blob: 683ce0bd6828c5c21ca17a5eda51939acf669448 [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package protopack enables manual encoding and decoding of protobuf wire data.
//
// This package is intended for use in debugging and/or creation of test data.
// Proper usage of this package requires knowledge of the wire format.
//
// See https://developers.google.com/protocol-buffers/docs/encoding.
package protopack
import (
"fmt"
"io"
"math"
"path"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/reflect/protoreflect"
)
// Number is the field number; aliased from the protowire package for convenience.
type Number = protowire.Number
// Number type constants; copied from the protowire package for convenience.
const (
MinValidNumber Number = protowire.MinValidNumber
FirstReservedNumber Number = protowire.FirstReservedNumber
LastReservedNumber Number = protowire.LastReservedNumber
MaxValidNumber Number = protowire.MaxValidNumber
)
// Type is the wire type; aliased from the protowire package for convenience.
type Type = protowire.Type
// Wire type constants; copied from the protowire package for convenience.
const (
VarintType Type = protowire.VarintType
Fixed32Type Type = protowire.Fixed32Type
Fixed64Type Type = protowire.Fixed64Type
BytesType Type = protowire.BytesType
StartGroupType Type = protowire.StartGroupType
EndGroupType Type = protowire.EndGroupType
)
type (
// Token is any other type (e.g., Message, Tag, Varint, Float32, etc).
Token token
// Message is an ordered sequence of Tokens, where certain tokens may
// contain other tokens. It is functionally a concrete syntax tree that
// losslessly represents any arbitrary wire data (including invalid input).
Message []Token
// Tag is a tuple of the field number and the wire type.
Tag struct {
Number Number
Type Type
}
// Bool is a boolean.
Bool bool
// Varint is a signed varint using 64-bit two's complement encoding.
Varint int64
// Svarint is a signed varint using zig-zag encoding.
Svarint int64
// Uvarint is a unsigned varint.
Uvarint uint64
// Int32 is a signed 32-bit fixed-width integer.
Int32 int32
// Uint32 is an unsigned 32-bit fixed-width integer.
Uint32 uint32
// Float32 is a 32-bit fixed-width floating point number.
Float32 float32
// Int64 is a signed 64-bit fixed-width integer.
Int64 int64
// Uint64 is an unsigned 64-bit fixed-width integer.
Uint64 uint64
// Float64 is a 64-bit fixed-width floating point number.
Float64 float64
// String is a length-prefixed string.
String string
// Bytes is a length-prefixed bytes.
Bytes []byte
// LengthPrefix is a length-prefixed message.
LengthPrefix Message
// Denormalized is a denormalized varint value, where a varint is encoded
// using more bytes than is strictly necessary. The number of extra bytes
// alone is sufficient to losslessly represent the denormalized varint.
//
// The value may be one of Tag, Bool, Varint, Svarint, or Uvarint,
// where the varint representation of each token is denormalized.
//
// Alternatively, the value may be one of String, Bytes, or LengthPrefix,
// where the varint representation of the length-prefix is denormalized.
Denormalized struct {
Count uint // number of extra bytes
Value Token
}
// Raw are bytes directly appended to output.
Raw []byte
)
type token interface {
isToken()
}
func (Message) isToken() {}
func (Tag) isToken() {}
func (Bool) isToken() {}
func (Varint) isToken() {}
func (Svarint) isToken() {}
func (Uvarint) isToken() {}
func (Int32) isToken() {}
func (Uint32) isToken() {}
func (Float32) isToken() {}
func (Int64) isToken() {}
func (Uint64) isToken() {}
func (Float64) isToken() {}
func (String) isToken() {}
func (Bytes) isToken() {}
func (LengthPrefix) isToken() {}
func (Denormalized) isToken() {}
func (Raw) isToken() {}
// Size reports the size in bytes of the marshaled message.
