| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Linux system calls. |
| // This file is compiled as ordinary Go code, |
| // but it is also input to mksyscall, |
| // which parses the //sys lines and generates system call stubs. |
| // Note that sometimes we use a lowercase //sys name and |
| // wrap it in our own nicer implementation. |
| |
| package unix |
| |
| import ( |
| "encoding/binary" |
| "runtime" |
| "syscall" |
| "unsafe" |
| ) |
| |
| /* |
| * Wrapped |
| */ |
| |
| func Access(path string, mode uint32) (err error) { |
| return Faccessat(AT_FDCWD, path, mode, 0) |
| } |
| |
| func Chmod(path string, mode uint32) (err error) { |
| return Fchmodat(AT_FDCWD, path, mode, 0) |
| } |
| |
| func Chown(path string, uid int, gid int) (err error) { |
| return Fchownat(AT_FDCWD, path, uid, gid, 0) |
| } |
| |
| func Creat(path string, mode uint32) (fd int, err error) { |
| return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode) |
| } |
| |
| //sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error) |
| //sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error) |
| |
| func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) { |
| if pathname == "" { |
| return fanotifyMark(fd, flags, mask, dirFd, nil) |
| } |
| p, err := BytePtrFromString(pathname) |
| if err != nil { |
| return err |
| } |
| return fanotifyMark(fd, flags, mask, dirFd, p) |
| } |
| |
| //sys fchmodat(dirfd int, path string, mode uint32) (err error) |
| |
| func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) { |
| // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior |
| // and check the flags. Otherwise the mode would be applied to the symlink |
| // destination which is not what the user expects. |
| if flags&^AT_SYMLINK_NOFOLLOW != 0 { |
| return EINVAL |
| } else if flags&AT_SYMLINK_NOFOLLOW != 0 { |
| return EOPNOTSUPP |
| } |
| return fchmodat(dirfd, path, mode) |
| } |
| |
| //sys ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL |
| //sys ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL |
| |
| // ioctl itself should not be exposed directly, but additional get/set functions |
| // for specific types are permissible. These are defined in ioctl.go and |
| // ioctl_linux.go. |
| // |
| // The third argument to ioctl is often a pointer but sometimes an integer. |
| // Callers should use ioctlPtr when the third argument is a pointer and ioctl |
| // when the third argument is an integer. |
| // |
| // TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr. |
| |
| //sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error) |
| |
| func Link(oldpath string, newpath string) (err error) { |
| return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0) |
| } |
| |
| func Mkdir(path string, mode uint32) (err error) { |
| return Mkdirat(AT_FDCWD, path, mode) |
| } |
| |
| func Mknod(path string, mode uint32, dev int) (err error) { |
| return Mknodat(AT_FDCWD, path, mode, dev) |
| } |
| |
| func Open(path string, mode int, perm uint32) (fd int, err error) { |
| return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm) |
| } |
| |
| //sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) |
| |
| func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) { |
| return openat(dirfd, path, flags|O_LARGEFILE, mode) |
| } |
| |
| //sys openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error) |
| |
| func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) { |
| return openat2(dirfd, path, how, SizeofOpenHow) |
| } |
| |
| //sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error) |
| |
| func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) { |
| if len(fds) == 0 { |
| return ppoll(nil, 0, timeout, sigmask) |
| } |
| return ppoll(&fds[0], len(fds), timeout, sigmask) |
| } |
| |
| //sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error) |
| |
| func Readlink(path string, buf []byte) (n int, err error) { |
| return Readlinkat(AT_FDCWD, path, buf) |
| } |
| |
| func Rename(oldpath string, newpath string) (err error) { |
| return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath) |
| } |
| |
| func Rmdir(path string) error { |
| return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR) |
| } |
| |
| //sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error) |
| |
| func Symlink(oldpath string, newpath string) (err error) { |
| return Symlinkat(oldpath, AT_FDCWD, newpath) |
| } |
| |
| func Unlink(path string) error { |
| return Unlinkat(AT_FDCWD, path, 0) |
| } |
| |
| //sys Unlinkat(dirfd int, path string, flags int) (err error) |
| |
| func Utimes(path string, tv []Timeval) error { |
| if tv == nil { |
| err := utimensat(AT_FDCWD, path, nil, 0) |
| if err != ENOSYS { |
| return err |
| } |
| return utimes(path, nil) |
| } |
| if len(tv) != 2 { |
| return EINVAL |
| } |
| var ts [2]Timespec |
| ts[0] = NsecToTimespec(TimevalToNsec(tv[0])) |
| ts[1] = NsecToTimespec(TimevalToNsec(tv[1])) |
| err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0) |
| if err != ENOSYS { |
| return err |
| } |
| return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) |
| } |
| |
| //sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error) |
| |
| func UtimesNano(path string, ts []Timespec) error { |
| return UtimesNanoAt(AT_FDCWD, path, ts, 0) |
| } |
| |
| func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error { |
| if ts == nil { |
| return utimensat(dirfd, path, nil, flags) |
| } |
| if len(ts) != 2 { |
| return EINVAL |
| } |
| return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags) |
| } |
| |
| func Futimesat(dirfd int, path string, tv []Timeval) error { |
| if tv == nil { |
| return futimesat(dirfd, path, nil) |
| } |
| if len(tv) != 2 { |
| return EINVAL |
| } |
| return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) |
| } |
| |
| func Futimes(fd int, tv []Timeval) (err error) { |
| // Believe it or not, this is the best we can do on Linux |
| // (and is what glibc does). |
| return Utimes("/proc/self/fd/"+itoa(fd), tv) |
| } |
| |
| const ImplementsGetwd = true |
| |
| //sys Getcwd(buf []byte) (n int, err error) |
| |
| func Getwd() (wd string, err error) { |
| var buf [PathMax]byte |
| n, err := Getcwd(buf[0:]) |
| if err != nil { |
| return "", err |
| } |
| // Getcwd returns the number of bytes written to buf, including the NUL. |
| if n < 1 || n > len(buf) || buf[n-1] != 0 { |
| return "", EINVAL |
| } |
| return string(buf[0 : n-1]), nil |
| } |
| |
| func Getgroups() (gids []int, err error) { |
| n, err := getgroups(0, nil) |
| if err != nil { |
| return nil, err |
| } |
| if n == 0 { |
| return nil, nil |
| } |
| |
| // Sanity check group count. Max is 1<<16 on Linux. |
| if n < 0 || n > 1<<20 { |
| return nil, EINVAL |
| } |
| |
| a := make([]_Gid_t, n) |
| n, err = getgroups(n, &a[0]) |
| if err != nil { |
| return nil, err |
| } |
| gids = make([]int, n) |
| for i, v := range a[0:n] { |
| gids[i] = int(v) |
| } |
| return |
| } |
| |
| func Setgroups(gids []int) (err error) { |
| if len(gids) == 0 { |
| return setgroups(0, nil) |
| } |
| |
| a := make([]_Gid_t, len(gids)) |
| for i, v := range gids { |
| a[i] = _Gid_t(v) |
| } |
| return setgroups(len(a), &a[0]) |
| } |
| |
| type WaitStatus uint32 |
| |
| // Wait status is 7 bits at bottom, either 0 (exited), |
| // 0x7F (stopped), or a signal number that caused an exit. |
| // The 0x80 bit is whether there was a core dump. |
| // An extra number (exit code, signal causing a stop) |
| // is in the high bits. At least that's the idea. |
| // There are various irregularities. For example, the |
| // "continued" status is 0xFFFF, distinguishing itself |
| // from stopped via the core dump bit. |
| |
| const ( |
| mask = 0x7F |
| core = 0x80 |
| exited = 0x00 |
| stopped = 0x7F |
| shift = 8 |
| ) |
| |
| func (w WaitStatus) Exited() bool { return w&mask == exited } |
| |
| func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited } |
| |
| func (w WaitStatus) Stopped() bool { return w&0xFF == stopped } |
| |
| func (w WaitStatus) Continued() bool { return w == 0xFFFF } |
| |
| func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 } |
| |
| func (w WaitStatus) ExitStatus() int { |
| if !w.Exited() { |
| return -1 |
| } |
| return int(w>>shift) & 0xFF |
| } |
| |
| func (w WaitStatus) Signal() syscall.Signal { |
| if !w.Signaled() { |
| return -1 |
| } |
| return syscall.Signal(w & mask) |
| } |
| |
| func (w WaitStatus) StopSignal() syscall.Signal { |
| if !w.Stopped() { |
| return -1 |
| } |
| return syscall.Signal(w>>shift) & 0xFF |
| } |
| |
| func (w WaitStatus) TrapCause() int { |
| if w.StopSignal() != SIGTRAP { |
| return -1 |
| } |
| return int(w>>shift) >> 8 |
| } |
| |
| //sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error) |
| |
| func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) { |
| var status _C_int |
| wpid, err = wait4(pid, &status, options, rusage) |
| if wstatus != nil { |
| *wstatus = WaitStatus(status) |
