blob: f6828efd03593b8d5a39e03d9b40bb4f54e26ff3 [file] [log] [blame]
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate stringer -type RoundingMode
package number
import (
"math"
"strconv"
)
// RoundingMode determines how a number is rounded to the desired precision.
type RoundingMode byte
const (
ToNearestEven RoundingMode = iota // towards the nearest integer, or towards an even number if equidistant.
ToNearestZero // towards the nearest integer, or towards zero if equidistant.
ToNearestAway // towards the nearest integer, or away from zero if equidistant.
ToPositiveInf // towards infinity
ToNegativeInf // towards negative infinity
ToZero // towards zero
AwayFromZero // away from zero
numModes
)
// A RoundingContext indicates how a number should be converted to digits.
type RoundingContext struct {
Mode RoundingMode
Increment int32 // if > 0, round to Increment * 10^-Scale
Precision int32 // maximum number of significant digits.
Scale int32 // maximum number of decimals after the dot.
}
const maxIntDigits = 20
// A Decimal represents floating point number represented in digits of the base
// in which a number is to be displayed. Digits represents a number [0, 1.0),
// and the absolute value represented by Decimal is Digits * 10^Exp.
// Leading and trailing zeros may be omitted and Exp may point outside a valid
// position in Digits.
//
// Examples:
// Number Decimal
// 12345 Digits: [1, 2, 3, 4, 5], Exp: 5
// 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2
// 12000 Digits: [1, 2], Exp: 5
// 0.00123 Digits: [1, 2, 3], Exp: -2
type Decimal struct {
Digits []byte // mantissa digits, big-endian
Exp int32 // exponent
Neg bool
Inf bool // Takes precedence over Digits and Exp.
NaN bool // Takes precedence over Inf.
buf [maxIntDigits]byte
}
// normalize retuns a new Decimal with leading and trailing zeros removed.
func (d *Decimal) normalize() (n Decimal) {
n = *d
b := n.Digits
// Strip leading zeros. Resulting number of digits is significant digits.
for len(b) > 0 && b[0] == 0 {
b = b[1:]
n.Exp--
}
// Strip trailing zeros
for len(b) > 0 && b[len(b)-1] == 0 {
b = b[:len(b)-1]
}
if len(b) == 0 {
n.Exp = 0
}
n.Digits = b
return n
}
func (d *Decimal) clear() {
b := d.Digits
if b == nil {
b = d.buf[:0]
}
*d = Decimal{}
d.Digits = b[:0]
}
func (x *Decimal) String() string {
if x.NaN {
return "NaN"
}
var buf []byte
if x.Neg {
buf = append(buf, '-')
}
if x.Inf {
buf = append(buf, "Inf"...)
return string(buf)
}
switch {
case len(x.Digits) == 0:
buf = append(buf, '0')
case x.Exp <= 0:
// 0.00ddd
buf = append(buf, "0."...)
buf = appendZeros(buf, -int(x.Exp))
buf = appendDigits(buf, x.Digits)
case /* 0 < */ int(x.Exp) < len(x.Digits):
// dd.ddd
buf = appendDigits(buf, x.Digits[:x.Exp])
buf = append(buf, '.')
buf = appendDigits(buf, x.Digits[x.Exp:])
default: // len(x.Digits) <= x.Exp
// ddd00
buf = appendDigits(buf, x.Digits)
buf = appendZeros(buf, int(x.Exp)-len(x.Digits))
}
return string(buf)
}
func appendDigits(buf []byte, digits []byte) []byte {
for _, c := range digits {
buf = append(buf, c+'0')
}
return buf
}
// appendZeros appends n 0 digits to buf and returns buf.
func appendZeros(buf []byte, n int) []byte {
for ; n > 0; n-- {
buf = append(buf, '0')
}
return buf
}
func (d *Decimal) round(mode RoundingMode, n int) {
if n >= len(d.Digits) {
return
}
// Make rounding decision: The result mantissa is truncated ("rounded down")
// by default. Decide if we need to increment, or "round up", the (unsigned)
// mantissa.
inc := false
switch mode {
case ToNegativeInf:
inc = d.Neg
case ToPositiveInf:
inc = !d.Neg
case ToZero:
// nothing to do
case AwayFromZero:
inc = true
case ToNearestEven:
inc = d.Digits[n] > 5 || d.Digits[n] == 5 &&
(len(d.Digits) > n+1 || n == 0 || d.Digits[n-1]&1 != 0)
case ToNearestAway:
inc = d.Digits[n] >= 5
case ToNearestZero:
inc = d.Digits[n] > 5 || d.Digits[n] == 5 && len(d.Digits) > n+1
default:
panic("unreachable")
}
if inc {
d.roundUp(n)
} else {
d.roundDown(n)
}
}
// roundFloat rounds a floating point number.
func (r RoundingMode) roundFloat(x float64) float64 {
// Make rounding decision: The result mantissa is truncated ("rounded down")
// by default. Decide if we need to increment, or "round up", the (unsigned)
// mantissa.
