blob: dcbbef32c7107607941a303f11c79945d7addcfe [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore_for_gccgo
package ecdsa
import (
"crypto/cipher"
"crypto/elliptic"
"internal/cpu"
"math/big"
)
// kdsa invokes the "compute digital signature authentication"
// instruction with the given function code and 4096 byte
// parameter block.
//
// The return value corresponds to the condition code set by the
// instruction. Interrupted invocations are handled by the
// function.
//go:noescape
func kdsa(fc uint64, params *[4096]byte) (errn uint64)
// canUseKDSA checks if KDSA instruction is available, and if it is, it checks
// the name of the curve to see if it matches the curves supported(P-256, P-384, P-521).
// Then, based on the curve name, a function code and a block size will be assigned.
// If KDSA instruction is not available or if the curve is not supported, canUseKDSA
// will set ok to false.
func canUseKDSA(c elliptic.Curve) (functionCode uint64, blockSize int, ok bool) {
if !cpu.S390X.HasECDSA {
return 0, 0, false
}
switch c.Params().Name {
case "P-256":
return 1, 32, true
case "P-384":
return 2, 48, true
case "P-521":
return 3, 80, true
}
return 0, 0, false // A mismatch
}
// zeroExtendAndCopy pads src with leading zeros until it has the size given.
// It then copies the padded src into the dst. Bytes beyond size in dst are
// not modified.
func zeroExtendAndCopy(dst, src []byte, size int) {
nz := size - len(src)
if nz < 0 {
panic("src is too long")
}
// the compiler should replace this loop with a memclr call
z := dst[:nz]
for i := range z {
z[i] = 0
}
copy(dst[nz:size], src[:size-nz])
return
}
func sign(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
if functionCode, blockSize, ok := canUseKDSA(c); ok {
e := hashToInt(hash, c)
for {
var k *big.Int
k, err = randFieldElement(c, *csprng)
if err != nil {
return nil, nil, err
}
// The parameter block looks like the following for sign.
// +---------------------+
// | Signature(R) |
// +---------------------+
// | Signature(S) |
// +---------------------+
// | Hashed Message |
// +---------------------+
// | Private Key |
// +---------------------+
// | Random Number |
// +---------------------+
// | |
// | ... |
// | |
// +---------------------+
// The common components(signatureR, signatureS, hashedMessage, privateKey and
// random number) each takes block size of bytes. The block size is different for
// different curves and is set by canUseKDSA function.
var params [4096]byte
startingOffset := 2 * blockSize // Set the starting location for copying
// Copy content into the parameter block. In the sign case,
// we copy hashed message, private key and random number into
// the parameter block. Since those are consecutive components in the parameter
// block, we use a for loop here.
for i, v := range []*big.Int{e, priv.D, k} {
startPosition := startingOffset + i*blockSize
endPosition := startPosition + blockSize
zeroExtendAndCopy(params[startPosition:endPosition], v.Bytes(), blockSize)
}
// Convert verify function code into a sign function code by adding 8.
// We also need to set the 'deterministic' bit in the function code, by
// adding 128, in order to stop the instruction using its own random number
// generator in addition to the random number we supply.
switch kdsa(functionCode+136, &params) {
case 0: // success
r = new(big.Int)
r.SetBytes(params[:blockSize])
s = new(big.Int)
s.SetBytes(params[blockSize : 2*blockSize])
return
case 1: // error
return nil, nil, errZeroParam
case 2: // retry
continue
}
panic("unreachable")
}
}
return signGeneric(priv, csprng, c, hash)
}
func verify(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
if functionCode, blockSize, ok := canUseKDSA(c); ok {
e := hashToInt(hash, c)
// The parameter block looks like the following for verify:
// +---------------------+
// | Signature(R) |
// +---------------------+
// | Signature(S) |
// +---------------------+
// | Hashed Message |
// +---------------------+
// | Public Key X |
// +---------------------+
// | Public Key Y |
// +---------------------+
// | |
// | ... |
// | |
// +---------------------+
// The common components(signatureR, signatureS, hashed message, public key X,
// and public key Y) each takes block size of bytes. The block size is different for
// different curves and is set by canUseKDSA function.
var params [4096]byte
// Copy content into the parameter block. In the verify case,
// we copy signature (r), signature(s), hashed message, public key x component,
// and public key y component into the parameter block.
// Since those are consecutive components in the parameter block, we use a for loop here.
for i, v := range []*big.Int{r, s, e, pub.X, pub.Y} {
startPosition := i * blockSize
endPosition := startPosition + blockSize
zeroExtendAndCopy(params[startPosition:endPosition], v.Bytes(), blockSize)
}
return kdsa(functionCode, &params) == 0
}
return verifyGeneric(pub, c, hash, r, s)
}