go/.../analysisutil: ExtractDoc unifies Analyzer.Doc and package doc
This CL defines an internal function, ExtractDoc, which extracts
documentation from the analyzer's package doc. This allows a single
doc comment to serve as both the package doc comment (which is
served by sites such as pkg.go.dev) and the analyzer documentation
(which is accessible through the command-line tool), appropriately
formatted for both media.
Also, change all our analyzers with nontrivial documentation
to use it.
The chosen syntax permits a single doc comment to document multiple
analyzers and looks good in the pkgsite HTML rendering and the
go vet help output. The HTML heading anchors are predictable.
For now this is internal, but we might want to publish it.
(After a proposal.)
Updates golang/go#58950
See golang/go#57906
Change-Id: Ifc0f48e54c3e42bc598649a7139e178a1a653c13
Reviewed-on: https://go-review.googlesource.com/c/tools/+/474935
Run-TryBot: Alan Donovan <adonovan@google.com>
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
gopls-CI: kokoro <noreply+kokoro@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
diff --git a/gopls/internal/lsp/source/api_json.go b/gopls/internal/lsp/source/api_json.go
index 8c268b7..6a97773 100644
--- a/gopls/internal/lsp/source/api_json.go
+++ b/gopls/internal/lsp/source/api_json.go
@@ -278,7 +278,7 @@
},
{
Name: "\"ifaceassert\"",
- Doc: "detect impossible interface-to-interface type assertions\n\nThis checker flags type assertions v.(T) and corresponding type-switch cases\nin which the static type V of v is an interface that cannot possibly implement\nthe target interface T. This occurs when V and T contain methods with the same\nname but different signatures. Example:\n\n\tvar v interface {\n\t\tRead()\n\t}\n\t_ = v.(io.Reader)\n\nThe Read method in v has a different signature than the Read method in\nio.Reader, so this assertion cannot succeed.\n",
+ Doc: "detect impossible interface-to-interface type assertions\n\nThis checker flags type assertions v.(T) and corresponding type-switch cases\nin which the static type V of v is an interface that cannot possibly implement\nthe target interface T. This occurs when V and T contain methods with the same\nname but different signatures. Example:\n\n\tvar v interface {\n\t\tRead()\n\t}\n\t_ = v.(io.Reader)\n\nThe Read method in v has a different signature than the Read method in\nio.Reader, so this assertion cannot succeed.",
Default: "true",
},
{
@@ -288,7 +288,7 @@
},
{
Name: "\"loopclosure\"",
- Doc: "check references to loop variables from within nested functions\n\nThis analyzer reports places where a function literal references the\niteration variable of an enclosing loop, and the loop calls the function\nin such a way (e.g. with go or defer) that it may outlive the loop\niteration and possibly observe the wrong value of the variable.\n\nIn this example, all the deferred functions run after the loop has\ncompleted, so all observe the final value of v.\n\n for _, v := range list {\n defer func() {\n use(v) // incorrect\n }()\n }\n\nOne fix is to create a new variable for each iteration of the loop:\n\n for _, v := range list {\n v := v // new var per iteration\n defer func() {\n use(v) // ok\n }()\n }\n\nThe next example uses a go statement and has a similar problem.\nIn addition, it has a data race because the loop updates v\nconcurrent with the goroutines accessing it.\n\n for _, v := range elem {\n go func() {\n use(v) // incorrect, and a data race\n }()\n }\n\nA fix is the same as before. The checker also reports problems\nin goroutines started by golang.org/x/sync/errgroup.Group.\nA hard-to-spot variant of this form is common in parallel tests:\n\n func Test(t *testing.T) {\n for _, test := range tests {\n t.Run(test.name, func(t *testing.T) {\n t.Parallel()\n use(test) // incorrect, and a data race\n })\n }\n }\n\nThe t.Parallel() call causes the rest of the function to execute\nconcurrent with the loop.\n\nThe analyzer reports references only in the last statement,\nas it is not deep enough to understand the effects of subsequent\nstatements that might render the reference benign.\n(\"Last statement\" is defined recursively in compound\nstatements such as if, switch, and select.)\n\nSee: https://golang.org/doc/go_faq.html#closures_and_goroutines",