| } |
| return |
| } |
| |
| func Mkfifo(path string, mode uint32) error { |
| return Mknod(path, mode|S_IFIFO, 0) |
| } |
| |
| func Mkfifoat(dirfd int, path string, mode uint32) error { |
| return Mknodat(dirfd, path, mode|S_IFIFO, 0) |
| } |
| |
| func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Port < 0 || sa.Port > 0xFFFF { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_INET |
| p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) |
| p[0] = byte(sa.Port >> 8) |
| p[1] = byte(sa.Port) |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Addr[i] = sa.Addr[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil |
| } |
| |
| func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Port < 0 || sa.Port > 0xFFFF { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_INET6 |
| p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) |
| p[0] = byte(sa.Port >> 8) |
| p[1] = byte(sa.Port) |
| sa.raw.Scope_id = sa.ZoneId |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Addr[i] = sa.Addr[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil |
| } |
| |
| func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| name := sa.Name |
| n := len(name) |
| if n >= len(sa.raw.Path) { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_UNIX |
| for i := 0; i < n; i++ { |
| sa.raw.Path[i] = int8(name[i]) |
| } |
| // length is family (uint16), name, NUL. |
| sl := _Socklen(2) |
| if n > 0 { |
| sl += _Socklen(n) + 1 |
| } |
| if sa.raw.Path[0] == '@' { |
| sa.raw.Path[0] = 0 |
| // Don't count trailing NUL for abstract address. |
| sl-- |
| } |
| |
| return unsafe.Pointer(&sa.raw), sl, nil |
| } |
| |
| // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets. |
| type SockaddrLinklayer struct { |
| Protocol uint16 |
| Ifindex int |
| Hatype uint16 |
| Pkttype uint8 |
| Halen uint8 |
| Addr [8]byte |
| raw RawSockaddrLinklayer |
| } |
| |
| func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_PACKET |
| sa.raw.Protocol = sa.Protocol |
| sa.raw.Ifindex = int32(sa.Ifindex) |
| sa.raw.Hatype = sa.Hatype |
| sa.raw.Pkttype = sa.Pkttype |
| sa.raw.Halen = sa.Halen |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Addr[i] = sa.Addr[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil |
| } |
| |
| // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets. |
| type SockaddrNetlink struct { |
| Family uint16 |
| Pad uint16 |
| Pid uint32 |
| Groups uint32 |
| raw RawSockaddrNetlink |
| } |
| |
| func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_NETLINK |
| sa.raw.Pad = sa.Pad |
| sa.raw.Pid = sa.Pid |
| sa.raw.Groups = sa.Groups |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil |
| } |
| |
| // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets |
| // using the HCI protocol. |
| type SockaddrHCI struct { |
| Dev uint16 |
| Channel uint16 |
| raw RawSockaddrHCI |
| } |
| |
| func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_BLUETOOTH |
| sa.raw.Dev = sa.Dev |
| sa.raw.Channel = sa.Channel |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil |
| } |
| |
| // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets |
| // using the L2CAP protocol. |
| type SockaddrL2 struct { |
| PSM uint16 |
| CID uint16 |
| Addr [6]uint8 |
| AddrType uint8 |
| raw RawSockaddrL2 |
| } |
| |
| func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_BLUETOOTH |
| psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm)) |
| psm[0] = byte(sa.PSM) |
| psm[1] = byte(sa.PSM >> 8) |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i] |
| } |
| cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid)) |
| cid[0] = byte(sa.CID) |
| cid[1] = byte(sa.CID >> 8) |
| sa.raw.Bdaddr_type = sa.AddrType |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil |
| } |
| |
| // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets |
| // using the RFCOMM protocol. |
| // |
| // Server example: |
| // |
| // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) |
| // _ = unix.Bind(fd, &unix.SockaddrRFCOMM{ |
| // Channel: 1, |
| // Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00 |
| // }) |
| // _ = Listen(fd, 1) |
| // nfd, sa, _ := Accept(fd) |
| // fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd) |
| // Read(nfd, buf) |
| // |
| // Client example: |
| // |
| // fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM) |
| // _ = Connect(fd, &SockaddrRFCOMM{ |
| // Channel: 1, |
| // Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11 |
| // }) |
| // Write(fd, []byte(`hello`)) |
| type SockaddrRFCOMM struct { |
| // Addr represents a bluetooth address, byte ordering is little-endian. |
| Addr [6]uint8 |
| |
| // Channel is a designated bluetooth channel, only 1-30 are available for use. |
| // Since Linux 2.6.7 and further zero value is the first available channel. |
| Channel uint8 |
| |
| raw RawSockaddrRFCOMM |
| } |
| |
| func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_BLUETOOTH |
| sa.raw.Channel = sa.Channel |
| sa.raw.Bdaddr = sa.Addr |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil |
| } |
| |
| // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets. |
| // The RxID and TxID fields are used for transport protocol addressing in |
| // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with |
| // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning. |
| // |
| // The SockaddrCAN struct must be bound to the socket file descriptor |
| // using Bind before the CAN socket can be used. |
| // |
| // // Read one raw CAN frame |
| // fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW) |
| // addr := &SockaddrCAN{Ifindex: index} |
| // Bind(fd, addr) |
| // frame := make([]byte, 16) |
| // Read(fd, frame) |
| // |
| // The full SocketCAN documentation can be found in the linux kernel |
| // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt |
| type SockaddrCAN struct { |
| Ifindex int |
| RxID uint32 |
| TxID uint32 |
| raw RawSockaddrCAN |
| } |
| |
| func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_CAN |
| sa.raw.Ifindex = int32(sa.Ifindex) |
| rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) |
| for i := 0; i < 4; i++ { |
| sa.raw.Addr[i] = rx[i] |
| } |
| tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) |
| for i := 0; i < 4; i++ { |
| sa.raw.Addr[i+4] = tx[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil |
| } |
| |
| // SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939 |
| // protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information |
| // on the purposes of the fields, check the official linux kernel documentation |
| // available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst |
| type SockaddrCANJ1939 struct { |
| Ifindex int |
| Name uint64 |
| PGN uint32 |
| Addr uint8 |
| raw RawSockaddrCAN |
| } |
| |
| func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { |
| return nil, 0, EINVAL |
| } |
| sa.raw.Family = AF_CAN |
| sa.raw.Ifindex = int32(sa.Ifindex) |
| n := (*[8]byte)(unsafe.Pointer(&sa.Name)) |
| for i := 0; i < 8; i++ { |
| sa.raw.Addr[i] = n[i] |
| } |
| p := (*[4]byte)(unsafe.Pointer(&sa.PGN)) |
| for i := 0; i < 4; i++ { |
| sa.raw.Addr[i+8] = p[i] |
| } |
| sa.raw.Addr[12] = sa.Addr |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil |
| } |
| |
| // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets. |
| // SockaddrALG enables userspace access to the Linux kernel's cryptography |
| // subsystem. The Type and Name fields specify which type of hash or cipher |
| // should be used with a given socket. |
| // |
| // To create a file descriptor that provides access to a hash or cipher, both |
| // Bind and Accept must be used. Once the setup process is complete, input |
| // data can be written to the socket, processed by the kernel, and then read |
| // back as hash output or ciphertext. |
| // |
| // Here is an example of using an AF_ALG socket with SHA1 hashing. |
| // The initial socket setup process is as follows: |
| // |
| // // Open a socket to perform SHA1 hashing. |
| // fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0) |
| // addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"} |
| // unix.Bind(fd, addr) |
| // // Note: unix.Accept does not work at this time; must invoke accept() |
| // // manually using unix.Syscall. |
| // hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0) |
| // |
| // Once a file descriptor has been returned from Accept, it may be used to |
| // perform SHA1 hashing. The descriptor is not safe for concurrent use, but |
| // may be re-used repeatedly with subsequent Write and Read operations. |
| // |
| // When hashing a small byte slice or string, a single Write and Read may |
| // be used: |
| // |
| // // Assume hashfd is already configured using the setup process. |
| // hash := os.NewFile(hashfd, "sha1") |
| // // Hash an input string and read the results. Each Write discards |
| // // previous hash state. Read always reads the current state. |
| // b := make([]byte, 20) |
