blob: 332e2e49a9bca365b3124c0fc03dce48eb8f47f4 [file] [log] [blame]
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package unitchecker
import (
"fmt"
"go/types"
)
type gcSizes struct {
WordSize int64 // word size in bytes - must be >= 4 (32bits)
MaxAlign int64 // maximum alignment in bytes - must be >= 1
}
func (s *gcSizes) Alignof(T types.Type) int64 {
// For arrays and structs, alignment is defined in terms
// of alignment of the elements and fields, respectively.
switch t := T.Underlying().(type) {
case *types.Array:
// spec: "For a variable x of array type: unsafe.Alignof(x)
// is the same as unsafe.Alignof(x[0]), but at least 1."
return s.Alignof(t.Elem())
case *types.Struct:
if t.NumFields() == 0 && isSyncAtomicAlign64(T) {
// Special case: sync/atomic.align64 is an
// empty struct we recognize as a signal that
// the struct it contains must be
// 64-bit-aligned.
//
// This logic is equivalent to the logic in
// cmd/compile/internal/types/size.go:calcStructOffset
return 8
}
// spec: "For a variable x of struct type: unsafe.Alignof(x)
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
for i, nf := 0, t.NumFields(); i < nf; i++ {
if a := s.Alignof(t.Field(i).Type()); a > max {
max = a
}
}
return max
case *types.Slice, *types.Interface:
// Multiword data structures are effectively structs
// in which each element has size PtrSize.
return s.WordSize
case *types.Basic:
// Strings are like slices and interfaces.
if t.Info()&types.IsString != 0 {
return s.WordSize
}
}
a := s.Sizeof(T) // may be 0
// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
if a < 1 {
return 1
}
// complex{64,128} are aligned like [2]float{32,64}.
if isComplex(T) {
a /= 2
}
if a > s.MaxAlign {
return s.MaxAlign
}
return a
}
func isComplex(T types.Type) bool {
basic, ok := T.Underlying().(*types.Basic)
return ok && basic.Info()&types.IsComplex != 0
}
func (s *gcSizes) Offsetsof(fields []*types.Var) []int64 {
offsets := make([]int64, len(fields))
var offs int64
for i, f := range fields {
if offs < 0 {
// all remaining offsets are too large
offsets[i] = -1
continue
}
// offs >= 0
typ := f.Type()
a := s.Alignof(typ)
offs = roundUp(offs, a) // possibly < 0 if align overflows
offsets[i] = offs
if d := s.Sizeof(typ); d >= 0 && offs >= 0 {
offs += d // ok to overflow to < 0
} else {
offs = -1
}
}
return offsets
}
func (s *gcSizes) Sizeof(T types.Type) int64 {
switch t := T.Underlying().(type) {
case *types.Basic:
k := t.Kind()
if int(k) < len(basicSizes) {
if s := basicSizes[k]; s > 0 {
return int64(s)
}
}
switch k {
case types.String:
return s.WordSize * 2
case types.Int, types.Uint, types.Uintptr, types.UnsafePointer:
return s.WordSize
}
panic(fmt.Sprintf("unimplemented basic: %v (kind %v)", T, k))
case *types.Array:
n := t.Len()
if n <= 0 {
return 0
}
// n > 0
// gc: Size includes alignment padding.
esize := s.Sizeof(t.Elem())
if esize < 0 {
return -1 // array element too large
}
if esize == 0 {
return 0 // 0-size element
}
// esize > 0
// Final size is esize * n; and size must be <= maxInt64.
const maxInt64 = 1<<63 - 1
if esize > maxInt64/n {
return -1 // esize * n overflows
}
return esize * n
case *types.Slice:
return s.WordSize * 3
case *types.Struct:
n := t.NumFields()
if n == 0 {
return 0
}
// n > 0
fields := make([]*types.Var, n)
for i := range fields {
fields[i] = t.Field(i)
}
offsets := s.Offsetsof(fields)
// gc: The last field of a non-zero-sized struct is not allowed to
// have size 0.
last := s.Sizeof(fields[n-1].Type())
if last == 0 && offsets[n-1] > 0 {
last = 1
}
// gc: Size includes alignment padding.
return roundUp(offsets[n-1]+last, s.Alignof(t)) // may overflow to < 0 which is ok
case *types.Interface:
return s.WordSize * 2
case *types.Chan, *types.Map, *types.Pointer, *types.Signature:
return s.WordSize
default:
panic(fmt.Sprintf("Sizeof(%T) unimplemented", t))
}
}
func isSyncAtomicAlign64(T types.Type) bool {
named, ok := T.(*types.Named)
if !ok {
return false
}
obj := named.Obj()
return obj.Name() == "align64" &&
obj.Pkg() != nil &&
(obj.Pkg().Path() == "sync/atomic" ||
obj.Pkg().Path() == "runtime/internal/atomic")
}
// roundUp rounds o to a multiple of r, r is a power of 2.
func roundUp(o int64, r int64) int64 {
if r < 1 || r > 8 || r&(r-1) != 0 {
panic(fmt.Sprintf("Round %d", r))
}
return (o + r - 1) &^ (r - 1)
}
var basicSizes = [...]byte{
types.Invalid: 1,
types.Bool: 1,
types.Int8: 1,
types.Int16: 2,
types.Int32: 4,
types.Int64: 8,
types.Uint8: 1,
types.Uint16: 2,
types.Uint32: 4,
types.Uint64: 8,
types.Float32: 4,
types.Float64: 8,
types.Complex64: 8,
types.Complex128: 16,
}
// common architecture word sizes and alignments
var gcArchSizes = map[string]*gcSizes{
"386": {4, 4},
"amd64": {8, 8},
"amd64p32": {4, 8},
"arm": {4, 4},
"arm64": {8, 8},
"loong64": {8, 8},
"mips": {4, 4},
"mipsle": {4, 4},
"mips64": {8, 8},
"mips64le": {8, 8},
"ppc64": {8, 8},
"ppc64le": {8, 8},
"riscv64": {8, 8},
"s390x": {8, 8},
"sparc64": {8, 8},
"wasm": {8, 8},
// When adding more architectures here,
// update the doc string of sizesFor below.
}
// sizesFor returns the go/types.Sizes used by a compiler for an architecture.
// The result is nil if a compiler/architecture pair is not known.
func sizesFor(compiler, arch string) types.Sizes {
if compiler != "gc" {
return nil
}
s, ok := gcArchSizes[arch]
if !ok {
return nil
}
return s
}