+ Doc: "check references to loop variables from within nested functions\n\nThis analyzer reports places where a function literal references the\niteration variable of an enclosing loop, and the loop calls the function\nin such a way (e.g. with go or defer) that it may outlive the loop\niteration and possibly observe the wrong value of the variable.\n\nIn this example, all the deferred functions run after the loop has\ncompleted, so all observe the final value of v.\n\n\tfor _, v := range list {\n\t defer func() {\n\t use(v) // incorrect\n\t }()\n\t}\n\nOne fix is to create a new variable for each iteration of the loop:\n\n\tfor _, v := range list {\n\t v := v // new var per iteration\n\t defer func() {\n\t use(v) // ok\n\t }()\n\t}\n\nThe next example uses a go statement and has a similar problem.\nIn addition, it has a data race because the loop updates v\nconcurrent with the goroutines accessing it.\n\n\tfor _, v := range elem {\n\t go func() {\n\t use(v) // incorrect, and a data race\n\t }()\n\t}\n\nA fix is the same as before. The checker also reports problems\nin goroutines started by golang.org/x/sync/errgroup.Group.\nA hard-to-spot variant of this form is common in parallel tests:\n\n\tfunc Test(t *testing.T) {\n\t for _, test := range tests {\n\t t.Run(test.name, func(t *testing.T) {\n\t t.Parallel()\n\t use(test) // incorrect, and a data race\n\t })\n\t }\n\t}\n\nThe t.Parallel() call causes the rest of the function to execute\nconcurrent with the loop.\n\nThe analyzer reports references only in the last statement,\nas it is not deep enough to understand the effects of subsequent\nstatements that might render the reference benign.\n(\"Last statement\" is defined recursively in compound\nstatements such as if, switch, and select.)\n\nSee: https://golang.org/doc/go_faq.html#closures_and_goroutines",
Default: "true",
},
{
@@ -303,17 +303,17 @@
},
{
Name: "\"nilness\"",
- Doc: "check for redundant or impossible nil comparisons\n\nThe nilness checker inspects the control-flow graph of each function in\na package and reports nil pointer dereferences, degenerate nil\npointers, and panics with nil values. A degenerate comparison is of the form\nx==nil or x!=nil where x is statically known to be nil or non-nil. These are\noften a mistake, especially in control flow related to errors. Panics with nil\nvalues are checked because they are not detectable by\n\n\tif r := recover(); r != nil {\n\nThis check reports conditions such as:\n\n\tif f == nil { // impossible condition (f is a function)\n\t}\n\nand:\n\n\tp := &v\n\t...\n\tif p != nil { // tautological condition\n\t}\n\nand:\n\n\tif p == nil {\n\t\tprint(*p) // nil dereference\n\t}\n\nand:\n\n\tif p == nil {\n\t\tpanic(p)\n\t}\n",
+ Doc: "check for redundant or impossible nil comparisons\n\nThe nilness checker inspects the control-flow graph of each function in\na package and reports nil pointer dereferences, degenerate nil\npointers, and panics with nil values. A degenerate comparison is of the form\nx==nil or x!=nil where x is statically known to be nil or non-nil. These are\noften a mistake, especially in control flow related to errors. Panics with nil\nvalues are checked because they are not detectable by\n\n\tif r := recover(); r != nil {\n\nThis check reports conditions such as:\n\n\tif f == nil { // impossible condition (f is a function)\n\t}\n\nand:\n\n\tp := &v\n\t...\n\tif p != nil { // tautological condition\n\t}\n\nand:\n\n\tif p == nil {\n\t\tprint(*p) // nil dereference\n\t}\n\nand:\n\n\tif p == nil {\n\t\tpanic(p)\n\t}",
Default: "false",
},
{
Name: "\"printf\"",
- Doc: "check consistency of Printf format strings and arguments\n\nThe check applies to known functions (for example, those in package fmt)\nas well as any detected wrappers of known functions.\n\nTo enable printf checking on a function that is not found by this\nanalyzer's heuristics (for example, because control is obscured by\ndynamic method calls), insert a bogus call:\n\n\tfunc MyPrintf(format string, args ...any) {\n\t\tif false {\n\t\t\t_ = fmt.Sprintf(format, args...) // enable printf checker\n\t\t}\n\t\t...\n\t}\n\nThe -funcs flag specifies a comma-separated list of names of additional\nknown formatting functions or methods. If the name contains a period,\nit must denote a specific function using one of the following forms:\n\n\tdir/pkg.Function\n\tdir/pkg.Type.Method\n\t(*dir/pkg.Type).Method\n\nOtherwise the name is interpreted as a case-insensitive unqualified\nidentifier such as \"errorf\". Either way, if a listed name ends in f, the\nfunction is assumed to be Printf-like, taking a format string before the\nargument list. Otherwise it is assumed to be Print-like, taking a list\nof arguments with no format string.\n",