| // for i := 0; i < 2; i++ { |
| // io.WriteString(hash, "Hello, world.") |
| // hash.Read(b) |
| // fmt.Println(hex.EncodeToString(b)) |
| // } |
| // // Output: |
| // // 2ae01472317d1935a84797ec1983ae243fc6aa28 |
| // // 2ae01472317d1935a84797ec1983ae243fc6aa28 |
| // |
| // For hashing larger byte slices, or byte streams such as those read from |
| // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update |
| // the hash digest instead of creating a new one for a given chunk and finalizing it. |
| // |
| // // Assume hashfd and addr are already configured using the setup process. |
| // hash := os.NewFile(hashfd, "sha1") |
| // // Hash the contents of a file. |
| // f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz") |
| // b := make([]byte, 4096) |
| // for { |
| // n, err := f.Read(b) |
| // if err == io.EOF { |
| // break |
| // } |
| // unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr) |
| // } |
| // hash.Read(b) |
| // fmt.Println(hex.EncodeToString(b)) |
| // // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5 |
| // |
| // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html. |
| type SockaddrALG struct { |
| Type string |
| Name string |
| Feature uint32 |
| Mask uint32 |
| raw RawSockaddrALG |
| } |
| |
| func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| // Leave room for NUL byte terminator. |
| if len(sa.Type) > 13 { |
| return nil, 0, EINVAL |
| } |
| if len(sa.Name) > 63 { |
| return nil, 0, EINVAL |
| } |
| |
| sa.raw.Family = AF_ALG |
| sa.raw.Feat = sa.Feature |
| sa.raw.Mask = sa.Mask |
| |
| typ, err := ByteSliceFromString(sa.Type) |
| if err != nil { |
| return nil, 0, err |
| } |
| name, err := ByteSliceFromString(sa.Name) |
| if err != nil { |
| return nil, 0, err |
| } |
| |
| copy(sa.raw.Type[:], typ) |
| copy(sa.raw.Name[:], name) |
| |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil |
| } |
| |
| // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets. |
| // SockaddrVM provides access to Linux VM sockets: a mechanism that enables |
| // bidirectional communication between a hypervisor and its guest virtual |
| // machines. |
| type SockaddrVM struct { |
| // CID and Port specify a context ID and port address for a VM socket. |
| // Guests have a unique CID, and hosts may have a well-known CID of: |
| // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process. |
| // - VMADDR_CID_LOCAL: refers to local communication (loopback). |
| // - VMADDR_CID_HOST: refers to other processes on the host. |
| CID uint32 |
| Port uint32 |
| Flags uint8 |
| raw RawSockaddrVM |
| } |
| |
| func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_VSOCK |
| sa.raw.Port = sa.Port |
| sa.raw.Cid = sa.CID |
| sa.raw.Flags = sa.Flags |
| |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil |
| } |
| |
| type SockaddrXDP struct { |
| Flags uint16 |
| Ifindex uint32 |
| QueueID uint32 |
| SharedUmemFD uint32 |
| raw RawSockaddrXDP |
| } |
| |
| func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_XDP |
| sa.raw.Flags = sa.Flags |
| sa.raw.Ifindex = sa.Ifindex |
| sa.raw.Queue_id = sa.QueueID |
| sa.raw.Shared_umem_fd = sa.SharedUmemFD |
| |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil |
| } |
| |
| // This constant mirrors the #define of PX_PROTO_OE in |
| // linux/if_pppox.h. We're defining this by hand here instead of |
| // autogenerating through mkerrors.sh because including |
| // linux/if_pppox.h causes some declaration conflicts with other |
| // includes (linux/if_pppox.h includes linux/in.h, which conflicts |
| // with netinet/in.h). Given that we only need a single zero constant |
| // out of that file, it's cleaner to just define it by hand here. |
| const px_proto_oe = 0 |
| |
| type SockaddrPPPoE struct { |
| SID uint16 |
| Remote []byte |
| Dev string |
| raw RawSockaddrPPPoX |
| } |
| |
| func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if len(sa.Remote) != 6 { |
| return nil, 0, EINVAL |
| } |
| if len(sa.Dev) > IFNAMSIZ-1 { |
| return nil, 0, EINVAL |
| } |
| |
| *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX |
| // This next field is in host-endian byte order. We can't use the |
| // same unsafe pointer cast as above, because this value is not |
| // 32-bit aligned and some architectures don't allow unaligned |
| // access. |
| // |
| // However, the value of px_proto_oe is 0, so we can use |
| // encoding/binary helpers to write the bytes without worrying |
| // about the ordering. |
| binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe) |
| // This field is deliberately big-endian, unlike the previous |
| // one. The kernel expects SID to be in network byte order. |
| binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID) |
| copy(sa.raw[8:14], sa.Remote) |
| for i := 14; i < 14+IFNAMSIZ; i++ { |
| sa.raw[i] = 0 |
| } |
| copy(sa.raw[14:], sa.Dev) |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil |
| } |
| |
| // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets. |
| // For more information on TIPC, see: http://tipc.sourceforge.net/. |
| type SockaddrTIPC struct { |
| // Scope is the publication scopes when binding service/service range. |
| // Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE. |
| Scope int |
| |
| // Addr is the type of address used to manipulate a socket. Addr must be |
| // one of: |
| // - *TIPCSocketAddr: "id" variant in the C addr union |
| // - *TIPCServiceRange: "nameseq" variant in the C addr union |
| // - *TIPCServiceName: "name" variant in the C addr union |
| // |
| // If nil, EINVAL will be returned when the structure is used. |
| Addr TIPCAddr |
| |
| raw RawSockaddrTIPC |
| } |
| |
| // TIPCAddr is implemented by types that can be used as an address for |
| // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange, |
| // and *TIPCServiceName. |
| type TIPCAddr interface { |
| tipcAddrtype() uint8 |
| tipcAddr() [12]byte |
| } |
| |
| func (sa *TIPCSocketAddr) tipcAddr() [12]byte { |
| var out [12]byte |
| copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:]) |
| return out |
| } |
| |
| func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR } |
| |
| func (sa *TIPCServiceRange) tipcAddr() [12]byte { |
| var out [12]byte |
| copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:]) |
| return out |
| } |
| |
| func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE } |
| |
| func (sa *TIPCServiceName) tipcAddr() [12]byte { |
| var out [12]byte |
| copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:]) |
| return out |
| } |
| |
| func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR } |
| |
| func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| if sa.Addr == nil { |
| return nil, 0, EINVAL |
| } |
| |
| sa.raw.Family = AF_TIPC |
| sa.raw.Scope = int8(sa.Scope) |
| sa.raw.Addrtype = sa.Addr.tipcAddrtype() |
| sa.raw.Addr = sa.Addr.tipcAddr() |
| |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil |
| } |
| |
| // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets. |
| type SockaddrL2TPIP struct { |
| Addr [4]byte |
| ConnId uint32 |
| raw RawSockaddrL2TPIP |
| } |
| |
| func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_INET |
| sa.raw.Conn_id = sa.ConnId |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Addr[i] = sa.Addr[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil |
| } |
| |
| // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets. |
| type SockaddrL2TPIP6 struct { |
| Addr [16]byte |
| ZoneId uint32 |
| ConnId uint32 |
| raw RawSockaddrL2TPIP6 |
| } |
| |
| func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_INET6 |
| sa.raw.Conn_id = sa.ConnId |
| sa.raw.Scope_id = sa.ZoneId |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.raw.Addr[i] = sa.Addr[i] |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil |
| } |
| |
| // SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets. |
| type SockaddrIUCV struct { |
| UserID string |
| Name string |
| raw RawSockaddrIUCV |
| } |
| |
| func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Family = AF_IUCV |
| // These are EBCDIC encoded by the kernel, but we still need to pad them |
| // with blanks. Initializing with blanks allows the caller to feed in either |
| // a padded or an unpadded string. |
| for i := 0; i < 8; i++ { |
| sa.raw.Nodeid[i] = ' ' |
| sa.raw.User_id[i] = ' ' |
| sa.raw.Name[i] = ' ' |
| } |
| if len(sa.UserID) > 8 || len(sa.Name) > 8 { |
| return nil, 0, EINVAL |
| } |
| for i, b := range []byte(sa.UserID[:]) { |
| sa.raw.User_id[i] = int8(b) |
| } |
| for i, b := range []byte(sa.Name[:]) { |
| sa.raw.Name[i] = int8(b) |
| } |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil |
| } |
| |
| type SockaddrNFC struct { |
| DeviceIdx uint32 |
| TargetIdx uint32 |
| NFCProtocol uint32 |
| raw RawSockaddrNFC |
| } |
| |
| func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Sa_family = AF_NFC |
| sa.raw.Dev_idx = sa.DeviceIdx |
