig.Results()))
+	}
+	return fn
+}
+
+// genInvoke generates constraints for a dynamic method invocation.
+// It returns a node whose pts() will be the set of possible call targets.
+//
+func (a *analysis) genInvoke(call *ssa.CallCommon, result nodeid) nodeid {
+	sig := call.Signature()
+
+	// Allocate a contiguous targets/params/results block for this call.
+	block := a.nextNode()
+	targets := a.addOneNode(sig, "invoke.targets", nil)
+	p := a.addNodes(sig.Params(), "invoke.params")
+	r := a.addNodes(sig.Results(), "invoke.results")
+
+	// Copy the actual parameters into the call's params block.
+	for i, n := 0, sig.Params().Len(); i < n; i++ {
+		sz := a.sizeof(sig.Params().At(i).Type())
+		a.copy(p, a.valueNode(call.Args[i]), sz)
+		p += nodeid(sz)
+	}
+	// Copy the call's results block to the actual results.
+	if result != 0 {
+		a.copy(result, r, a.sizeof(sig.Results()))
+	}
+
+	// We add a dynamic invoke constraint that will add
+	// edges from the caller's P/R block to the callee's
+	// P/R block for each discovered call target.
+	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
+
+	return targets
+}
+
+// genCall generates contraints for call instruction instr.
+func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
+	call := instr.Common()
+
+	// Intrinsic implementations of built-in functions.
+	if _, ok := call.Value.(*ssa.Builtin); ok {
+		a.genBuiltinCall(instr)
+		return
+	}
+
+	var result nodeid
+	if v := instr.Value(); v != nil {
+		result = a.valueNode(v)
+	}
+
+	// The node whose pts(·) will contain all targets of the call.
+	var targets nodeid
+	switch {
+	case call.StaticCallee() != nil:
+		targets = a.genStaticCall(call, result)
+	case call.IsInvoke():
+		targets = a.genInvoke(call, result)
+	default:
+		targets = a.genDynamicCall(call, result)
+	}
+
+	site := &callsite{
+		caller:  caller,
+		targets: targets,
+		instr:   instr,
+		pos:     instr.Pos(),
+	}
+	a.callsites = append(a.callsites, site)
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n",
+			site.Description(), site.targets, site.caller)
+	}
+}
+
+// genInstr generates contraints for instruction instr in context cgn.
+func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
+	if a.log != nil {
+		var prefix string
+		if val, ok := instr.(ssa.Value); ok {
+			prefix = val.Name() + " = "
+		}
+		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
+	}
+
+	switch instr := instr.(type) {
+	case *ssa.DebugRef:
+		// no-op.
+
+	case *ssa.UnOp:
+		switch instr.Op {
+		case token.ARROW: // <-x
+			// We can ignore instr.CommaOk because the node we're
+			// altering is always at zero offset relative to instr.
+			a.load(a.valueNode(instr), a.valueNode(instr.X), a.sizeof(instr.Type()))
+
+		case token.MUL: // *x
+			a.load(a.valueNode(instr), a.valueNode(instr.X), a.sizeof(instr.Type()))
+
+		default:
+			// NOT, SUB, XOR: no-op.
+		}
+
+	case *ssa.BinOp:
+		// All no-ops.