+ Doc: "check consistency of Printf format strings and arguments\n\nThe check applies to known functions (for example, those in package fmt)\nas well as any detected wrappers of known functions.\n\nTo enable printf checking on a function that is not found by this\nanalyzer's heuristics (for example, because control is obscured by\ndynamic method calls), insert a bogus call:\n\n\tfunc MyPrintf(format string, args ...any) {\n\t\tif false {\n\t\t\t_ = fmt.Sprintf(format, args...) // enable printf checker\n\t\t}\n\t\t...\n\t}\n\nThe -funcs flag specifies a comma-separated list of names of additional\nknown formatting functions or methods. If the name contains a period,\nit must denote a specific function using one of the following forms:\n\n\tdir/pkg.Function\n\tdir/pkg.Type.Method\n\t(*dir/pkg.Type).Method\n\nOtherwise the name is interpreted as a case-insensitive unqualified\nidentifier such as \"errorf\". Either way, if a listed name ends in f, the\nfunction is assumed to be Printf-like, taking a format string before the\nargument list. Otherwise it is assumed to be Print-like, taking a list\nof arguments with no format string.",
Default: "true",
},
{
Name: "\"shadow\"",
- Doc: "check for possible unintended shadowing of variables\n\nThis analyzer check for shadowed variables.\nA shadowed variable is a variable declared in an inner scope\nwith the same name and type as a variable in an outer scope,\nand where the outer variable is mentioned after the inner one\nis declared.\n\n(This definition can be refined; the module generates too many\nfalse positives and is not yet enabled by default.)\n\nFor example:\n\n\tfunc BadRead(f *os.File, buf []byte) error {\n\t\tvar err error\n\t\tfor {\n\t\t\tn, err := f.Read(buf) // shadows the function variable 'err'\n\t\t\tif err != nil {\n\t\t\t\tbreak // causes return of wrong value\n\t\t\t}\n\t\t\tfoo(buf)\n\t\t}\n\t\treturn err\n\t}\n",
+ Doc: "check for possible unintended shadowing of variables\n\nThis analyzer check for shadowed variables.\nA shadowed variable is a variable declared in an inner scope\nwith the same name and type as a variable in an outer scope,\nand where the outer variable is mentioned after the inner one\nis declared.\n\n(This definition can be refined; the module generates too many\nfalse positives and is not yet enabled by default.)\n\nFor example:\n\n\tfunc BadRead(f *os.File, buf []byte) error {\n\t\tvar err error\n\t\tfor {\n\t\t\tn, err := f.Read(buf) // shadows the function variable 'err'\n\t\t\tif err != nil {\n\t\t\t\tbreak // causes return of wrong value\n\t\t\t}\n\t\t\tfoo(buf)\n\t\t}\n\t\treturn err\n\t}",
Default: "false",
},
{
@@ -343,12 +343,12 @@
},
{
Name: "\"stdmethods\"",
- Doc: "check signature of methods of well-known interfaces\n\nSometimes a type may be intended to satisfy an interface but may fail to\ndo so because of a mistake in its method signature.\nFor example, the result of this WriteTo method should be (int64, error),\nnot error, to satisfy io.WriterTo:\n\n\ttype myWriterTo struct{...}\n func (myWriterTo) WriteTo(w io.Writer) error { ... }\n\nThis check ensures that each method whose name matches one of several\nwell-known interface methods from the standard library has the correct\nsignature for that interface.\n\nChecked method names include:\n\tFormat GobEncode GobDecode MarshalJSON MarshalXML\n\tPeek ReadByte ReadFrom ReadRune Scan Seek\n\tUnmarshalJSON UnreadByte UnreadRune WriteByte\n\tWriteTo\n",
+ Doc: "check signature of methods of well-known interfaces\n\nSometimes a type may be intended to satisfy an interface but may fail to\ndo so because of a mistake in its method signature.\nFor example, the result of this WriteTo method should be (int64, error),\nnot error, to satisfy io.WriterTo:\n\n\ttype myWriterTo struct{...}\n\tfunc (myWriterTo) WriteTo(w io.Writer) error { ... }\n\nThis check ensures that each method whose name matches one of several\nwell-known interface methods from the standard library has the correct\nsignature for that interface.\n\nChecked method names include:\n\n\tFormat GobEncode GobDecode MarshalJSON MarshalXML\n\tPeek ReadByte ReadFrom ReadRune Scan Seek\n\tUnmarshalJSON UnreadByte UnreadRune WriteByte\n\tWriteTo",
Default: "true",
},
{
Name: "\"stringintconv\"",
- Doc: "check for string(int) conversions\n\nThis checker flags conversions of the form string(x) where x is an integer\n(but not byte or rune) type. Such conversions are discouraged because they\nreturn the UTF-8 representation of the Unicode code point x, and not a decimal\nstring representation of x as one might expect. Furthermore, if x denotes an\ninvalid code point, the conversion cannot be statically rejected.\n\nFor conversions that intend on using the code point, consider replacing them\nwith string(rune(x)). Otherwise, strconv.Itoa and its equivalents return the\nstring representation of the value in the desired base.\n",