| sa.raw.Target_idx = sa.TargetIdx |
| sa.raw.Nfc_protocol = sa.NFCProtocol |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil |
| } |
| |
| type SockaddrNFCLLCP struct { |
| DeviceIdx uint32 |
| TargetIdx uint32 |
| NFCProtocol uint32 |
| DestinationSAP uint8 |
| SourceSAP uint8 |
| ServiceName string |
| raw RawSockaddrNFCLLCP |
| } |
| |
| func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) { |
| sa.raw.Sa_family = AF_NFC |
| sa.raw.Dev_idx = sa.DeviceIdx |
| sa.raw.Target_idx = sa.TargetIdx |
| sa.raw.Nfc_protocol = sa.NFCProtocol |
| sa.raw.Dsap = sa.DestinationSAP |
| sa.raw.Ssap = sa.SourceSAP |
| if len(sa.ServiceName) > len(sa.raw.Service_name) { |
| return nil, 0, EINVAL |
| } |
| copy(sa.raw.Service_name[:], sa.ServiceName) |
| sa.raw.SetServiceNameLen(len(sa.ServiceName)) |
| return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil |
| } |
| |
| var socketProtocol = func(fd int) (int, error) { |
| return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL) |
| } |
| |
| func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) { |
| switch rsa.Addr.Family { |
| case AF_NETLINK: |
| pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrNetlink) |
| sa.Family = pp.Family |
| sa.Pad = pp.Pad |
| sa.Pid = pp.Pid |
| sa.Groups = pp.Groups |
| return sa, nil |
| |
| case AF_PACKET: |
| pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrLinklayer) |
| sa.Protocol = pp.Protocol |
| sa.Ifindex = int(pp.Ifindex) |
| sa.Hatype = pp.Hatype |
| sa.Pkttype = pp.Pkttype |
| sa.Halen = pp.Halen |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.Addr[i] = pp.Addr[i] |
| } |
| return sa, nil |
| |
| case AF_UNIX: |
| pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrUnix) |
| if pp.Path[0] == 0 { |
| // "Abstract" Unix domain socket. |
| // Rewrite leading NUL as @ for textual display. |
| // (This is the standard convention.) |
| // Not friendly to overwrite in place, |
| // but the callers below don't care. |
| pp.Path[0] = '@' |
| } |
| |
| // Assume path ends at NUL. |
| // This is not technically the Linux semantics for |
| // abstract Unix domain sockets--they are supposed |
| // to be uninterpreted fixed-size binary blobs--but |
| // everyone uses this convention. |
| n := 0 |
| for n < len(pp.Path) && pp.Path[n] != 0 { |
| n++ |
| } |
| bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n] |
| sa.Name = string(bytes) |
| return sa, nil |
| |
| case AF_INET: |
| proto, err := socketProtocol(fd) |
| if err != nil { |
| return nil, err |
| } |
| |
| switch proto { |
| case IPPROTO_L2TP: |
| pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrL2TPIP) |
| sa.ConnId = pp.Conn_id |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.Addr[i] = pp.Addr[i] |
| } |
| return sa, nil |
| default: |
| pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrInet4) |
| p := (*[2]byte)(unsafe.Pointer(&pp.Port)) |
| sa.Port = int(p[0])<<8 + int(p[1]) |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.Addr[i] = pp.Addr[i] |
| } |
| return sa, nil |
| } |
| |
| case AF_INET6: |
| proto, err := socketProtocol(fd) |
| if err != nil { |
| return nil, err |
| } |
| |
| switch proto { |
| case IPPROTO_L2TP: |
| pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrL2TPIP6) |
| sa.ConnId = pp.Conn_id |
| sa.ZoneId = pp.Scope_id |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.Addr[i] = pp.Addr[i] |
| } |
| return sa, nil |
| default: |
| pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa)) |
| sa := new(SockaddrInet6) |
| p := (*[2]byte)(unsafe.Pointer(&pp.Port)) |
| sa.Port = int(p[0])<<8 + int(p[1]) |
| sa.ZoneId = pp.Scope_id |
| for i := 0; i < len(sa.Addr); i++ { |
| sa.Addr[i] = pp.Addr[i] |
| } |
| return sa, nil |
| } |
| |
| case AF_VSOCK: |
| pp := (*RawSockaddrVM)(unsafe.Pointer(rsa)) |
| sa := &SockaddrVM{ |
| CID: pp.Cid, |
| Port: pp.Port, |
| Flags: pp.Flags, |
| } |
| return sa, nil |
| case AF_BLUETOOTH: |
| proto, err := socketProtocol(fd) |
| if err != nil { |
| return nil, err |
| } |
| // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections |
| switch proto { |
| case BTPROTO_L2CAP: |
| pp := (*RawSockaddrL2)(unsafe.Pointer(rsa)) |
| sa := &SockaddrL2{ |
| PSM: pp.Psm, |
| CID: pp.Cid, |
| Addr: pp.Bdaddr, |
| AddrType: pp.Bdaddr_type, |
| } |
| return sa, nil |
| case BTPROTO_RFCOMM: |
| pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa)) |
| sa := &SockaddrRFCOMM{ |
| Channel: pp.Channel, |
| Addr: pp.Bdaddr, |
| } |
| return sa, nil |
| } |
| case AF_XDP: |
| pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa)) |
| sa := &SockaddrXDP{ |
| Flags: pp.Flags, |
| Ifindex: pp.Ifindex, |
| QueueID: pp.Queue_id, |
| SharedUmemFD: pp.Shared_umem_fd, |
| } |
| return sa, nil |
| case AF_PPPOX: |
| pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa)) |
| if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe { |
| return nil, EINVAL |
| } |
| sa := &SockaddrPPPoE{ |
| SID: binary.BigEndian.Uint16(pp[6:8]), |
| Remote: pp[8:14], |
| } |
| for i := 14; i < 14+IFNAMSIZ; i++ { |
| if pp[i] == 0 { |
| sa.Dev = string(pp[14:i]) |
| break |
| } |
| } |
| return sa, nil |
| case AF_TIPC: |
| pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa)) |
| |
| sa := &SockaddrTIPC{ |
| Scope: int(pp.Scope), |
| } |
| |
| // Determine which union variant is present in pp.Addr by checking |
| // pp.Addrtype. |
| switch pp.Addrtype { |
| case TIPC_SERVICE_RANGE: |
| sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr)) |
| case TIPC_SERVICE_ADDR: |
| sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr)) |
| case TIPC_SOCKET_ADDR: |
| sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr)) |
| default: |
| return nil, EINVAL |
| } |
| |
| return sa, nil |
| case AF_IUCV: |
| pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa)) |
| |
| var user [8]byte |
| var name [8]byte |
| |
| for i := 0; i < 8; i++ { |
| user[i] = byte(pp.User_id[i]) |
| name[i] = byte(pp.Name[i]) |
| } |
| |
| sa := &SockaddrIUCV{ |
| UserID: string(user[:]), |
| Name: string(name[:]), |
| } |
| return sa, nil |
| |
| case AF_CAN: |
| proto, err := socketProtocol(fd) |
| if err != nil { |
| return nil, err |
| } |
| |
| pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa)) |
| |
| switch proto { |
| case CAN_J1939: |
| sa := &SockaddrCANJ1939{ |
| Ifindex: int(pp.Ifindex), |
| } |
| name := (*[8]byte)(unsafe.Pointer(&sa.Name)) |
| for i := 0; i < 8; i++ { |
| name[i] = pp.Addr[i] |
| } |
| pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN)) |
| for i := 0; i < 4; i++ { |
| pgn[i] = pp.Addr[i+8] |
| } |
| addr := (*[1]byte)(unsafe.Pointer(&sa.Addr)) |
| addr[0] = pp.Addr[12] |
| return sa, nil |
| default: |
| sa := &SockaddrCAN{ |
| Ifindex: int(pp.Ifindex), |
| } |
| rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) |
| for i := 0; i < 4; i++ { |
| rx[i] = pp.Addr[i] |
| } |
| tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) |
| for i := 0; i < 4; i++ { |
| tx[i] = pp.Addr[i+4] |
| } |
| return sa, nil |
| } |
| case AF_NFC: |
| proto, err := socketProtocol(fd) |
| if err != nil { |
| return nil, err |
| } |
| switch proto { |
| case NFC_SOCKPROTO_RAW: |
| pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa)) |
| sa := &SockaddrNFC{ |
| DeviceIdx: pp.Dev_idx, |
| TargetIdx: pp.Target_idx, |
| NFCProtocol: pp.Nfc_protocol, |
| } |
| return sa, nil |
| case NFC_SOCKPROTO_LLCP: |
| pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa)) |
| if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) { |
| return nil, EINVAL |
| } |
| sa := &SockaddrNFCLLCP{ |
| DeviceIdx: pp.Dev_idx, |
| TargetIdx: pp.Target_idx, |
| NFCProtocol: pp.Nfc_protocol, |
| DestinationSAP: pp.Dsap, |
| SourceSAP: pp.Ssap, |
| ServiceName: string(pp.Service_name[:pp.Service_name_len]), |
| } |
| return sa, nil |
| default: |
| return nil, EINVAL |
| } |
| } |
| return nil, EAFNOSUPPORT |
| } |
| |
| func Accept(fd int) (nfd int, sa Sockaddr, err error) { |
| var rsa RawSockaddrAny |
| var len _Socklen = SizeofSockaddrAny |
| // Try accept4 first for Android, then try accept for kernel older than 2.6.28 |
| nfd, err = accept4(fd, &rsa, &len, 0) |
| if err == ENOSYS { |
| nfd, err = accept(fd, &rsa, &len) |
| } |
| if err != nil { |
| return |
| } |
| sa, err = anyToSockaddr(fd, &rsa) |
| if err != nil { |
| Close(nfd) |
| nfd = 0 |
| } |
| return |
| } |
| |
| func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) { |
| var rsa RawSockaddrAny |
| var len _Socklen = SizeofSockaddrAny |
| nfd, err = accept4(fd, &rsa, &len, flags) |
| if err != nil { |
| return |
| } |
| if len > SizeofSockaddrAny { |
| panic("RawSockaddrAny too small") |
| } |
| sa, err = anyToSockaddr(fd, &rsa) |
| if err != nil { |
| Close(nfd) |
| nfd = 0 |
| } |
| return |
| } |
| |
| func Getsockname(fd int) (sa Sockaddr, err error) { |
| var rsa RawSockaddrAny |
| var len _Socklen = SizeofSockaddrAny |
| if err = getsockname(fd, &rsa, &len); err != nil { |
| return |
| } |