func (m Message) Size() int {
var n int
for _, v := range m {
switch v := v.(type) {
case Message:
n += v.Size()
case Tag:
n += protowire.SizeTag(v.Number)
case Bool:
n += protowire.SizeVarint(protowire.EncodeBool(false))
case Varint:
n += protowire.SizeVarint(uint64(v))
case Svarint:
n += protowire.SizeVarint(protowire.EncodeZigZag(int64(v)))
case Uvarint:
n += protowire.SizeVarint(uint64(v))
case Int32, Uint32, Float32:
n += protowire.SizeFixed32()
case Int64, Uint64, Float64:
n += protowire.SizeFixed64()
case String:
n += protowire.SizeBytes(len(v))
case Bytes:
n += protowire.SizeBytes(len(v))
case LengthPrefix:
n += protowire.SizeBytes(Message(v).Size())
case Denormalized:
n += int(v.Count) + Message{v.Value}.Size()
case Raw:
n += len(v)
default:
panic(fmt.Sprintf("unknown type: %T", v))
}
}
return n
}
// Marshal encodes a syntax tree into the protobuf wire format.
//
// Example message definition:
// message MyMessage {
// string field1 = 1;
// int64 field2 = 2;
// repeated float32 field3 = 3;
// }
//
// Example encoded message:
// b := Message{
// Tag{1, BytesType}, String("Hello, world!"),
// Tag{2, VarintType}, Varint(-10),
// Tag{3, BytesType}, LengthPrefix{
// Float32(1.1), Float32(2.2), Float32(3.3),
// },
// }.Marshal()
//
// Resulting wire data:
// 0x0000 0a 0d 48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21 10 |..Hello, world!.|
// 0x0010 f6 ff ff ff ff ff ff ff ff 01 1a 0c cd cc 8c 3f |...............?|
// 0x0020 cd cc 0c 40 33 33 53 40 |...@33S@|
func (m Message) Marshal() []byte {
var out []byte
for _, v := range m {
switch v := v.(type) {
case Message:
out = append(out, v.Marshal()...)
case Tag:
out = protowire.AppendTag(out, v.Number, v.Type)
case Bool:
out = protowire.AppendVarint(out, protowire.EncodeBool(bool(v)))
case Varint:
out = protowire.AppendVarint(out, uint64(v))
case Svarint:
out = protowire.AppendVarint(out, protowire.EncodeZigZag(int64(v)))
case Uvarint:
out = protowire.AppendVarint(out, uint64(v))
case Int32:
out = protowire.AppendFixed32(out, uint32(v))
case Uint32:
out = protowire.AppendFixed32(out, uint32(v))
case Float32:
out = protowire.AppendFixed32(out, math.Float32bits(float32(v)))
case Int64:
out = protowire.AppendFixed64(out, uint64(v))
case Uint64:
out = protowire.AppendFixed64(out, uint64(v))
case Float64:
out = protowire.AppendFixed64(out, math.Float64bits(float64(v)))
case String:
out = protowire.AppendBytes(out, []byte(v))
case Bytes:
out = protowire.AppendBytes(out, []byte(v))
case LengthPrefix:
out = protowire.AppendBytes(out, Message(v).Marshal())
case Denormalized:
b := Message{v.Value}.Marshal()
_, n := protowire.ConsumeVarint(b)
out = append(out, b[:n]...)
for i := uint(0); i < v.Count; i++ {
out[len(out)-1] |= 0x80 // set continuation bit on previous
out = append(out, 0)
}
out = append(out, b[n:]...)
case Raw:
return append(out, v...)
default:
panic(fmt.Sprintf("unknown type: %T", v))
}
}
return out
}
// Unmarshal parses the input protobuf wire data as a syntax tree.
// Any parsing error results in the remainder of the input being
// concatenated to the message as a Raw type.
//
// Each tag (a tuple of the field number and wire type) encountered is
// inserted into the syntax tree as a Tag.