+
+	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
+		a.genCall(cgn, instr)
+
+	case *ssa.ChangeType:
+		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
+
+	case *ssa.Convert:
+		a.genConv(instr)
+
+	case *ssa.Extract:
+		a.copy(a.valueNode(instr),
+			a.valueOffsetNode(instr.Tuple, instr.Index),
+			a.sizeof(instr.Type()))
+
+	case *ssa.FieldAddr:
+		a.offsetAddr(a.valueNode(instr), a.valueNode(instr.X),
+			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
+
+	case *ssa.IndexAddr:
+		a.offsetAddr(a.valueNode(instr), a.valueNode(instr.X), 1)
+
+	case *ssa.Field:
+		a.copy(a.valueNode(instr),
+			a.valueOffsetNode(instr.X, instr.Field),
+			a.sizeof(instr.Type()))
+
+	case *ssa.Index:
+		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
+
+	case *ssa.Select:
+		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
+		for _, st := range instr.States {
+			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
+			switch st.Dir {
+			case ast.RECV:
+				a.load(recv, a.valueNode(st.Chan), elemSize)
+				recv++
+
+			case ast.SEND:
+				a.store(a.valueNode(st.Chan), a.valueNode(st.Send), elemSize)
+			}
+		}
+
+	case *ssa.Ret:
+		results := a.funcResults(cgn.obj)
+		for _, r := range instr.Results {
+			sz := a.sizeof(r.Type())
+			a.copy(results, a.valueNode(r), sz)
+			results += nodeid(sz)
+		}
+
+	case *ssa.Send:
+		a.store(a.valueNode(instr.Chan), a.valueNode(instr.X), a.sizeof(instr.X.Type()))
+
+	case *ssa.Store:
+		a.store(a.valueNode(instr.Addr), a.valueNode(instr.Val), a.sizeof(instr.Val.Type()))
+
+	case *ssa.Alloc:
+		obj := a.nextNode()
+		a.addNodes(mustDeref(instr.Type()), "alloc")
+		a.endObject(obj, instr)
+		a.addressOf(a.valueNode(instr), obj)
+
+	case *ssa.MakeSlice:
+		obj := a.nextNode()
+		a.addNodes(sliceToArray(instr.Type()), "makeslice")
+		a.endObject(obj, instr)
+		a.addressOf(a.valueNode(instr), obj)
+
+	case *ssa.MakeChan:
+		obj := a.nextNode()
+		a.addNodes(instr.Type().Underlying().(*types.Chan).Elem(), "makechan")
+		a.endObject(obj, instr)
+		a.addressOf(a.valueNode(instr), obj)
+
+	case *ssa.MakeMap:
+		obj := a.nextNode()
+		tmap := instr.Type().Underlying().(*types.Map)
+		a.addNodes(tmap.Key(), "makemap.key")
+		a.addNodes(tmap.Elem(), "makemap.value")
+		a.endObject(obj, instr)
+		a.addressOf(a.valueNode(instr), obj)
+
+	case *ssa.MakeInterface:
+		tConc := instr.X.Type()
+		// Create nodes and constraints for all methods of the type.
+		// Ascertaining which will be needed is undecidable in general.
+		mset := tConc.MethodSet()
+		for i, n := 0, mset.Len(); i < n; i++ {
+			a.valueNode(a.prog.Method(mset.At(i)))
+		}
+		obj := a.addOneNode(tConc, "iface.conctype", nil) // NB: type may be non-scalar!
+		vnode := a.addNodes(tConc, "iface.value")
+		a.endObject(obj, instr)
+		a.nodes[obj].flags |= ntInterface
+		// Copy the value into it, if nontrivial.
+		if x := a.valueNode(instr.X); x != 0 {
+			a.copy(vnode, x, a.sizeof(tConc))
+		}
+		a.addressOf(a.valueNode(instr), obj)
+
+	case *ssa.ChangeInterface:
+		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
+
+	case *ssa.TypeAssert:
+		dst, src := a.valueNode(instr), a.valueNode(instr.X)
+		a.addConstraint(&typeAssertConstraint{instr.AssertedType, dst, src})
+
+	case *ssa.Slice:
+		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
+
+	case *ssa.If, *ssa.Jump:
+		// no-op.
+
+	case *ssa.Phi:
+		sz := a.sizeof(instr.Type())
+		for _, e := range instr.Edges {
+			a.copy(a.valueNode(instr), a.valueNode(e), sz)
+		}
+
+	case *ssa.MakeClosure:
+		fn := instr.Fn.(*ssa.Function)
+		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
+		// Free variables are treated like global variables.
+		for i, b := range instr.Bindings {
+			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
+		}
+
+	case *ssa.RunDefers:
+		// The analysis is flow insensitive, so we just "call"
+		// defers as we encounter them.
+
+	case *ssa.Range:
+		// Do nothing.  Next{Iter: *ssa.Range} handles this case.
+
+	case *ssa.Next:
+		if !instr.IsString { // map
+			// Assumes that Next is always directly applied to a Range result.
+			theMap := instr.Iter.(*ssa.Range).X
+			tMap := theMap.Type().Underlying().(*types.Map)
+			ksize := a.sizeof(tMap.Key())
+			vsize := a.sizeof(tMap.Elem())
+
+			// Load from the map's (k,v) into the tuple's (ok, k, v).
+			a.load(a.valueNode(instr)+1, a.valueNode(theMap), ksize+vsize)
+		}
+
+	case *ssa.Lookup:
+		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
+			// CommaOk can be ignored: field 0 is a no-op.