| return anyToSockaddr(fd, &rsa) |
| } |
| |
| func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) { |
| var value IPMreqn |
| vallen := _Socklen(SizeofIPMreqn) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
| return &value, err |
| } |
| |
| func GetsockoptUcred(fd, level, opt int) (*Ucred, error) { |
| var value Ucred |
| vallen := _Socklen(SizeofUcred) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
| return &value, err |
| } |
| |
| func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) { |
| var value TCPInfo |
| vallen := _Socklen(SizeofTCPInfo) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
| return &value, err |
| } |
| |
| // GetsockoptString returns the string value of the socket option opt for the |
| // socket associated with fd at the given socket level. |
| func GetsockoptString(fd, level, opt int) (string, error) { |
| buf := make([]byte, 256) |
| vallen := _Socklen(len(buf)) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) |
| if err != nil { |
| if err == ERANGE { |
| buf = make([]byte, vallen) |
| err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) |
| } |
| if err != nil { |
| return "", err |
| } |
| } |
| return string(buf[:vallen-1]), nil |
| } |
| |
| func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) { |
| var value TpacketStats |
| vallen := _Socklen(SizeofTpacketStats) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
| return &value, err |
| } |
| |
| func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) { |
| var value TpacketStatsV3 |
| vallen := _Socklen(SizeofTpacketStatsV3) |
| err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) |
| return &value, err |
| } |
| |
| func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) { |
| return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) |
| } |
| |
| func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error { |
| return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) |
| } |
| |
| // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a |
| // socket to filter incoming packets. See 'man 7 socket' for usage information. |
| func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error { |
| return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog)) |
| } |
| |
| func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error { |
| var p unsafe.Pointer |
| if len(filter) > 0 { |
| p = unsafe.Pointer(&filter[0]) |
| } |
| return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter)) |
| } |
| |
| func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error { |
| return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) |
| } |
| |
| func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error { |
| return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp)) |
| } |
| |
| func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) { |
| if len(o) == 0 { |
| return EINVAL |
| } |
| return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o))) |
| } |
| |
| // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html) |
| |
| // KeyctlInt calls keyctl commands in which each argument is an int. |
| // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK, |
| // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT, |
| // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT, |
| // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT. |
| //sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL |
| |
| // KeyctlBuffer calls keyctl commands in which the third and fourth |
| // arguments are a buffer and its length, respectively. |
| // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE. |
| //sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL |
| |
| // KeyctlString calls keyctl commands which return a string. |
| // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY. |
| func KeyctlString(cmd int, id int) (string, error) { |
| // We must loop as the string data may change in between the syscalls. |
| // We could allocate a large buffer here to reduce the chance that the |
| // syscall needs to be called twice; however, this is unnecessary as |
| // the performance loss is negligible. |
| var buffer []byte |
| for { |
| // Try to fill the buffer with data |
| length, err := KeyctlBuffer(cmd, id, buffer, 0) |
| if err != nil { |
| return "", err |
| } |
| |
| // Check if the data was written |
| if length <= len(buffer) { |
| // Exclude the null terminator |
| return string(buffer[:length-1]), nil |
| } |
| |
| // Make a bigger buffer if needed |
| buffer = make([]byte, length) |
| } |
| } |
| |
| // Keyctl commands with special signatures. |
| |
| // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html |
| func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) { |
| createInt := 0 |
| if create { |
| createInt = 1 |
| } |
| return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0) |
| } |
| |
| // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the |
| // key handle permission mask as described in the "keyctl setperm" section of |
| // http://man7.org/linux/man-pages/man1/keyctl.1.html. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html |
| func KeyctlSetperm(id int, perm uint32) error { |
| _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0) |
| return err |
| } |
| |
| //sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL |
| |
| // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html |
| func KeyctlJoinSessionKeyring(name string) (ringid int, err error) { |
| return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name) |
| } |
| |
| //sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL |
| |
| // KeyctlSearch implements the KEYCTL_SEARCH command. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_search.3.html |
| func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) { |
| return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid) |
| } |
| |
| //sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL |
| |
| // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This |
| // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice |
| // of Iovec (each of which represents a buffer) instead of a single buffer. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html |
| func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error { |
| return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid) |
| } |
| |
| //sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL |
| |
| // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command |
| // computes a Diffie-Hellman shared secret based on the provide params. The |
| // secret is written to the provided buffer and the returned size is the number |
| // of bytes written (returning an error if there is insufficient space in the |
| // buffer). If a nil buffer is passed in, this function returns the minimum |
| // buffer length needed to store the appropriate data. Note that this differs |
| // from KEYCTL_READ's behavior which always returns the requested payload size. |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html |
| func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) { |
| return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer) |
| } |
| |
| // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This |
| // command limits the set of keys that can be linked to the keyring, regardless |
| // of keyring permissions. The command requires the "setattr" permission. |
| // |
| // When called with an empty keyType the command locks the keyring, preventing |
| // any further keys from being linked to the keyring. |
| // |
| // The "asymmetric" keyType defines restrictions requiring key payloads to be |
| // DER encoded X.509 certificates signed by keys in another keyring. Restrictions |
| // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted", |
| // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain". |
| // |
| // As of Linux 4.12, only the "asymmetric" keyType defines type-specific |
| // restrictions. |
| // |
| // See the full documentation at: |
| // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html |
| // http://man7.org/linux/man-pages/man2/keyctl.2.html |
| func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error { |
| if keyType == "" { |
| return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid) |
| } |
| return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction) |
| } |
| |
| //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL |
| //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL |
| |
| func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) { |
| var msg Msghdr |
| var rsa RawSockaddrAny |
| msg.Name = (*byte)(unsafe.Pointer(&rsa)) |
| msg.Namelen = uint32(SizeofSockaddrAny) |
| var iov Iovec |
| if len(p) > 0 { |
| iov.Base = &p[0] |
| iov.SetLen(len(p)) |
| } |
| var dummy byte |
| if len(oob) > 0 { |
| if len(p) == 0 { |
| var sockType int |
| sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) |
| if err != nil { |