+ Doc: "check for string(int) conversions\n\nThis checker flags conversions of the form string(x) where x is an integer\n(but not byte or rune) type. Such conversions are discouraged because they\nreturn the UTF-8 representation of the Unicode code point x, and not a decimal\nstring representation of x as one might expect. Furthermore, if x denotes an\ninvalid code point, the conversion cannot be statically rejected.\n\nFor conversions that intend on using the code point, consider replacing them\nwith string(rune(x)). Otherwise, strconv.Itoa and its equivalents return the\nstring representation of the value in the desired base.",
Default: "true",
},
{
@@ -358,7 +358,7 @@
},
{
Name: "\"testinggoroutine\"",
- Doc: "report calls to (*testing.T).Fatal from goroutines started by a test.\n\nFunctions that abruptly terminate a test, such as the Fatal, Fatalf, FailNow, and\nSkip{,f,Now} methods of *testing.T, must be called from the test goroutine itself.\nThis checker detects calls to these functions that occur within a goroutine\nstarted by the test. For example:\n\nfunc TestFoo(t *testing.T) {\n go func() {\n t.Fatal(\"oops\") // error: (*T).Fatal called from non-test goroutine\n }()\n}\n",
+ Doc: "report calls to (*testing.T).Fatal from goroutines started by a test.\n\nFunctions that abruptly terminate a test, such as the Fatal, Fatalf, FailNow, and\nSkip{,f,Now} methods of *testing.T, must be called from the test goroutine itself.\nThis checker detects calls to these functions that occur within a goroutine\nstarted by the test. For example:\n\n\tfunc TestFoo(t *testing.T) {\n\t go func() {\n\t t.Fatal(\"oops\") // error: (*T).Fatal called from non-test goroutine\n\t }()\n\t}",
Default: "true",
},
{
@@ -368,7 +368,7 @@
},
{
Name: "\"timeformat\"",
- Doc: "check for calls of (time.Time).Format or time.Parse with 2006-02-01\n\nThe timeformat checker looks for time formats with the 2006-02-01 (yyyy-dd-mm)\nformat. Internationally, \"yyyy-dd-mm\" does not occur in common calendar date\nstandards, and so it is more likely that 2006-01-02 (yyyy-mm-dd) was intended.\n",
+ Doc: "check for calls of (time.Time).Format or time.Parse with 2006-02-01\n\nThe timeformat checker looks for time formats with the 2006-02-01 (yyyy-dd-mm)\nformat. Internationally, \"yyyy-dd-mm\" does not occur in common calendar date\nstandards, and so it is more likely that 2006-01-02 (yyyy-mm-dd) was intended.",
Default: "true",
},
{
@@ -383,7 +383,7 @@
},
{
Name: "\"unsafeptr\"",
- Doc: "check for invalid conversions of uintptr to unsafe.Pointer\n\nThe unsafeptr analyzer reports likely incorrect uses of unsafe.Pointer\nto convert integers to pointers. A conversion from uintptr to\nunsafe.Pointer is invalid if it implies that there is a uintptr-typed\nword in memory that holds a pointer value, because that word will be\ninvisible to stack copying and to the garbage collector.",
+ Doc: "check for invalid conversions of uintptr to unsafe.Pointer\n\nThe unsafeptr analyzer reports likely incorrect uses of unsafe.Pointer\nto convert integers to pointers. A conversion from uintptr to\nunsafe.Pointer is invalid if it implies that there is a uintptr-typed\nword in memory that holds a pointer value, because that word will be\ninvisible to stack copying and to the garbage collector.`",
Default: "true",
},
{
@@ -398,7 +398,7 @@
},
{
Name: "\"unusedwrite\"",
- Doc: "checks for unused writes\n\nThe analyzer reports instances of writes to struct fields and\narrays that are never read. Specifically, when a struct object\nor an array is copied, its elements are copied implicitly by\nthe compiler, and any element write to this copy does nothing\nwith the original object.\n\nFor example:\n\n\ttype T struct { x int }\n\tfunc f(input []T) {\n\t\tfor i, v := range input { // v is a copy\n\t\t\tv.x = i // unused write to field x\n\t\t}\n\t}\n\nAnother example is about non-pointer receiver:\n\n\ttype T struct { x int }\n\tfunc (t T) f() { // t is a copy\n\t\tt.x = i // unused write to field x\n\t}\n",