//
// The contents of each wire type is mapped to the following Go types:
// VarintType => Uvarint
// Fixed32Type => Uint32
// Fixed64Type => Uint64
// BytesType => Bytes
// GroupType => Message
//
// Since the wire format is not self-describing, this function cannot parse
// sub-messages and will leave them as the Bytes type. Further manual parsing
// can be performed as such:
// var m, m1, m2 Message
// m.Unmarshal(b)
// m1.Unmarshal(m[3].(Bytes))
// m[3] = LengthPrefix(m1)
// m2.Unmarshal(m[3].(LengthPrefix)[1].(Bytes))
// m[3].(LengthPrefix)[1] = LengthPrefix(m2)
//
// Unmarshal is useful for debugging the protobuf wire format.
func (m *Message) Unmarshal(in []byte) {
m.unmarshal(in, nil, false)
}
// UnmarshalDescriptor parses the input protobuf wire data as a syntax tree
// using the provided message descriptor for more accurate parsing of fields.
// It operates like Unmarshal, but may use a wider range of Go types to
// represent the wire data.
//
// The contents of each wire type is mapped to one of the following Go types:
// VarintType => Bool, Varint, Svarint, Uvarint
// Fixed32Type => Int32, Uint32, Float32
// Fixed64Type => Uint32, Uint64, Float64
// BytesType => String, Bytes, LengthPrefix
// GroupType => Message
//
// If the field is unknown, it uses the same mapping as Unmarshal.
// Known sub-messages are parsed as a Message and packed repeated fields are
// parsed as a LengthPrefix.
func (m *Message) UnmarshalDescriptor(in []byte, desc protoreflect.MessageDescriptor) {
m.unmarshal(in, desc, false)
}
// UnmarshalAbductive is like UnmarshalDescriptor, but infers abductively
// whether any unknown bytes values is a message based on whether it is
// a syntactically well-formed message.
//
// Note that the protobuf wire format is not fully self-describing,
// so abductive inference may attempt to expand a bytes value as a message
// that is not actually a message. It is a best-effort guess.
func (m *Message) UnmarshalAbductive(in []byte, desc protoreflect.MessageDescriptor) {
m.unmarshal(in, desc, true)
}
func (m *Message) unmarshal(in []byte, desc protoreflect.MessageDescriptor, inferMessage bool) {
p := parser{in: in, out: *m}
p.parseMessage(desc, false, inferMessage)
*m = p.out
}
type parser struct {
in []byte
out []Token
invalid bool
}
func (p *parser) parseMessage(msgDesc protoreflect.MessageDescriptor, group, inferMessage bool) {
for len(p.in) > 0 {
v, n := protowire.ConsumeVarint(p.in)
num, typ := protowire.DecodeTag(v)
if n < 0 || num <= 0 || v > math.MaxUint32 {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
if typ == EndGroupType && group {
return // if inside a group, then stop
}
p.out, p.in = append(p.out, Tag{num, typ}), p.in[n:]
if m := n - protowire.SizeVarint(v); m > 0 {
p.out[len(p.out)-1] = Denormalized{uint(m), p.out[len(p.out)-1]}
}
// If descriptor is available, use it for more accurate parsing.
var isPacked bool
var kind protoreflect.Kind
var subDesc protoreflect.MessageDescriptor
if msgDesc != nil && !msgDesc.IsPlaceholder() {
if fieldDesc := msgDesc.Fields().ByNumber(num); fieldDesc != nil {
isPacked = fieldDesc.IsPacked()
kind = fieldDesc.Kind()
switch kind {
case protoreflect.MessageKind, protoreflect.GroupKind:
subDesc = fieldDesc.Message()
if subDesc == nil || subDesc.IsPlaceholder() {
kind = 0
}
}
}
}
switch typ {
case VarintType:
p.parseVarint(kind)
case Fixed32Type:
p.parseFixed32(kind)
case Fixed64Type:
p.parseFixed64(kind)
case BytesType:
p.parseBytes(isPacked, kind, subDesc, inferMessage)
case StartGroupType:
p.parseGroup(num, subDesc, inferMessage)
case EndGroupType:
// Handled by p.parseGroup.