+			ksize := a.sizeof(tMap.Key())
+			vsize := a.sizeof(tMap.Elem())
+			a.loadOffset(a.valueNode(instr), a.valueNode(instr.X), ksize, vsize)
+		}
+
+	case *ssa.MapUpdate:
+		tmap := instr.Map.Type().Underlying().(*types.Map)
+		ksize := a.sizeof(tmap.Key())
+		vsize := a.sizeof(tmap.Elem())
+		m := a.valueNode(instr.Map)
+		a.store(m, a.valueNode(instr.Key), ksize)
+		a.storeOffset(m, a.valueNode(instr.Value), ksize, vsize)
+
+	case *ssa.Panic:
+		a.copy(a.panicNode, a.valueNode(instr.X), 1)
+
+	default:
+		panic(fmt.Sprintf("unimplemented: %T", instr))
+	}
+}
+
+// genRootCalls generates the synthetic root of the callgraph and the
+// initial calls from it to the analysis scope, such as main, a test
+// or a library.
+//
+func (a *analysis) genRootCalls() *cgnode {
+	r := ssa.NewFunction("<root>", new(types.Signature), "root of callgraph")
+	r.Prog = a.prog // hack.
+	r.Enclosing = r // hack, so Function.String() doesn't crash
+	r.String()      // (asserts that it doesn't crash)
+	root := &cgnode{fn: r}
+
+	// For each main package, call main.init(), main.main().
+	for _, mainPkg := range a.config.Mains {
+		main := mainPkg.Func("main")
+		if main == nil {
+			panic(fmt.Sprintf("%s has no main function", mainPkg))
+		}
+
+		targets := a.addOneNode(main.Signature, "root.targets", nil)
+		site := &callsite{
+			caller:  root,
+			targets: targets,
+		}
+		a.callsites = append(a.callsites, site)
+		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
+			if a.log != nil {
+				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
+			}
+			a.copy(targets, a.valueNode(fn), 1)
+		}
+	}
+
+	return root
+}
+
+// genFunc generates constraints for function fn.
+func (a *analysis) genFunc(cgn *cgnode) {
+	fn := cgn.fn
+	if a.log != nil {
+		fmt.Fprintln(a.log)
+		fmt.Fprintln(a.log)
+		cgn.fn.DumpTo(a.log)
+	}
+
+	if impl := a.findIntrinsic(fn); impl != nil {
+		impl(a, cgn)
+		return
+	}
+
+	if fn.Blocks == nil {
+		// External function with no intrinsic treatment.
+		// We'll warn about calls to such functions at the end.
+		return
+	}
+
+	// The value nodes for the params are in the func object block.
+	params := a.funcParams(cgn.obj)
+	for _, p := range fn.Params {
+		// TODO(adonovan): record the context (cgn) too.
+		a.setValueNode(p, params)
+		params += nodeid(a.sizeof(p.Type()))
+	}
+
+	// Free variables are treated like global variables:
+	// the outer function sets them with MakeClosure;
+	// the inner function accesses them with Capture.
+
+	// Create value nodes for all value instructions.
+	// (Clobbers any previous nodes from same fn in different context.)
+	if a.log != nil {
+		fmt.Fprintln(a.log, "; Creating instruction values")
+	}
+	for _, b := range fn.Blocks {
+		for _, instr := range b.Instrs {
+			switch instr := instr.(type) {
+			case *ssa.Range:
+				// do nothing: it has a funky type.
+
+			case ssa.Value:
+				var comment string
+				if a.log != nil {
+					comment = instr.Name()
+				}
+				id := a.addNodes(instr.Type(), comment)
+				// TODO(adonovan): record the context (cgn) too.
+				a.setValueNode(instr, id)
+			}
+		}
+	}
+
+	// Generate constraints for instructions.
+	for _, b := range fn.Blocks {
+		for _, instr := range b.Instrs {
+			a.genInstr(cgn, instr)
+		}
+	}
+
+	// (Instruction Values will hang around in the environment.)
+}
+
+// generate generates offline constraints for the entire program.
+// It returns the synthetic root of the callgraph.
+//
+func (a *analysis) generate() *cgnode {
+	// Create a dummy node since we use the nodeid 0 for
+	// non-pointerlike variables.
+	a.addNodes(tInvalid, "(zero)")
+
+	// Create the global node for panic values.
+	a.panicNode = a.addNodes(tEface, "panic")
+
+	root := a.genRootCalls()
+
+	// Generate constraints for entire program.
+	// (Actually just the RTA-reachable portion of the program.
+	// See Bacon & Sweeney, OOPSLA'96).
+	for len(a.genq) > 0 {
+		cgn := a.genq[0]
+		a.genq = a.genq[1:]
+		a.genFunc(cgn)
+	}
+
+	// Create a dummy node to avoid out-of-range indexing in case
+	// the last allocated type was of zero length.
+	a.addNodes(tInvalid, "(max)")
+
+	return root
+}