| return |
| } |
| // receive at least one normal byte |
| if sockType != SOCK_DGRAM { |
| iov.Base = &dummy |
| iov.SetLen(1) |
| } |
| } |
| msg.Control = &oob[0] |
| msg.SetControllen(len(oob)) |
| } |
| msg.Iov = &iov |
| msg.Iovlen = 1 |
| if n, err = recvmsg(fd, &msg, flags); err != nil { |
| return |
| } |
| oobn = int(msg.Controllen) |
| recvflags = int(msg.Flags) |
| // source address is only specified if the socket is unconnected |
| if rsa.Addr.Family != AF_UNSPEC { |
| from, err = anyToSockaddr(fd, &rsa) |
| } |
| return |
| } |
| |
| func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) { |
| _, err = SendmsgN(fd, p, oob, to, flags) |
| return |
| } |
| |
| func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) { |
| var ptr unsafe.Pointer |
| var salen _Socklen |
| if to != nil { |
| var err error |
| ptr, salen, err = to.sockaddr() |
| if err != nil { |
| return 0, err |
| } |
| } |
| var msg Msghdr |
| msg.Name = (*byte)(ptr) |
| msg.Namelen = uint32(salen) |
| var iov Iovec |
| if len(p) > 0 { |
| iov.Base = &p[0] |
| iov.SetLen(len(p)) |
| } |
| var dummy byte |
| if len(oob) > 0 { |
| if len(p) == 0 { |
| var sockType int |
| sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) |
| if err != nil { |
| return 0, err |
| } |
| // send at least one normal byte |
| if sockType != SOCK_DGRAM { |
| iov.Base = &dummy |
| iov.SetLen(1) |
| } |
| } |
| msg.Control = &oob[0] |
| msg.SetControllen(len(oob)) |
| } |
| msg.Iov = &iov |
| msg.Iovlen = 1 |
| if n, err = sendmsg(fd, &msg, flags); err != nil { |
| return 0, err |
| } |
| if len(oob) > 0 && len(p) == 0 { |
| n = 0 |
| } |
| return n, nil |
| } |
| |
| // BindToDevice binds the socket associated with fd to device. |
| func BindToDevice(fd int, device string) (err error) { |
| return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device) |
| } |
| |
| //sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error) |
| |
| func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) { |
| // The peek requests are machine-size oriented, so we wrap it |
| // to retrieve arbitrary-length data. |
| |
| // The ptrace syscall differs from glibc's ptrace. |
| // Peeks returns the word in *data, not as the return value. |
| |
| var buf [SizeofPtr]byte |
| |
| // Leading edge. PEEKTEXT/PEEKDATA don't require aligned |
| // access (PEEKUSER warns that it might), but if we don't |
| // align our reads, we might straddle an unmapped page |
| // boundary and not get the bytes leading up to the page |
| // boundary. |
| n := 0 |
| if addr%SizeofPtr != 0 { |
| err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) |
| if err != nil { |
| return 0, err |
| } |
| n += copy(out, buf[addr%SizeofPtr:]) |
| out = out[n:] |
| } |
| |
| // Remainder. |
| for len(out) > 0 { |
| // We use an internal buffer to guarantee alignment. |
| // It's not documented if this is necessary, but we're paranoid. |
| err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) |
| if err != nil { |
| return n, err |
| } |
| copied := copy(out, buf[0:]) |
| n += copied |
| out = out[copied:] |
| } |
| |
| return n, nil |
| } |
| |
| func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) { |
| return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out) |
| } |
| |
| func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) { |
| return ptracePeek(PTRACE_PEEKDATA, pid, addr, out) |
| } |
| |
| func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) { |
| return ptracePeek(PTRACE_PEEKUSR, pid, addr, out) |
| } |
| |
| func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) { |
| // As for ptracePeek, we need to align our accesses to deal |
| // with the possibility of straddling an invalid page. |
| |
| // Leading edge. |
| n := 0 |
| if addr%SizeofPtr != 0 { |
| var buf [SizeofPtr]byte |
| err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) |
| if err != nil { |
| return 0, err |
| } |
| n += copy(buf[addr%SizeofPtr:], data) |
| word := *((*uintptr)(unsafe.Pointer(&buf[0]))) |
| err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word) |
| if err != nil { |
| return 0, err |
| } |
| data = data[n:] |
| } |
| |
| // Interior. |
| for len(data) > SizeofPtr { |
| word := *((*uintptr)(unsafe.Pointer(&data[0]))) |
| err = ptrace(pokeReq, pid, addr+uintptr(n), word) |
| if err != nil { |
| return n, err |
| } |
| n += SizeofPtr |
| data = data[SizeofPtr:] |
| } |
| |
| // Trailing edge. |
| if len(data) > 0 { |
| var buf [SizeofPtr]byte |
| err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) |
| if err != nil { |
| return n, err |
| } |
| copy(buf[0:], data) |
| word := *((*uintptr)(unsafe.Pointer(&buf[0]))) |
| err = ptrace(pokeReq, pid, addr+uintptr(n), word) |
| if err != nil { |
| return n, err |
| } |
| n += len(data) |
| } |
| |
| return n, nil |
| } |
| |
| func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) { |
| return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data) |
| } |
| |
| func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) { |
| return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data) |
| } |
| |
| func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) { |
| return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data) |
| } |
| |
| func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) { |
| return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout))) |
| } |
| |
| func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) { |
| return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs))) |
| } |
| |
| func PtraceSetOptions(pid int, options int) (err error) { |
| return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options)) |
| } |
| |
| func PtraceGetEventMsg(pid int) (msg uint, err error) { |
| var data _C_long |
| err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data))) |
| msg = uint(data) |
| return |
| } |
| |
| func PtraceCont(pid int, signal int) (err error) { |
| return ptrace(PTRACE_CONT, pid, 0, uintptr(signal)) |
| } |
| |
| func PtraceSyscall(pid int, signal int) (err error) { |
| return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal)) |
| } |
| |
| func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) } |
| |
| func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) } |
| |
| func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) } |
| |
| func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) } |
| |
| func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) } |
| |
| //sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error) |
| |
| func Reboot(cmd int) (err error) { |
| return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "") |
| } |
| |
| func direntIno(buf []byte) (uint64, bool) { |
| return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino)) |
| } |
| |
| func direntReclen(buf []byte) (uint64, bool) { |
| return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen)) |
| } |
| |
| func direntNamlen(buf []byte) (uint64, bool) { |
| reclen, ok := direntReclen(buf) |
| if !ok { |
| return 0, false |
| } |
| return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true |
| } |
| |
| //sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error) |
| |
| func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) { |
| // Certain file systems get rather angry and EINVAL if you give |
| // them an empty string of data, rather than NULL. |
| if data == "" { |
| return mount(source, target, fstype, flags, nil) |
| } |
| datap, err := BytePtrFromString(data) |
| if err != nil { |
| return err |
| } |
| return mount(source, target, fstype, flags, datap) |
| } |
| |
| func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) { |
| if raceenabled { |
| raceReleaseMerge(unsafe.Pointer(&ioSync)) |
| } |
| return sendfile(outfd, infd, offset, count) |
| } |
| |
| // Sendto |
| // Recvfrom |
| // Socketpair |
| |
| /* |
| * Direct access |
| */ |
| //sys Acct(path string) (err error) |
| //sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error) |
| //sys Adjtimex(buf *Timex) (state int, err error) |
| //sysnb Capget(hdr *CapUserHeader, data *CapUserData) (err error) |
| //sysnb Capset(hdr *CapUserHeader, data *CapUserData) (err error) |
| //sys Chdir(path string) (err error) |
| //sys Chroot(path string) (err error) |
| //sys ClockGetres(clockid int32, res *Timespec) (err error) |
| //sys ClockGettime(clockid int32, time *Timespec) (err error) |
| //sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error) |
| //sys Close(fd int) (err error) |
| //sys CloseRange(first uint, last uint, flags uint) (err error) |
| //sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error) |
| //sys DeleteModule(name string, flags int) (err error) |
| //sys Dup(oldfd int) (fd int, err error) |
| |
| func Dup2(oldfd, newfd int) error { |
| // Android O and newer blocks dup2; riscv and arm64 don't implement dup2. |
| if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" { |
| return Dup3(oldfd, newfd, 0) |