default:
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
}
}
}
func (p *parser) parseVarint(kind protoreflect.Kind) {
v, n := protowire.ConsumeVarint(p.in)
if n < 0 {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
switch kind {
case protoreflect.BoolKind:
switch v {
case 0:
p.out, p.in = append(p.out, Bool(false)), p.in[n:]
case 1:
p.out, p.in = append(p.out, Bool(true)), p.in[n:]
default:
p.out, p.in = append(p.out, Uvarint(v)), p.in[n:]
}
case protoreflect.Int32Kind, protoreflect.Int64Kind:
p.out, p.in = append(p.out, Varint(v)), p.in[n:]
case protoreflect.Sint32Kind, protoreflect.Sint64Kind:
p.out, p.in = append(p.out, Svarint(protowire.DecodeZigZag(v))), p.in[n:]
default:
p.out, p.in = append(p.out, Uvarint(v)), p.in[n:]
}
if m := n - protowire.SizeVarint(v); m > 0 {
p.out[len(p.out)-1] = Denormalized{uint(m), p.out[len(p.out)-1]}
}
}
func (p *parser) parseFixed32(kind protoreflect.Kind) {
v, n := protowire.ConsumeFixed32(p.in)
if n < 0 {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
switch kind {
case protoreflect.FloatKind:
p.out, p.in = append(p.out, Float32(math.Float32frombits(v))), p.in[n:]
case protoreflect.Sfixed32Kind:
p.out, p.in = append(p.out, Int32(v)), p.in[n:]
default:
p.out, p.in = append(p.out, Uint32(v)), p.in[n:]
}
}
func (p *parser) parseFixed64(kind protoreflect.Kind) {
v, n := protowire.ConsumeFixed64(p.in)
if n < 0 {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
switch kind {
case protoreflect.DoubleKind:
p.out, p.in = append(p.out, Float64(math.Float64frombits(v))), p.in[n:]
case protoreflect.Sfixed64Kind:
p.out, p.in = append(p.out, Int64(v)), p.in[n:]
default:
p.out, p.in = append(p.out, Uint64(v)), p.in[n:]
}
}
func (p *parser) parseBytes(isPacked bool, kind protoreflect.Kind, desc protoreflect.MessageDescriptor, inferMessage bool) {
v, n := protowire.ConsumeVarint(p.in)
if n < 0 {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
p.out, p.in = append(p.out, Uvarint(v)), p.in[n:]
if m := n - protowire.SizeVarint(v); m > 0 {
p.out[len(p.out)-1] = Denormalized{uint(m), p.out[len(p.out)-1]}
}
if v > uint64(len(p.in)) {
p.out, p.in = append(p.out, Raw(p.in)), nil
p.invalid = true
return
}
p.out = p.out[:len(p.out)-1] // subsequent tokens contain prefix-length
if isPacked {
p.parsePacked(int(v), kind)
} else {
switch kind {
case protoreflect.MessageKind:
p2 := parser{in: p.in[:v]}
p2.parseMessage(desc, false, inferMessage)
p.out, p.in = append(p.out, LengthPrefix(p2.out)), p.in[v:]
case protoreflect.StringKind:
p.out, p.in = append(p.out, String(p.in[:v])), p.in[v:]
case protoreflect.BytesKind:
p.out, p.in = append(p.out, Bytes(p.in[:v])), p.in[v:]
default:
if inferMessage {
// Check whether this is a syntactically valid message.