+ Doc: "checks for unused writes\n\nThe analyzer reports instances of writes to struct fields and\narrays that are never read. Specifically, when a struct object\nor an array is copied, its elements are copied implicitly by\nthe compiler, and any element write to this copy does nothing\nwith the original object.\n\nFor example:\n\n\ttype T struct { x int }\n\n\tfunc f(input []T) {\n\t\tfor i, v := range input { // v is a copy\n\t\t\tv.x = i // unused write to field x\n\t\t}\n\t}\n\nAnother example is about non-pointer receiver:\n\n\ttype T struct { x int }\n\n\tfunc (t T) f() { // t is a copy\n\t\tt.x = i // unused write to field x\n\t}",
Default: "false",
},
{
@@ -941,7 +941,7 @@
},
{
Name: "ifaceassert",
- Doc: "detect impossible interface-to-interface type assertions\n\nThis checker flags type assertions v.(T) and corresponding type-switch cases\nin which the static type V of v is an interface that cannot possibly implement\nthe target interface T. This occurs when V and T contain methods with the same\nname but different signatures. Example:\n\n\tvar v interface {\n\t\tRead()\n\t}\n\t_ = v.(io.Reader)\n\nThe Read method in v has a different signature than the Read method in\nio.Reader, so this assertion cannot succeed.\n",
+ Doc: "detect impossible interface-to-interface type assertions\n\nThis checker flags type assertions v.(T) and corresponding type-switch cases\nin which the static type V of v is an interface that cannot possibly implement\nthe target interface T. This occurs when V and T contain methods with the same\nname but different signatures. Example:\n\n\tvar v interface {\n\t\tRead()\n\t}\n\t_ = v.(io.Reader)\n\nThe Read method in v has a different signature than the Read method in\nio.Reader, so this assertion cannot succeed.",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/ifaceassert",
Default: true,
},
@@ -952,7 +952,7 @@
},
{
Name: "loopclosure",
- Doc: "check references to loop variables from within nested functions\n\nThis analyzer reports places where a function literal references the\niteration variable of an enclosing loop, and the loop calls the function\nin such a way (e.g. with go or defer) that it may outlive the loop\niteration and possibly observe the wrong value of the variable.\n\nIn this example, all the deferred functions run after the loop has\ncompleted, so all observe the final value of v.\n\n for _, v := range list {\n defer func() {\n use(v) // incorrect\n }()\n }\n\nOne fix is to create a new variable for each iteration of the loop:\n\n for _, v := range list {\n v := v // new var per iteration\n defer func() {\n use(v) // ok\n }()\n }\n\nThe next example uses a go statement and has a similar problem.\nIn addition, it has a data race because the loop updates v\nconcurrent with the goroutines accessing it.\n\n for _, v := range elem {\n go func() {\n use(v) // incorrect, and a data race\n }()\n }\n\nA fix is the same as before. The checker also reports problems\nin goroutines started by golang.org/x/sync/errgroup.Group.\nA hard-to-spot variant of this form is common in parallel tests:\n\n func Test(t *testing.T) {\n for _, test := range tests {\n t.Run(test.name, func(t *testing.T) {\n t.Parallel()\n use(test) // incorrect, and a data race\n })\n }\n }\n\nThe t.Parallel() call causes the rest of the function to execute\nconcurrent with the loop.\n\nThe analyzer reports references only in the last statement,\nas it is not deep enough to understand the effects of subsequent\nstatements that might render the reference benign.\n(\"Last statement\" is defined recursively in compound\nstatements such as if, switch, and select.)\n\nSee: https://golang.org/doc/go_faq.html#closures_and_goroutines",
+ Doc: "check references to loop variables from within nested functions\n\nThis analyzer reports places where a function literal references the\niteration variable of an enclosing loop, and the loop calls the function\nin such a way (e.g. with go or defer) that it may outlive the loop\niteration and possibly observe the wrong value of the variable.\n\nIn this example, all the deferred functions run after the loop has\ncompleted, so all observe the final value of v.\n\n\tfor _, v := range list {\n\t defer func() {\n\t use(v) // incorrect\n\t }()\n\t}\n\nOne fix is to create a new variable for each iteration of the loop:\n\n\tfor _, v := range list {\n\t v := v // new var per iteration\n\t defer func() {\n\t use(v) // ok\n\t }()\n\t}\n\nThe next example uses a go statement and has a similar problem.\nIn addition, it has a data race because the loop updates v\nconcurrent with the goroutines accessing it.\n\n\tfor _, v := range elem {\n\t go func() {\n\t use(v) // incorrect, and a data race\n\t }()\n\t}\n\nA fix is the same as before. The checker also reports problems\nin goroutines started by golang.org/x/sync/errgroup.Group.