blob: 4878a00f25eb6d35bfa22a86abe828d3066aef18 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs.h"
#include "os.h"
#include "stack.h"
extern SigTab runtime·sigtab[];
static int32 proccount;
int32 runtime·open(uint8*, int32, int32);
int32 runtime·close(int32);
int32 runtime·read(int32, void*, int32);
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
enum
{
MUTEX_UNLOCKED = 0,
MUTEX_LOCKED = 1,
MUTEX_SLEEPING = 2,
ACTIVE_SPIN = 4,
ACTIVE_SPIN_CNT = 30,
PASSIVE_SPIN = 1,
FUTEX_WAIT = 0,
FUTEX_WAKE = 1,
EINTR = 4,
EAGAIN = 11,
};
// TODO(rsc): I tried using 1<<40 here but futex woke up (-ETIMEDOUT).
// I wonder if the timespec that gets to the kernel
// actually has two 32-bit numbers in it, so that
// a 64-bit 1<<40 ends up being 0 seconds,
// 1<<8 nanoseconds.
static Timespec longtime =
{
1<<30, // 34 years
0
};
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
static void
futexsleep(uint32 *addr, uint32 val)
{
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
runtime·futex(addr, FUTEX_WAIT, val, &longtime, nil, 0);
}
// If any procs are sleeping on addr, wake up at most cnt.
static void
futexwakeup(uint32 *addr, uint32 cnt)
{
int64 ret;
ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0);
if(ret >= 0)
return;
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret);
*(int32*)0x1006 = 0x1006;
}
static int32
getproccount(void)
{
int32 fd, rd, cnt, cpustrlen;
byte *cpustr, *pos, *bufpos;
byte buf[256];
fd = runtime·open((byte*)"/proc/stat", O_RDONLY|O_CLOEXEC, 0);
if(fd == -1)
return 1;
cnt = 0;
bufpos = buf;
cpustr = (byte*)"\ncpu";
cpustrlen = runtime·findnull(cpustr);
for(;;) {
rd = runtime·read(fd, bufpos, sizeof(buf)-cpustrlen);
if(rd == -1)
break;
bufpos[rd] = 0;
for(pos=buf; pos=runtime·strstr(pos, cpustr); cnt++, pos++) {
}
if(rd < cpustrlen)
break;
runtime·memmove(buf, bufpos+rd-cpustrlen+1, cpustrlen-1);
bufpos = buf+cpustrlen-1;
}
runtime·close(fd);
return cnt ? cnt : 1;
}
// Possible lock states are MUTEX_UNLOCKED, MUTEX_LOCKED and MUTEX_SLEEPING.
// MUTEX_SLEEPING means that there is presumably at least one sleeping thread.
// Note that there can be spinning threads during all states - they do not
// affect mutex's state.
static void
futexlock(Lock *l)
{
uint32 i, v, wait, spin;
// Speculative grab for lock.
v = runtime·xchg(&l->key, MUTEX_LOCKED);
if(v == MUTEX_UNLOCKED)
return;
// wait is either MUTEX_LOCKED or MUTEX_SLEEPING
// depending on whether there is a thread sleeping
// on this mutex. If we ever change l->key from
// MUTEX_SLEEPING to some other value, we must be
// careful to change it back to MUTEX_SLEEPING before
// returning, to ensure that the sleeping thread gets
// its wakeup call.
wait = v;
if(proccount == 0)
proccount = getproccount();
// On uniprocessor's, no point spinning.
// On multiprocessors, spin for ACTIVE_SPIN attempts.
spin = 0;
if(proccount > 1)
spin = ACTIVE_SPIN;
for(;;) {
// Try for lock, spinning.
for(i = 0; i < spin; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·procyield(ACTIVE_SPIN_CNT);
}
// Try for lock, rescheduling.
for(i=0; i < PASSIVE_SPIN; i++) {
while(l->key == MUTEX_UNLOCKED)
if(runtime·cas(&l->key, MUTEX_UNLOCKED, wait))
return;
runtime·osyield();
}
// Sleep.
v = runtime·xchg(&l->key, MUTEX_SLEEPING);
if(v == MUTEX_UNLOCKED)
return;
wait = MUTEX_SLEEPING;
futexsleep(&l->key, MUTEX_SLEEPING);
}
}
static void
futexunlock(Lock *l)
{
uint32 v;
v = runtime·xchg(&l->key, MUTEX_UNLOCKED);
if(v == MUTEX_UNLOCKED)
runtime·throw("unlock of unlocked lock");
if(v == MUTEX_SLEEPING)
futexwakeup(&l->key, 1);
}
void
runtime·lock(Lock *l)
{
if(m->locks++ < 0)
runtime·throw("runtime·lock: lock count");
futexlock(l);
}
void
runtime·unlock(Lock *l)
{
if(--m->locks < 0)
runtime·throw("runtime·unlock: lock count");
futexunlock(l);
}
// One-time notifications.
void
runtime·noteclear(Note *n)
{
n->state = 0;
}
void
runtime·notewakeup(Note *n)
{
runtime·xchg(&n->state, 1);
futexwakeup(&n->state, 1<<30);
}
void
runtime·notesleep(Note *n)
{
while(runtime·atomicload(&n->state) == 0)
futexsleep(&n->state, 0);
}
// Clone, the Linux rfork.
enum
{
CLONE_VM = 0x100,
CLONE_FS = 0x200,
CLONE_FILES = 0x400,
CLONE_SIGHAND = 0x800,
CLONE_PTRACE = 0x2000,
CLONE_VFORK = 0x4000,
CLONE_PARENT = 0x8000,
CLONE_THREAD = 0x10000,
CLONE_NEWNS = 0x20000,
CLONE_SYSVSEM = 0x40000,
CLONE_SETTLS = 0x80000,
CLONE_PARENT_SETTID = 0x100000,
CLONE_CHILD_CLEARTID = 0x200000,
CLONE_UNTRACED = 0x800000,
CLONE_CHILD_SETTID = 0x1000000,
CLONE_STOPPED = 0x2000000,
CLONE_NEWUTS = 0x4000000,
CLONE_NEWIPC = 0x8000000,
};
void
runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
int32 ret;
int32 flags;
/*
* note: strace gets confused if we use CLONE_PTRACE here.
*/
flags = CLONE_VM /* share memory */
| CLONE_FS /* share cwd, etc */
| CLONE_FILES /* share fd table */
| CLONE_SIGHAND /* share sig handler table */
| CLONE_THREAD /* revisit - okay for now */
;
m->tls[0] = m->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n",
stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m);
}
if((ret = runtime·clone(flags, stk, m, g, fn)) < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret);
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
void
runtime·minit(void)
{
// Initialize signal handling.
m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024);
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000)
runtime·panicstring("invalid memory address or nil pointer dereference");
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}