| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file provides the generic implementation of Sum and MAC. Other files |
| // might provide optimized assembly implementations of some of this code. |
| |
| package poly1305 |
| |
| import "encoding/binary" |
| |
| // Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag |
| // for a 64 bytes message is approximately |
| // |
| // s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5 |
| // |
| // for some secret r and s. It can be computed sequentially like |
| // |
| // for len(msg) > 0: |
| // h += read(msg, 16) |
| // h *= r |
| // h %= 2¹³⁰ - 5 |
| // return h + s |
| // |
| // All the complexity is about doing performant constant-time math on numbers |
| // larger than any available numeric type. |
| |
| func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { |
| h := newMACGeneric(key) |
| h.Write(msg) |
| h.Sum(out) |
| } |
| |
| func newMACGeneric(key *[32]byte) macGeneric { |
| m := macGeneric{} |
| initialize(key, &m.macState) |
| return m |
| } |
| |
| // macState holds numbers in saturated 64-bit little-endian limbs. That is, |
| // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. |
| type macState struct { |
| // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but |
| // can grow larger during and after rounds. It must, however, remain below |
| // 2 * (2¹³⁰ - 5). |
| h [3]uint64 |
| // r and s are the private key components. |
| r [2]uint64 |
| s [2]uint64 |
| } |
| |
| type macGeneric struct { |
| macState |
| |
| buffer [TagSize]byte |
| offset int |
| } |
| |
| // Write splits the incoming message into TagSize chunks, and passes them to |
| // update. It buffers incomplete chunks. |
| func (h *macGeneric) Write(p []byte) (int, error) { |
| nn := len(p) |
| if h.offset > 0 { |
| n := copy(h.buffer[h.offset:], p) |
| if h.offset+n < TagSize { |
| h.offset += n |
| return nn, nil |
| } |
| p = p[n:] |
| h.offset = 0 |
| updateGeneric(&h.macState, h.buffer[:]) |
| } |
| if n := len(p) - (len(p) % TagSize); n > 0 { |
| updateGeneric(&h.macState, p[:n]) |
| p = p[n:] |
| } |
| if len(p) > 0 { |
| h.offset += copy(h.buffer[h.offset:], p) |
| } |
| return nn, nil |
| } |
| |
| // Sum flushes the last incomplete chunk from the buffer, if any, and generates |
| // the MAC output. It does not modify its state, in order to allow for multiple |
| // calls to Sum, even if no Write is allowed after Sum. |
| func (h *macGeneric) Sum(out *[TagSize]byte) { |
| state := h.macState |
| if h.offset > 0 { |
| updateGeneric(&state, h.buffer[:h.offset]) |
| } |
| finalize(out, &state.h, &state.s) |
| } |
| |
| // [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It |
| // clears some bits of the secret coefficient to make it possible to implement |
| // multiplication more efficiently. |
| const ( |
| rMask0 = 0x0FFFFFFC0FFFFFFF |
| rMask1 = 0x0FFFFFFC0FFFFFFC |
| ) |
| |
| // initialize loads the 256-bit key into the two 128-bit secret values r and s. |
| func initialize(key *[32]byte, m *macState) { |
| m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 |
| m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 |
| m.s[0] = binary.LittleEndian.Uint64(key[16:24]) |
| m.s[1] = binary.LittleEndian.Uint64(key[24:32]) |
| } |
| |
| // uint128 holds a 128-bit number as two 64-bit limbs, for use with the |
| // bits.Mul64 and bits.Add64 intrinsics. |
| type uint128 struct { |
| lo, hi uint64 |
| } |
| |
| func mul64(a, b uint64) uint128 { |
| hi, lo := bitsMul64(a, b) |
| return uint128{lo, hi} |
| } |
| |
| func add128(a, b uint128) uint128 { |
| lo, c := bitsAdd64(a.lo, b.lo, 0) |
| hi, c := bitsAdd64(a.hi, b.hi, c) |
| if c != 0 { |
| panic("poly1305: unexpected overflow") |
| } |
| return uint128{lo, hi} |
| } |
| |
| func shiftRightBy2(a uint128) uint128 { |
| a.lo = a.lo>>2 | (a.hi&3)<<62 |
| a.hi = a.hi >> 2 |
| return a |
| } |
| |
| // updateGeneric absorbs msg into the state.h accumulator. For each chunk m of |
| // 128 bits of message, it computes |
| // |
| // h₊ = (h + m) * r mod 2¹³⁰ - 5 |
| // |
| // If the msg length is not a multiple of TagSize, it assumes the last |
| // incomplete chunk is the final one. |
| func updateGeneric(state *macState, msg []byte) { |
| h0, h1, h2 := state.h[0], state.h[1], state.h[2] |
| r0, r1 := state.r[0], state.r[1] |
| |
| for len(msg) > 0 { |
| var c uint64 |
| |
| // For the first step, h + m, we use a chain of bits.Add64 intrinsics. |
| // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially |
| // reduced at the end of the multiplication below. |
| // |
| // The spec requires us to set a bit just above the message size, not to |
| // hide leading zeroes. For full chunks, that's 1 << 128, so we can just |
| // add 1 to the most significant (2¹²⁸) limb, h2. |
| if len(msg) >= TagSize { |
| h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0) |
| h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c) |