| } |
| return dup2(oldfd, newfd) |
| } |
| |
| //sys Dup3(oldfd int, newfd int, flags int) (err error) |
| //sysnb EpollCreate1(flag int) (fd int, err error) |
| //sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error) |
| //sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2 |
| //sys Exit(code int) = SYS_EXIT_GROUP |
| //sys Fallocate(fd int, mode uint32, off int64, len int64) (err error) |
| //sys Fchdir(fd int) (err error) |
| //sys Fchmod(fd int, mode uint32) (err error) |
| //sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error) |
| //sys Fdatasync(fd int) (err error) |
| //sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error) |
| //sys FinitModule(fd int, params string, flags int) (err error) |
| //sys Flistxattr(fd int, dest []byte) (sz int, err error) |
| //sys Flock(fd int, how int) (err error) |
| //sys Fremovexattr(fd int, attr string) (err error) |
| //sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error) |
| //sys Fsync(fd int) (err error) |
| //sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64 |
| //sysnb Getpgid(pid int) (pgid int, err error) |
| |
| func Getpgrp() (pid int) { |
| pid, _ = Getpgid(0) |
| return |
| } |
| |
| //sysnb Getpid() (pid int) |
| //sysnb Getppid() (ppid int) |
| //sys Getpriority(which int, who int) (prio int, err error) |
| //sys Getrandom(buf []byte, flags int) (n int, err error) |
| //sysnb Getrusage(who int, rusage *Rusage) (err error) |
| //sysnb Getsid(pid int) (sid int, err error) |
| //sysnb Gettid() (tid int) |
| //sys Getxattr(path string, attr string, dest []byte) (sz int, err error) |
| //sys InitModule(moduleImage []byte, params string) (err error) |
| //sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error) |
| //sysnb InotifyInit1(flags int) (fd int, err error) |
| //sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error) |
| //sysnb Kill(pid int, sig syscall.Signal) (err error) |
| //sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG |
| //sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error) |
| //sys Listxattr(path string, dest []byte) (sz int, err error) |
| //sys Llistxattr(path string, dest []byte) (sz int, err error) |
| //sys Lremovexattr(path string, attr string) (err error) |
| //sys Lsetxattr(path string, attr string, data []byte, flags int) (err error) |
| //sys MemfdCreate(name string, flags int) (fd int, err error) |
| //sys Mkdirat(dirfd int, path string, mode uint32) (err error) |
| //sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error) |
| //sys Nanosleep(time *Timespec, leftover *Timespec) (err error) |
| //sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error) |
| //sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT |
| //sysnb Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64 |
| //sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error) |
| //sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6 |
| //sys read(fd int, p []byte) (n int, err error) |
| //sys Removexattr(path string, attr string) (err error) |
| //sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error) |
| //sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error) |
| //sys Setdomainname(p []byte) (err error) |
| //sys Sethostname(p []byte) (err error) |
| //sysnb Setpgid(pid int, pgid int) (err error) |
| //sysnb Setsid() (pid int, err error) |
| //sysnb Settimeofday(tv *Timeval) (err error) |
| //sys Setns(fd int, nstype int) (err error) |
| |
| // PrctlRetInt performs a prctl operation specified by option and further |
| // optional arguments arg2 through arg5 depending on option. It returns a |
| // non-negative integer that is returned by the prctl syscall. |
| func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) { |
| ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0) |
| if err != 0 { |
| return 0, err |
| } |
| return int(ret), nil |
| } |
| |
| // issue 1435. |
| // On linux Setuid and Setgid only affects the current thread, not the process. |
| // This does not match what most callers expect so we must return an error |
| // here rather than letting the caller think that the call succeeded. |
| |
| func Setuid(uid int) (err error) { |
| return EOPNOTSUPP |
| } |
| |
| func Setgid(uid int) (err error) { |
| return EOPNOTSUPP |
| } |
| |
| // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set. |
| // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability. |
| // If the call fails due to other reasons, current fsgid will be returned. |
| func SetfsgidRetGid(gid int) (int, error) { |
| return setfsgid(gid) |
| } |
| |
| // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set. |
| // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability |
| // If the call fails due to other reasons, current fsuid will be returned. |
| func SetfsuidRetUid(uid int) (int, error) { |
| return setfsuid(uid) |
| } |
| |
| func Setfsgid(gid int) error { |
| _, err := setfsgid(gid) |
| return err |
| } |
| |
| func Setfsuid(uid int) error { |
| _, err := setfsuid(uid) |
| return err |
| } |
| |
| func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) { |
| return signalfd(fd, sigmask, _C__NSIG/8, flags) |
| } |
| |
| //sys Setpriority(which int, who int, prio int) (err error) |
| //sys Setxattr(path string, attr string, data []byte, flags int) (err error) |
| //sys signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4 |
| //sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error) |
| //sys Sync() |
| //sys Syncfs(fd int) (err error) |
| //sysnb Sysinfo(info *Sysinfo_t) (err error) |
| //sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error) |
| //sysnb TimerfdCreate(clockid int, flags int) (fd int, err error) |
| //sysnb TimerfdGettime(fd int, currValue *ItimerSpec) (err error) |
| //sysnb TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error) |
| //sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error) |
| //sysnb Times(tms *Tms) (ticks uintptr, err error) |
| //sysnb Umask(mask int) (oldmask int) |
| //sysnb Uname(buf *Utsname) (err error) |
| //sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2 |
| //sys Unshare(flags int) (err error) |
| //sys write(fd int, p []byte) (n int, err error) |
| //sys exitThread(code int) (err error) = SYS_EXIT |
| //sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ |
| //sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE |
| //sys readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV |
| //sys writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV |
| //sys preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV |
| //sys pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV |
| //sys preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2 |
| //sys pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2 |
| |
| func bytes2iovec(bs [][]byte) []Iovec { |
| iovecs := make([]Iovec, len(bs)) |
| for i, b := range bs { |
| iovecs[i].SetLen(len(b)) |
| if len(b) > 0 { |
| iovecs[i].Base = &b[0] |
| } else { |
| iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero)) |
| } |
| } |
| return iovecs |
| } |
| |
| // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit |
| // systems, hi will always be 0. On 32-bit systems, offs will be split in half. |
| // preadv/pwritev chose this calling convention so they don't need to add a |
| // padding-register for alignment on ARM. |
| func offs2lohi(offs int64) (lo, hi uintptr) { |
| return uintptr(offs), uintptr(uint64(offs) >> SizeofLong) |
| } |
| |
| func Readv(fd int, iovs [][]byte) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| n, err = readv(fd, iovecs) |
| readvRacedetect(iovecs, n, err) |
| return n, err |
| } |
| |
| func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| lo, hi := offs2lohi(offset) |
| n, err = preadv(fd, iovecs, lo, hi) |
| readvRacedetect(iovecs, n, err) |
| return n, err |
| } |
| |
| func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| lo, hi := offs2lohi(offset) |
| n, err = preadv2(fd, iovecs, lo, hi, flags) |
| readvRacedetect(iovecs, n, err) |
| return n, err |
| } |
| |
| func readvRacedetect(iovecs []Iovec, n int, err error) { |
| if !raceenabled { |
| return |
| } |
| for i := 0; n > 0 && i < len(iovecs); i++ { |
| m := int(iovecs[i].Len) |
| if m > n { |
| m = n |
| } |
| n -= m |
| if m > 0 { |
| raceWriteRange(unsafe.Pointer(iovecs[i].Base), m) |
| } |
| } |
| if err == nil { |
| raceAcquire(unsafe.Pointer(&ioSync)) |
| } |
| } |
| |
| func Writev(fd int, iovs [][]byte) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| if raceenabled { |
| raceReleaseMerge(unsafe.Pointer(&ioSync)) |
| } |
| n, err = writev(fd, iovecs) |
| writevRacedetect(iovecs, n) |
| return n, err |
| } |
| |
| func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| if raceenabled { |
| raceReleaseMerge(unsafe.Pointer(&ioSync)) |
| } |
| lo, hi := offs2lohi(offset) |
| n, err = pwritev(fd, iovecs, lo, hi) |
| writevRacedetect(iovecs, n) |
| return n, err |