abs := x
if x < 0 {
abs = -x
}
i, f := math.Modf(abs)
if f == 0.0 {
return x
}
inc := false
switch r {
case ToNegativeInf:
inc = x < 0
case ToPositiveInf:
inc = x >= 0
case ToZero:
// nothing to do
case AwayFromZero:
inc = true
case ToNearestEven:
// TODO: check overflow
inc = f > 0.5 || f == 0.5 && int64(i)&1 != 0
case ToNearestAway:
inc = f >= 0.5
case ToNearestZero:
inc = f > 0.5
default:
panic("unreachable")
}
if inc {
i += 1
}
if abs != x {
i = -i
}
return i
}
func (x *Decimal) roundUp(n int) {
if n < 0 || n >= len(x.Digits) {
return // nothing to do
}
// find first digit < 9
for n > 0 && x.Digits[n-1] >= 9 {
n--
}
if n == 0 {
// all digits are 9s => round up to 1 and update exponent
x.Digits[0] = 1 // ok since len(x.Digits) > n
x.Digits = x.Digits[:1]
x.Exp++
return
}
x.Digits[n-1]++
x.Digits = x.Digits[:n]
// x already trimmed
}
func (x *Decimal) roundDown(n int) {
if n < 0 || n >= len(x.Digits) {
return // nothing to do
}
x.Digits = x.Digits[:n]
trim(x)
}
// trim cuts off any trailing zeros from x's mantissa;
// they are meaningless for the value of x.
func trim(x *Decimal) {
i := len(x.Digits)
for i > 0 && x.Digits[i-1] == 0 {
i--
}
x.Digits = x.Digits[:i]
if i == 0 {
x.Exp = 0
}
}
// A Converter converts a number into decimals according to the given rounding
// criteria.
type Converter interface {
Convert(d *Decimal, r *RoundingContext)
}
const (
signed = true
unsigned = false
)
// Convert converts the given number to the decimal representation using the
// supplied RoundingContext.
func (d *Decimal) Convert(r *RoundingContext, number interface{}) {
switch f := number.(type) {
case Converter:
d.clear()
f.Convert(d, r)
case float32:
d.ConvertFloat(r, float64(f), 32)
case float64:
d.ConvertFloat(r, f, 64)
case int:
d.ConvertInt(r, signed, uint64(f))
case int8:
d.ConvertInt(r, signed, uint64(f))
case int16:
d.ConvertInt(r, signed, uint64(f))
case int32:
d.ConvertInt(r, signed, uint64(f))
case int64:
d.ConvertInt(r, signed, uint64(f))
case uint:
d.ConvertInt(r, unsigned, uint64(f))
case uint8:
d.ConvertInt(r, unsigned, uint64(f))
case uint16:
d.ConvertInt(r, unsigned, uint64(f))
case uint32:
d.ConvertInt(r, unsigned, uint64(f))
case uint64:
d.ConvertInt(r, unsigned, f)
// TODO:
// case string: if produced by strconv, allows for easy arbitrary pos.
// case reflect.Value:
// case big.Float
// case big.Int
// case big.Rat?
// catch underlyings using reflect or will this already be done by the
// message package?
}
}
// ConvertInt converts an integer to decimals.
func (d *Decimal) ConvertInt(r *RoundingContext, signed bool, x uint64) {
if r.Increment > 0 {
// TODO: if uint64 is too large, fall back to float64
if signed {
d.ConvertFloat(r, float64(int64(x)), 64)
} else {
d.ConvertFloat(r, float64(x), 64)
}
return
}
d.clear()
if signed && int64(x) < 0 {
x = uint64(-int64(x))
d.Neg = true
}
d.fillIntDigits(x)
d.Exp = int32(len(d.Digits))
}
// ConvertFloat converts a floating point number to decimals.
func (d *Decimal) ConvertFloat(r *RoundingContext, x float64, size int) {
d.clear()
if math.IsNaN(x) {
d.NaN = true
return
}
abs := x
if x < 0 {
d.Neg = true
abs = -x
}
if math.IsInf(abs, 1) {
d.Inf = true
return
}
// Simple case: decimal notation
if r.Scale > 0 || r.Increment > 0 || r.Precision == 0 {
if int(r.Scale) > len(scales) {
x *= math.Pow(10, float64(r.Scale))
} else {
x *= scales[r.Scale]
}
if r.Increment > 0 {
inc := float64(r.Increment)
x /= float64(inc)
x = r.Mode.roundFloat(x)
x *= inc
} else {
x = r.Mode.roundFloat(x)
}
d.fillIntDigits(uint64(math.Abs(x)))
d.Exp = int32(len(d.Digits)) - r.Scale
return
}
// Nasty case (for non-decimal notation).
// Asides from being inefficient, this result is also wrong as it will
// apply ToNearestEven rounding regardless of the user setting.
// TODO: expose functionality in strconv so we can avoid this hack.
// Something like this would work:
// AppendDigits(dst []byte, x float64, base, size, prec int) (digits []byte, exp, accuracy int)
// TODO: This only supports the nearest even rounding mode.
prec := int(r.Precision)
if prec > 0 {
prec--
}
b := strconv.AppendFloat(d.Digits, abs, 'e', prec, size)
i := 0
k := 0
// No need to check i < len(b) as we always have an 'e'.
for {
if c := b[i]; '0' <= c && c <= '9' {
b[k] = c - '0'
k++
} else if c != '.' {
break
}
i++
}
d.Digits = b[:k]
i += len("e")
pSign := i
exp := 0
for i++; i < len(b); i++ {
exp *= 10
exp += int(b[i] - '0')
}
if b[pSign] == '-' {
exp = -exp
}
d.Exp = int32(exp) + 1
}
func (d *Decimal) fillIntDigits(x uint64) {
if cap(d.Digits) < maxIntDigits {
d.Digits = d.buf[:]
} else {
d.Digits = d.buf[:maxIntDigits]
}
i := 0
for ; x > 0; x /= 10 {
d.Digits[i] = byte(x % 10)
i++
}
d.Digits = d.Digits[:i]
for p := 0; p < i; p++ {
i--
d.Digits[p], d.Digits[i] = d.Digits[i], d.Digits[p]
}
}
var scales [70]float64
func init() {
x := 1.0
for i := range scales {
scales[i] = x
x *= 10
}
}