\nA hard-to-spot variant of this form is common in parallel tests:\n\n\tfunc Test(t *testing.T) {\n\t for _, test := range tests {\n\t t.Run(test.name, func(t *testing.T) {\n\t t.Parallel()\n\t use(test) // incorrect, and a data race\n\t })\n\t }\n\t}\n\nThe t.Parallel() call causes the rest of the function to execute\nconcurrent with the loop.\n\nThe analyzer reports references only in the last statement,\nas it is not deep enough to understand the effects of subsequent\nstatements that might render the reference benign.\n(\"Last statement\" is defined recursively in compound\nstatements such as if, switch, and select.)\n\nSee: https://golang.org/doc/go_faq.html#closures_and_goroutines",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/loopclosure",
Default: true,
},
@@ -970,18 +970,18 @@
},
{
Name: "nilness",
- Doc: "check for redundant or impossible nil comparisons\n\nThe nilness checker inspects the control-flow graph of each function in\na package and reports nil pointer dereferences, degenerate nil\npointers, and panics with nil values. A degenerate comparison is of the form\nx==nil or x!=nil where x is statically known to be nil or non-nil. These are\noften a mistake, especially in control flow related to errors. Panics with nil\nvalues are checked because they are not detectable by\n\n\tif r := recover(); r != nil {\n\nThis check reports conditions such as:\n\n\tif f == nil { // impossible condition (f is a function)\n\t}\n\nand:\n\n\tp := &v\n\t...\n\tif p != nil { // tautological condition\n\t}\n\nand:\n\n\tif p == nil {\n\t\tprint(*p) // nil dereference\n\t}\n\nand:\n\n\tif p == nil {\n\t\tpanic(p)\n\t}\n",
+ Doc: "check for redundant or impossible nil comparisons\n\nThe nilness checker inspects the control-flow graph of each function in\na package and reports nil pointer dereferences, degenerate nil\npointers, and panics with nil values. A degenerate comparison is of the form\nx==nil or x!=nil where x is statically known to be nil or non-nil. These are\noften a mistake, especially in control flow related to errors. Panics with nil\nvalues are checked because they are not detectable by\n\n\tif r := recover(); r != nil {\n\nThis check reports conditions such as:\n\n\tif f == nil { // impossible condition (f is a function)\n\t}\n\nand:\n\n\tp := &v\n\t...\n\tif p != nil { // tautological condition\n\t}\n\nand:\n\n\tif p == nil {\n\t\tprint(*p) // nil dereference\n\t}\n\nand:\n\n\tif p == nil {\n\t\tpanic(p)\n\t}",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/nilness",
},
{
Name: "printf",
- Doc: "check consistency of Printf format strings and arguments\n\nThe check applies to known functions (for example, those in package fmt)\nas well as any detected wrappers of known functions.\n\nTo enable printf checking on a function that is not found by this\nanalyzer's heuristics (for example, because control is obscured by\ndynamic method calls), insert a bogus call:\n\n\tfunc MyPrintf(format string, args ...any) {\n\t\tif false {\n\t\t\t_ = fmt.Sprintf(format, args...) // enable printf checker\n\t\t}\n\t\t...\n\t}\n\nThe -funcs flag specifies a comma-separated list of names of additional\nknown formatting functions or methods. If the name contains a period,\nit must denote a specific function using one of the following forms:\n\n\tdir/pkg.Function\n\tdir/pkg.Type.Method\n\t(*dir/pkg.Type).Method\n\nOtherwise the name is interpreted as a case-insensitive unqualified\nidentifier such as \"errorf\". Either way, if a listed name ends in f, the\nfunction is assumed to be Printf-like, taking a format string before the\nargument list. Otherwise it is assumed to be Print-like, taking a list\nof arguments with no format string.\n",
+ Doc: "check consistency of Printf format strings and arguments\n\nThe check applies to known functions (for example, those in package fmt)\nas well as any detected wrappers of known functions.\n\nTo enable printf checking on a function that is not found by this\nanalyzer's heuristics (for example, because control is obscured by\ndynamic method calls), insert a bogus call:\n\n\tfunc MyPrintf(format string, args ...any) {\n\t\tif false {\n\t\t\t_ = fmt.Sprintf(format, args...) // enable printf checker\n\t\t}\n\t\t...\n\t}\n\nThe -funcs flag specifies a comma-separated list of names of additional\nknown formatting functions or methods. If the name contains a period,\nit must denote a specific function using one of the following forms:\n\n\tdir/pkg.Function\n\tdir/pkg.Type.Method\n\t(*dir/pkg.Type).Method\n\nOtherwise the name is interpreted as a case-insensitive unqualified\nidentifier such as \"errorf\". Either way, if a listed name ends in f, the\nfunction is assumed to be Printf-like, taking a format string before the\nargument list. Otherwise it is assumed to be Print-like, taking a list\nof arguments with no format string.",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/printf",