| } |
| |
| func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) { |
| iovecs := bytes2iovec(iovs) |
| if raceenabled { |
| raceReleaseMerge(unsafe.Pointer(&ioSync)) |
| } |
| lo, hi := offs2lohi(offset) |
| n, err = pwritev2(fd, iovecs, lo, hi, flags) |
| writevRacedetect(iovecs, n) |
| return n, err |
| } |
| |
| func writevRacedetect(iovecs []Iovec, n int) { |
| if !raceenabled { |
| return |
| } |
| for i := 0; n > 0 && i < len(iovecs); i++ { |
| m := int(iovecs[i].Len) |
| if m > n { |
| m = n |
| } |
| n -= m |
| if m > 0 { |
| raceReadRange(unsafe.Pointer(iovecs[i].Base), m) |
| } |
| } |
| } |
| |
| // mmap varies by architecture; see syscall_linux_*.go. |
| //sys munmap(addr uintptr, length uintptr) (err error) |
| |
| var mapper = &mmapper{ |
| active: make(map[*byte][]byte), |
| mmap: mmap, |
| munmap: munmap, |
| } |
| |
| func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) { |
| return mapper.Mmap(fd, offset, length, prot, flags) |
| } |
| |
| func Munmap(b []byte) (err error) { |
| return mapper.Munmap(b) |
| } |
| |
| //sys Madvise(b []byte, advice int) (err error) |
| //sys Mprotect(b []byte, prot int) (err error) |
| //sys Mlock(b []byte) (err error) |
| //sys Mlockall(flags int) (err error) |
| //sys Msync(b []byte, flags int) (err error) |
| //sys Munlock(b []byte) (err error) |
| //sys Munlockall() (err error) |
| |
| // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd, |
| // using the specified flags. |
| func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) { |
| var p unsafe.Pointer |
| if len(iovs) > 0 { |
| p = unsafe.Pointer(&iovs[0]) |
| } |
| |
| n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0) |
| if errno != 0 { |
| return 0, syscall.Errno(errno) |
| } |
| |
| return int(n), nil |
| } |
| |
| func isGroupMember(gid int) bool { |
| groups, err := Getgroups() |
| if err != nil { |
| return false |
| } |
| |
| for _, g := range groups { |
| if g == gid { |
| return true |
| } |
| } |
| return false |
| } |
| |
| //sys faccessat(dirfd int, path string, mode uint32) (err error) |
| //sys Faccessat2(dirfd int, path string, mode uint32, flags int) (err error) |
| |
| func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) { |
| if flags == 0 { |
| return faccessat(dirfd, path, mode) |
| } |
| |
| if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM { |
| return err |
| } |
| |
| // The Linux kernel faccessat system call does not take any flags. |
| // The glibc faccessat implements the flags itself; see |
| // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD |
| // Because people naturally expect syscall.Faccessat to act |
| // like C faccessat, we do the same. |
| |
| if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 { |
| return EINVAL |
| } |
| |
| var st Stat_t |
| if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil { |
| return err |
| } |
| |
| mode &= 7 |
| if mode == 0 { |
| return nil |
| } |
| |
| var uid int |
| if flags&AT_EACCESS != 0 { |
| uid = Geteuid() |
| } else { |
| uid = Getuid() |
| } |
| |
| if uid == 0 { |
| if mode&1 == 0 { |
| // Root can read and write any file. |
| return nil |
| } |
| if st.Mode&0111 != 0 { |
| // Root can execute any file that anybody can execute. |
| return nil |
| } |
| return EACCES |
| } |
| |
| var fmode uint32 |
| if uint32(uid) == st.Uid { |
| fmode = (st.Mode >> 6) & 7 |
| } else { |
| var gid int |
| if flags&AT_EACCESS != 0 { |
| gid = Getegid() |
| } else { |
| gid = Getgid() |
| } |
| |
| if uint32(gid) == st.Gid || isGroupMember(gid) { |
| fmode = (st.Mode >> 3) & 7 |
| } else { |
| fmode = st.Mode & 7 |
| } |
| } |
| |
| if fmode&mode == mode { |
| return nil |
| } |
| |
| return EACCES |
| } |
| |
| //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT |
| //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT |
| |
| // fileHandle is the argument to nameToHandleAt and openByHandleAt. We |
| // originally tried to generate it via unix/linux/types.go with "type |
| // fileHandle C.struct_file_handle" but that generated empty structs |
| // for mips64 and mips64le. Instead, hard code it for now (it's the |
| // same everywhere else) until the mips64 generator issue is fixed. |
| type fileHandle struct { |
| Bytes uint32 |
| Type int32 |
| } |
| |
| // FileHandle represents the C struct file_handle used by |
| // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see |
| // OpenByHandleAt). |
| type FileHandle struct { |
| *fileHandle |
| } |
| |
| // NewFileHandle constructs a FileHandle. |
| func NewFileHandle(handleType int32, handle []byte) FileHandle { |
| const hdrSize = unsafe.Sizeof(fileHandle{}) |
| buf := make([]byte, hdrSize+uintptr(len(handle))) |
| copy(buf[hdrSize:], handle) |
| fh := (*fileHandle)(unsafe.Pointer(&buf[0])) |
| fh.Type = handleType |
| fh.Bytes = uint32(len(handle)) |
| return FileHandle{fh} |
| } |
| |
| func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) } |
| func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type } |
| func (fh *FileHandle) Bytes() []byte { |
| n := fh.Size() |
| if n == 0 { |
| return nil |
| } |
| return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n] |
| } |
| |
| // NameToHandleAt wraps the name_to_handle_at system call; it obtains |
| // a handle for a path name. |
| func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) { |
| var mid _C_int |
| // Try first with a small buffer, assuming the handle will |
| // only be 32 bytes. |
| size := uint32(32 + unsafe.Sizeof(fileHandle{})) |
| didResize := false |
| for { |
| buf := make([]byte, size) |
| fh := (*fileHandle)(unsafe.Pointer(&buf[0])) |
| fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{})) |
| err = nameToHandleAt(dirfd, path, fh, &mid, flags) |
| if err == EOVERFLOW { |
| if didResize { |
| // We shouldn't need to resize more than once |
| return |
| } |
| didResize = true |
| size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{})) |
| continue |
| } |
| if err != nil { |
| return |
| } |
| return FileHandle{fh}, int(mid), nil |
| } |
| } |
| |
| // OpenByHandleAt wraps the open_by_handle_at system call; it opens a |
| // file via a handle as previously returned by NameToHandleAt. |
| func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) { |
| return openByHandleAt(mountFD, handle.fileHandle, flags) |
| } |
| |
| // Klogset wraps the sys_syslog system call; it sets console_loglevel to |
| // the value specified by arg and passes a dummy pointer to bufp. |
| func Klogset(typ int, arg int) (err error) { |
| var p unsafe.Pointer |
| _, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg)) |
| if errno != 0 { |
| return errnoErr(errno) |
| } |
| return nil |
| } |
| |
| // RemoteIovec is Iovec with the pointer replaced with an integer. |
| // It is used for ProcessVMReadv and ProcessVMWritev, where the pointer |
| // refers to a location in a different process' address space, which |
| // would confuse the Go garbage collector. |
| type RemoteIovec struct { |
| Base uintptr |
| Len int |
| } |
| |
| //sys ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV |
| //sys ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV |
| |
| /* |
| * Unimplemented |
| */ |
| // AfsSyscall |
| // Alarm |
| // ArchPrctl |
| // Brk |
| // ClockNanosleep |
| // ClockSettime |
| // Clone |
| // EpollCtlOld |
| // EpollPwait |
| // EpollWaitOld |
| // Execve |
| // Fork |
| // Futex |
| // GetKernelSyms |
| // GetMempolicy |
| // GetRobustList |
| // GetThreadArea |
| // Getitimer |
| // Getpmsg |
| // IoCancel |
| // IoDestroy |
| // IoGetevents |
| // IoSetup |
| // IoSubmit |
| // IoprioGet |
| // IoprioSet |
| // KexecLoad |
| // LookupDcookie |
| // Mbind |
| // MigratePages |
| // Mincore |
| // ModifyLdt |
| // Mount |
| // MovePages |
| // MqGetsetattr |
| // MqNotify |
| // MqOpen |
| // MqTimedreceive |
| // MqTimedsend |
| // MqUnlink |
| // Mremap |
| // Msgctl |
| // Msgget |
| // Msgrcv |
| // Msgsnd |
| // Nfsservctl |
| // Personality |
| // Pselect6 |
| // Ptrace |
| // Putpmsg |
| // Quotactl |
| // Readahead |
| // Readv |
| // RemapFilePages |
| // RestartSyscall |
| // RtSigaction |
| // RtSigpending |
| // RtSigprocmask |
| // RtSigqueueinfo |
| // RtSigreturn |
| // RtSigsuspend |
| // RtSigtimedwait |
| // SchedGetPriorityMax |
| // SchedGetPriorityMin |
| // SchedGetparam |
| // SchedGetscheduler |
| // SchedRrGetInterval |
| // SchedSetparam |
| // SchedYield |
| // Security |
| // Semctl |
| // Semget |
| // Semop |
| // Semtimedop |
| // SetMempolicy |
| // SetRobustList |
| // SetThreadArea |
| // SetTidAddress |
| // Shmat |
| // Shmctl |
| // Shmdt |
| // Shmget |
| // Sigaltstack |
| // Swapoff |
| // Swapon |
| // Sysfs |
| // TimerCreate |
| // TimerDelete |
| // TimerGetoverrun |
| // TimerGettime |
| // TimerSettime |
| // Tkill (obsolete) |
| // Tuxcall |
| // Umount2 |
| // Uselib |
| // Utimensat |
| // Vfork |
| // Vhangup |
| // Vserver |
| // Waitid |
| // _Sysctl |