| h2 += c + 1 |
| |
| msg = msg[TagSize:] |
| } else { |
| var buf [TagSize]byte |
| copy(buf[:], msg) |
| buf[len(msg)] = 1 |
| |
| h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0) |
| h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c) |
| h2 += c |
| |
| msg = nil |
| } |
| |
| // Multiplication of big number limbs is similar to elementary school |
| // columnar multiplication. Instead of digits, there are 64-bit limbs. |
| // |
| // We are multiplying a 3 limbs number, h, by a 2 limbs number, r. |
| // |
| // h2 h1 h0 x |
| // r1 r0 = |
| // ---------------- |
| // h2r0 h1r0 h0r0 <-- individual 128-bit products |
| // + h2r1 h1r1 h0r1 |
| // ------------------------ |
| // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs |
| // ------------------------ |
| // m3.hi m2.hi m1.hi m0.hi <-- carry propagation |
| // + m3.lo m2.lo m1.lo m0.lo |
| // ------------------------------- |
| // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs |
| // |
| // The main difference from pen-and-paper multiplication is that we do |
| // carry propagation in a separate step, as if we wrote two digit sums |
| // at first (the 128-bit limbs), and then carried the tens all at once. |
| |
| h0r0 := mul64(h0, r0) |
| h1r0 := mul64(h1, r0) |
| h2r0 := mul64(h2, r0) |
| h0r1 := mul64(h0, r1) |
| h1r1 := mul64(h1, r1) |
| h2r1 := mul64(h2, r1) |
| |
| // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their |
| // top 4 bits cleared by rMask{0,1}, we know that their product is not going |
| // to overflow 64 bits, so we can ignore the high part of the products. |
| // |
| // This also means that the product doesn't have a fifth limb (t4). |
| if h2r0.hi != 0 { |
| panic("poly1305: unexpected overflow") |
| } |
| if h2r1.hi != 0 { |
| panic("poly1305: unexpected overflow") |
| } |
| |
| m0 := h0r0 |
| m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again |
| m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1. |
| m3 := h2r1 |
| |
| t0 := m0.lo |
| t1, c := bitsAdd64(m1.lo, m0.hi, 0) |
| t2, c := bitsAdd64(m2.lo, m1.hi, c) |
| t3, _ := bitsAdd64(m3.lo, m2.hi, c) |
| |
| // Now we have the result as 4 64-bit limbs, and we need to reduce it |
| // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do |
| // a cheap partial reduction according to the reduction identity |
| // |
| // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5 |
| // |
| // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is |
| // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the |
| // assumptions we make about h in the rest of the code. |
| // |
| // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23 |
| |
| // We split the final result at the 2¹³⁰ mark into h and cc, the carry. |
| // Note that the carry bits are effectively shifted left by 2, in other |
| // words, cc = c * 4 for the c in the reduction identity. |
| h0, h1, h2 = t0, t1, t2&maskLow2Bits |
| cc := uint128{t2 & maskNotLow2Bits, t3} |
| |
| // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c. |
| |
| h0, c = bitsAdd64(h0, cc.lo, 0) |
| h1, c = bitsAdd64(h1, cc.hi, c) |
| h2 += c |
| |
| cc = shiftRightBy2(cc) |
| |
| h0, c = bitsAdd64(h0, cc.lo, 0) |
| h1, c = bitsAdd64(h1, cc.hi, c) |
| h2 += c |
| |
| // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most |
| // |
| // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1 |
| } |
| |
| state.h[0], state.h[1], state.h[2] = h0, h1, h2 |
| } |
| |
| const ( |
| maskLow2Bits uint64 = 0x0000000000000003 |
| maskNotLow2Bits uint64 = ^maskLow2Bits |
| ) |
| |
| // select64 returns x if v == 1 and y if v == 0, in constant time. |
| func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y } |
| |
| // [p0, p1, p2] is 2¹³⁰ - 5 in little endian order. |
| const ( |
| p0 = 0xFFFFFFFFFFFFFFFB |
| p1 = 0xFFFFFFFFFFFFFFFF |
| p2 = 0x0000000000000003 |
| ) |
| |
| // finalize completes the modular reduction of h and computes |
| // |
| // out = h + s mod 2¹²⁸ |
| // |
| func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) { |
| h0, h1, h2 := h[0], h[1], h[2] |
| |
| // After the partial reduction in updateGeneric, h might be more than |
| // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction |
| // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the |
| // result if the subtraction underflows, and t otherwise. |
| |
| hMinusP0, b := bitsSub64(h0, p0, 0) |
| hMinusP1, b := bitsSub64(h1, p1, b) |
| _, b = bitsSub64(h2, p2, b) |
| |
| // h = h if h < p else h - p |
| h0 = select64(b, h0, hMinusP0) |
| h1 = select64(b, h1, hMinusP1) |
| |
| // Finally, we compute the last Poly1305 step |
| // |
| // tag = h + s mod 2¹²⁸ |
| // |
| // by just doing a wide addition with the 128 low bits of h and discarding |
| // the overflow. |
| h0, c := bitsAdd64(h0, s[0], 0) |
| h1, _ = bitsAdd64(h1, s[1], c) |
| |
| binary.LittleEndian.PutUint64(out[0:8], h0) |
| binary.LittleEndian.PutUint64(out[8:16], h1) |
| } |