p2 := parser{in: p.in[:v]}
p2.parseMessage(nil, false, inferMessage)
if !p2.invalid {
p.out, p.in = append(p.out, LengthPrefix(p2.out)), p.in[v:]
break
}
}
p.out, p.in = append(p.out, Bytes(p.in[:v])), p.in[v:]
}
}
if m := n - protowire.SizeVarint(v); m > 0 {
p.out[len(p.out)-1] = Denormalized{uint(m), p.out[len(p.out)-1]}
}
}
func (p *parser) parsePacked(n int, kind protoreflect.Kind) {
p2 := parser{in: p.in[:n]}
for len(p2.in) > 0 {
switch kind {
case protoreflect.BoolKind, protoreflect.EnumKind,
protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Uint32Kind,
protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Uint64Kind:
p2.parseVarint(kind)
case protoreflect.Fixed32Kind, protoreflect.Sfixed32Kind, protoreflect.FloatKind:
p2.parseFixed32(kind)
case protoreflect.Fixed64Kind, protoreflect.Sfixed64Kind, protoreflect.DoubleKind:
p2.parseFixed64(kind)
default:
panic(fmt.Sprintf("invalid packed kind: %v", kind))
}
}
p.out, p.in = append(p.out, LengthPrefix(p2.out)), p.in[n:]
}
func (p *parser) parseGroup(startNum protowire.Number, desc protoreflect.MessageDescriptor, inferMessage bool) {
p2 := parser{in: p.in}
p2.parseMessage(desc, true, inferMessage)
if len(p2.out) > 0 {
p.out = append(p.out, Message(p2.out))
}
p.in = p2.in
// Append the trailing end group.
v, n := protowire.ConsumeVarint(p.in)
if endNum, typ := protowire.DecodeTag(v); typ == EndGroupType {
if startNum != endNum {
p.invalid = true
}
p.out, p.in = append(p.out, Tag{endNum, typ}), p.in[n:]
if m := n - protowire.SizeVarint(v); m > 0 {
p.out[len(p.out)-1] = Denormalized{uint(m), p.out[len(p.out)-1]}
}
}
}
// Format implements a custom formatter to visualize the syntax tree.
// Using "%#v" formats the Message in Go source code.
func (m Message) Format(s fmt.State, r rune) {
switch r {
case 'x':
io.WriteString(s, fmt.Sprintf("%x", m.Marshal()))
case 'X':
io.WriteString(s, fmt.Sprintf("%X", m.Marshal()))
case 'v':
switch {
case s.Flag('#'):
io.WriteString(s, m.format(true, true))
case s.Flag('+'):
io.WriteString(s, m.format(false, true))
default:
io.WriteString(s, m.format(false, false))
}
default:
panic("invalid verb: " + string(r))
}
}
// format formats the message.
// If source is enabled, this emits valid Go source.
// If multi is enabled, the output may span multiple lines.
func (m Message) format(source, multi bool) string {
var ss []string
var prefix, nextPrefix string
for _, v := range m {
// Ensure certain tokens have preceding or succeeding newlines.
prefix, nextPrefix = nextPrefix, " "
if multi {
switch v := v.(type) {
case Tag: // only has preceding newline
prefix = "\n"
case Denormalized: // only has preceding newline
if _, ok := v.Value.(Tag); ok {
prefix = "\n"
}
case Message, Raw: // has preceding and succeeding newlines
prefix, nextPrefix = "\n", "\n"
}
}
s := formatToken(v, source, multi)
ss = append(ss, prefix+s+",")
}
var s string
if len(ss) > 0 {
s = strings.TrimSpace(strings.Join(ss, ""))
if multi {
s = "\n\t" + strings.Join(strings.Split(s, "\n"), "\n\t") + "\n"
} else {
s = strings.TrimSuffix(s, ",")
}
}
s = fmt.Sprintf("%T{%s}", m, s)
if !source {
s = trimPackage(s)
}
return s
}
// formatToken formats a single token.
