blob: bb7d638e3f8f15fefde1626a5a0783d6297aee06 [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"google.golang.org/protobuf/internal/pragma"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
// MessageState is a data structure that is nested as the first field in a
// concrete message. It provides a way to implement the ProtoReflect method
// in an allocation-free way without needing to have a shadow Go type generated
// for every message type. This technique only works using unsafe.
//
//
// Example generated code:
//
// type M struct {
// state protoimpl.MessageState
//
// Field1 int32
// Field2 string
// Field3 *BarMessage
// ...
// }
//
// func (m *M) ProtoReflect() protoreflect.Message {
// mi := &file_fizz_buzz_proto_msgInfos[5]
// if protoimpl.UnsafeEnabled && m != nil {
// ms := protoimpl.X.MessageStateOf(Pointer(m))
// if ms.LoadMessageInfo() == nil {
// ms.StoreMessageInfo(mi)
// }
// return ms
// }
// return mi.MessageOf(m)
// }
//
// The MessageState type holds a *MessageInfo, which must be atomically set to
// the message info associated with a given message instance.
// By unsafely converting a *M into a *MessageState, the MessageState object
// has access to all the information needed to implement protobuf reflection.
// It has access to the message info as its first field, and a pointer to the
// MessageState is identical to a pointer to the concrete message value.
//
//
// Requirements:
// • The type M must implement protoreflect.ProtoMessage.
// • The address of m must not be nil.
// • The address of m and the address of m.state must be equal,
// even though they are different Go types.
type MessageState struct {
pragma.NoUnkeyedLiterals
pragma.DoNotCompare
pragma.DoNotCopy
mi *MessageInfo
}
type messageState MessageState
var (
_ pref.Message = (*messageState)(nil)
_ Unwrapper = (*messageState)(nil)
)
// messageDataType is a tuple of a pointer to the message data and
// a pointer to the message type. It is a generalized way of providing a
// reflective view over a message instance. The disadvantage of this approach
// is the need to allocate this tuple of 16B.
type messageDataType struct {
p pointer
mi *MessageInfo
}
type (
messageReflectWrapper messageDataType
messageIfaceWrapper messageDataType
)
var (
_ pref.Message = (*messageReflectWrapper)(nil)
_ Unwrapper = (*messageReflectWrapper)(nil)
_ pref.ProtoMessage = (*messageIfaceWrapper)(nil)
_ Unwrapper = (*messageIfaceWrapper)(nil)
)
// MessageOf returns a reflective view over a message. The input must be a
// pointer to a named Go struct. If the provided type has a ProtoReflect method,
// it must be implemented by calling this method.
func (mi *MessageInfo) MessageOf(m interface{}) pref.Message {
// TODO: Switch the input to be an opaque Pointer.
if reflect.TypeOf(m) != mi.GoReflectType {
panic(fmt.Sprintf("type mismatch: got %T, want %v", m, mi.GoReflectType))
}
p := pointerOfIface(m)
if p.IsNil() {
return mi.nilMessage.Init(mi)
}
return &messageReflectWrapper{p, mi}
}
func (m *messageReflectWrapper) pointer() pointer { return m.p }
func (m *messageReflectWrapper) messageInfo() *MessageInfo { return m.mi }
func (m *messageIfaceWrapper) ProtoReflect() pref.Message {
return (*messageReflectWrapper)(m)
}
func (m *messageIfaceWrapper) ProtoUnwrap() interface{} {
return m.p.AsIfaceOf(m.mi.GoReflectType.Elem())
}
type extensionMap map[int32]ExtensionField
func (m *extensionMap) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
if m != nil {
for _, x := range *m {
xt := x.GetType()
if !f(xt.Descriptor(), xt.ValueOf(x.GetValue())) {
return
}
}
}
}
func (m *extensionMap) Has(xt pref.ExtensionType) (ok bool) {
if m != nil {
_, ok = (*m)[int32(xt.Descriptor().Number())]
}
return ok
}
func (m *extensionMap) Clear(xt pref.ExtensionType) {
delete(*m, int32(xt.Descriptor().Number()))
}
func (m *extensionMap) Get(xt pref.ExtensionType) pref.Value {
xd := xt.Descriptor()
if m != nil {
if x, ok := (*m)[int32(xd.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
}
return xt.Zero()
}
func (m *extensionMap) Set(xt pref.ExtensionType, v pref.Value) {
if *m == nil {
*m = make(map[int32]ExtensionField)
}
var x ExtensionField
x.SetType(xt)
x.SetEagerValue(xt.InterfaceOf(v))
(*m)[int32(xt.Descriptor().Number())] = x
}
func (m *extensionMap) Mutable(xt pref.ExtensionType) pref.Value {
xd := xt.Descriptor()
if !isComposite(xd) {
panic("invalid Mutable on field with non-composite type")
}
if x, ok := (*m)[int32(xd.Number())]; ok {
return xt.ValueOf(x.GetValue())
}
v := xt.New()
m.Set(xt, v)
return v
}
func isComposite(fd pref.FieldDescriptor) bool {
return fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind || fd.IsList() || fd.IsMap()
}
// checkField verifies that the provided field descriptor is valid.
// Exactly one of the returned values is populated.
func (mi *MessageInfo) checkField(fd pref.FieldDescriptor) (*fieldInfo, pref.ExtensionType) {
if fi := mi.fields[fd.Number()]; fi != nil {
if fi.fieldDesc != fd {
panic("mismatching field descriptor")
}
return fi, nil
}
if fd.IsExtension() {
if fd.ContainingMessage().FullName() != mi.Desc.FullName() {
// TODO: Should this be exact containing message descriptor match?
panic("mismatching containing message")
}
if !mi.Desc.ExtensionRanges().Has(fd.Number()) {
panic("invalid extension field")
}
xtd, ok := fd.(pref.ExtensionTypeDescriptor)
if !ok {
panic("extension descriptor does not implement ExtensionTypeDescriptor")
}
return nil, xtd.Type()
}
panic("invalid field descriptor")
}