Default: true,
},
{
Name: "shadow",
- Doc: "check for possible unintended shadowing of variables\n\nThis analyzer check for shadowed variables.\nA shadowed variable is a variable declared in an inner scope\nwith the same name and type as a variable in an outer scope,\nand where the outer variable is mentioned after the inner one\nis declared.\n\n(This definition can be refined; the module generates too many\nfalse positives and is not yet enabled by default.)\n\nFor example:\n\n\tfunc BadRead(f *os.File, buf []byte) error {\n\t\tvar err error\n\t\tfor {\n\t\t\tn, err := f.Read(buf) // shadows the function variable 'err'\n\t\t\tif err != nil {\n\t\t\t\tbreak // causes return of wrong value\n\t\t\t}\n\t\t\tfoo(buf)\n\t\t}\n\t\treturn err\n\t}\n",
+ Doc: "check for possible unintended shadowing of variables\n\nThis analyzer check for shadowed variables.\nA shadowed variable is a variable declared in an inner scope\nwith the same name and type as a variable in an outer scope,\nand where the outer variable is mentioned after the inner one\nis declared.\n\n(This definition can be refined; the module generates too many\nfalse positives and is not yet enabled by default.)\n\nFor example:\n\n\tfunc BadRead(f *os.File, buf []byte) error {\n\t\tvar err error\n\t\tfor {\n\t\t\tn, err := f.Read(buf) // shadows the function variable 'err'\n\t\t\tif err != nil {\n\t\t\t\tbreak // causes return of wrong value\n\t\t\t}\n\t\t\tfoo(buf)\n\t\t}\n\t\treturn err\n\t}",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/shadow",
},
{
@@ -1013,13 +1013,13 @@
},
{
Name: "stdmethods",
- Doc: "check signature of methods of well-known interfaces\n\nSometimes a type may be intended to satisfy an interface but may fail to\ndo so because of a mistake in its method signature.\nFor example, the result of this WriteTo method should be (int64, error),\nnot error, to satisfy io.WriterTo:\n\n\ttype myWriterTo struct{...}\n func (myWriterTo) WriteTo(w io.Writer) error { ... }\n\nThis check ensures that each method whose name matches one of several\nwell-known interface methods from the standard library has the correct\nsignature for that interface.\n\nChecked method names include:\n\tFormat GobEncode GobDecode MarshalJSON MarshalXML\n\tPeek ReadByte ReadFrom ReadRune Scan Seek\n\tUnmarshalJSON UnreadByte UnreadRune WriteByte\n\tWriteTo\n",
+ Doc: "check signature of methods of well-known interfaces\n\nSometimes a type may be intended to satisfy an interface but may fail to\ndo so because of a mistake in its method signature.\nFor example, the result of this WriteTo method should be (int64, error),\nnot error, to satisfy io.WriterTo:\n\n\ttype myWriterTo struct{...}\n\tfunc (myWriterTo) WriteTo(w io.Writer) error { ... }\n\nThis check ensures that each method whose name matches one of several\nwell-known interface methods from the standard library has the correct\nsignature for that interface.\n\nChecked method names include:\n\n\tFormat GobEncode GobDecode MarshalJSON MarshalXML\n\tPeek ReadByte ReadFrom ReadRune Scan Seek\n\tUnmarshalJSON UnreadByte UnreadRune WriteByte\n\tWriteTo",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/stdmethods",
Default: true,
},
{
Name: "stringintconv",
- Doc: "check for string(int) conversions\n\nThis checker flags conversions of the form string(x) where x is an integer\n(but not byte or rune) type. Such conversions are discouraged because they\nreturn the UTF-8 representation of the Unicode code point x, and not a decimal\nstring representation of x as one might expect. Furthermore, if x denotes an\ninvalid code point, the conversion cannot be statically rejected.\n\nFor conversions that intend on using the code point, consider replacing them\nwith string(rune(x)). Otherwise, strconv.Itoa and its equivalents return the\nstring representation of the value in the desired base.\n",
+ Doc: "check for string(int) conversions\n\nThis checker flags conversions of the form string(x) where x is an integer\n(but not byte or rune) type. Such conversions are discouraged because they\nreturn the UTF-8 representation of the Unicode code point x, and not a decimal\nstring representation of x as one might expect. Furthermore, if x denotes an\ninvalid code point, the conversion cannot be statically rejected.\n\nFor conversions that intend on using the code point, consider replacing them\nwith string(rune(x)). Otherwise, strconv.Itoa and its equivalents return the\nstring representation of the value in the desired base.",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/stringintconv",