func formatToken(t Token, source, multi bool) (s string) {
switch v := t.(type) {
case Message:
s = v.format(source, multi)
case LengthPrefix:
s = formatPacked(v, source, multi)
if s == "" {
ms := Message(v).format(source, multi)
s = fmt.Sprintf("%T(%s)", v, ms)
}
case Tag:
s = fmt.Sprintf("%T{%d, %s}", v, v.Number, formatType(v.Type, source))
case Bool, Varint, Svarint, Uvarint, Int32, Uint32, Float32, Int64, Uint64, Float64:
if source {
// Print floats in a way that preserves exact precision.
if f, _ := v.(Float32); math.IsNaN(float64(f)) || math.IsInf(float64(f), 0) {
switch {
case f > 0:
s = fmt.Sprintf("%T(math.Inf(+1))", v)
case f < 0:
s = fmt.Sprintf("%T(math.Inf(-1))", v)
case math.Float32bits(float32(math.NaN())) == math.Float32bits(float32(f)):
s = fmt.Sprintf("%T(math.NaN())", v)
default:
s = fmt.Sprintf("%T(math.Float32frombits(0x%08x))", v, math.Float32bits(float32(f)))
}
break
}
if f, _ := v.(Float64); math.IsNaN(float64(f)) || math.IsInf(float64(f), 0) {
switch {
case f > 0:
s = fmt.Sprintf("%T(math.Inf(+1))", v)
case f < 0:
s = fmt.Sprintf("%T(math.Inf(-1))", v)
case math.Float64bits(float64(math.NaN())) == math.Float64bits(float64(f)):
s = fmt.Sprintf("%T(math.NaN())", v)
default:
s = fmt.Sprintf("%T(math.Float64frombits(0x%016x))", v, math.Float64bits(float64(f)))
}
break
}
}
s = fmt.Sprintf("%T(%v)", v, v)
case String, Bytes, Raw:
s = fmt.Sprintf("%s", v)
s = fmt.Sprintf("%T(%s)", v, formatString(s))
case Denormalized:
s = fmt.Sprintf("%T{+%d, %v}", v, v.Count, formatToken(v.Value, source, multi))
default:
panic(fmt.Sprintf("unknown type: %T", v))
}
if !source {
s = trimPackage(s)
}
return s
}
// formatPacked returns a non-empty string if LengthPrefix looks like a packed
// repeated field of primitives.
func formatPacked(v LengthPrefix, source, multi bool) string {
var ss []string
for _, v := range v {
switch v.(type) {
case Bool, Varint, Svarint, Uvarint, Int32, Uint32, Float32, Int64, Uint64, Float64, Denormalized, Raw:
if v, ok := v.(Denormalized); ok {
switch v.Value.(type) {
case Bool, Varint, Svarint, Uvarint:
default:
return ""
}
}
ss = append(ss, formatToken(v, source, multi))
default:
return ""
}
}
s := fmt.Sprintf("%T{%s}", v, strings.Join(ss, ", "))
if !source {
s = trimPackage(s)
}
return s
}
// formatType returns the name for Type.
func formatType(t Type, source bool) (s string) {
switch t {
case VarintType:
s = pkg + ".VarintType"
case Fixed32Type:
s = pkg + ".Fixed32Type"
case Fixed64Type:
s = pkg + ".Fixed64Type"
case BytesType:
s = pkg + ".BytesType"
case StartGroupType:
s = pkg + ".StartGroupType"
case EndGroupType:
s = pkg + ".EndGroupType"
default:
s = fmt.Sprintf("Type(%d)", t)
}
if !source {
s = strings.TrimSuffix(trimPackage(s), "Type")
}
return s
}
// formatString returns a quoted string for s.
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Disallow non-printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || r == utf8.RuneError || !unicode.IsPrint(r)
}
if strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
var pkg = path.Base(reflect.TypeOf(Tag{}).PkgPath())
func trimPackage(s string) string {
return strings.TrimPrefix(strings.TrimPrefix(s, pkg), ".")
}