Default: true,
},
@@ -1031,7 +1031,7 @@
},
{
Name: "testinggoroutine",
- Doc: "report calls to (*testing.T).Fatal from goroutines started by a test.\n\nFunctions that abruptly terminate a test, such as the Fatal, Fatalf, FailNow, and\nSkip{,f,Now} methods of *testing.T, must be called from the test goroutine itself.\nThis checker detects calls to these functions that occur within a goroutine\nstarted by the test. For example:\n\nfunc TestFoo(t *testing.T) {\n go func() {\n t.Fatal(\"oops\") // error: (*T).Fatal called from non-test goroutine\n }()\n}\n",
+ Doc: "report calls to (*testing.T).Fatal from goroutines started by a test.\n\nFunctions that abruptly terminate a test, such as the Fatal, Fatalf, FailNow, and\nSkip{,f,Now} methods of *testing.T, must be called from the test goroutine itself.\nThis checker detects calls to these functions that occur within a goroutine\nstarted by the test. For example:\n\n\tfunc TestFoo(t *testing.T) {\n\t go func() {\n\t t.Fatal(\"oops\") // error: (*T).Fatal called from non-test goroutine\n\t }()\n\t}",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/testinggoroutine",
Default: true,
},
@@ -1043,7 +1043,7 @@
},
{
Name: "timeformat",
- Doc: "check for calls of (time.Time).Format or time.Parse with 2006-02-01\n\nThe timeformat checker looks for time formats with the 2006-02-01 (yyyy-dd-mm)\nformat. Internationally, \"yyyy-dd-mm\" does not occur in common calendar date\nstandards, and so it is more likely that 2006-01-02 (yyyy-mm-dd) was intended.\n",
+ Doc: "check for calls of (time.Time).Format or time.Parse with 2006-02-01\n\nThe timeformat checker looks for time formats with the 2006-02-01 (yyyy-dd-mm)\nformat. Internationally, \"yyyy-dd-mm\" does not occur in common calendar date\nstandards, and so it is more likely that 2006-01-02 (yyyy-mm-dd) was intended.",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/timeformat",
Default: true,
},
@@ -1061,7 +1061,7 @@
},
{
Name: "unsafeptr",
- Doc: "check for invalid conversions of uintptr to unsafe.Pointer\n\nThe unsafeptr analyzer reports likely incorrect uses of unsafe.Pointer\nto convert integers to pointers. A conversion from uintptr to\nunsafe.Pointer is invalid if it implies that there is a uintptr-typed\nword in memory that holds a pointer value, because that word will be\ninvisible to stack copying and to the garbage collector.",
+ Doc: "check for invalid conversions of uintptr to unsafe.Pointer\n\nThe unsafeptr analyzer reports likely incorrect uses of unsafe.Pointer\nto convert integers to pointers. A conversion from uintptr to\nunsafe.Pointer is invalid if it implies that there is a uintptr-typed\nword in memory that holds a pointer value, because that word will be\ninvisible to stack copying and to the garbage collector.`",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/unsafeptr",
Default: true,
},
@@ -1077,7 +1077,7 @@
},
{
Name: "unusedwrite",
- Doc: "checks for unused writes\n\nThe analyzer reports instances of writes to struct fields and\narrays that are never read. Specifically, when a struct object\nor an array is copied, its elements are copied implicitly by\nthe compiler, and any element write to this copy does nothing\nwith the original object.\n\nFor example:\n\n\ttype T struct { x int }\n\tfunc f(input []T) {\n\t\tfor i, v := range input { // v is a copy\n\t\t\tv.x = i // unused write to field x\n\t\t}\n\t}\n\nAnother example is about non-pointer receiver:\n\n\ttype T struct { x int }\n\tfunc (t T) f() { // t is a copy\n\t\tt.x = i // unused write to field x\n\t}\n",
+ Doc: "checks for unused writes\n\nThe analyzer reports instances of writes to struct fields and\narrays that are never read. Specifically, when a struct object\nor an array is copied, its elements are copied implicitly by\nthe compiler, and any element write to this copy does nothing\nwith the original object.\n\nFor example:\n\n\ttype T struct { x int }\n\n\tfunc f(input []T) {\n\t\tfor i, v := range input { // v is a copy\n\t\t\tv.x = i // unused write to field x\n\t\t}\n\t}\n\nAnother example is about non-pointer receiver:\n\n\ttype T struct { x int }\n\n\tfunc (t T) f() { // t is a copy\n\t\tt.x = i // unused write to field x\n\t}",
URL: "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/unusedwrite",
},
{