| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs.h" |
| #include "os.h" |
| #include "stack.h" |
| |
| extern SigTab runtime·sigtab[]; |
| |
| static void |
| unimplemented(int8 *name) |
| { |
| runtime·prints(name); |
| runtime·prints(" not implemented\n"); |
| *(int32*)1231 = 1231; |
| } |
| |
| // Thread-safe allocation of a semaphore. |
| // Psema points at a kernel semaphore key. |
| // It starts out zero, meaning no semaphore. |
| // Fill it in, being careful of others calling initsema |
| // simultaneously. |
| static void |
| initsema(uint32 *psema) |
| { |
| uint32 sema; |
| |
| if(*psema != 0) // already have one |
| return; |
| |
| sema = runtime·mach_semcreate(); |
| if(!runtime·cas(psema, 0, sema)){ |
| // Someone else filled it in. Use theirs. |
| runtime·mach_semdestroy(sema); |
| return; |
| } |
| } |
| |
| |
| // Blocking locks. |
| |
| // Implement Locks, using semaphores. |
| // l->key is the number of threads who want the lock. |
| // In a race, one thread increments l->key from 0 to 1 |
| // and the others increment it from >0 to >1. The thread |
| // who does the 0->1 increment gets the lock, and the |
| // others wait on the semaphore. When the 0->1 thread |
| // releases the lock by decrementing l->key, l->key will |
| // be >0, so it will increment the semaphore to wake up |
| // one of the others. This is the same algorithm used |
| // in Plan 9's user-level locks. |
| |
| void |
| runtime·lock(Lock *l) |
| { |
| if(m->locks < 0) |
| runtime·throw("lock count"); |
| m->locks++; |
| |
| if(runtime·xadd(&l->key, 1) > 1) { // someone else has it; wait |
| // Allocate semaphore if needed. |
| if(l->sema == 0) |
| initsema(&l->sema); |
| runtime·mach_semacquire(l->sema); |
| } |
| } |
| |
| void |
| runtime·unlock(Lock *l) |
| { |
| m->locks--; |
| if(m->locks < 0) |
| runtime·throw("lock count"); |
| |
| if(runtime·xadd(&l->key, -1) > 0) { // someone else is waiting |
| // Allocate semaphore if needed. |
| if(l->sema == 0) |
| initsema(&l->sema); |
| runtime·mach_semrelease(l->sema); |
| } |
| } |
| |
| static void |
| destroylock(Lock *l) |
| { |
| if(l->sema != 0) { |
| runtime·mach_semdestroy(l->sema); |
| l->sema = 0; |
| } |
| } |
| |
| // User-level semaphore implementation: |
| // try to do the operations in user space on u, |
| // but when it's time to block, fall back on the kernel semaphore k. |
| // This is the same algorithm used in Plan 9. |
| void |
| runtime·usemacquire(Usema *s) |
| { |
| if((int32)runtime·xadd(&s->u, -1) < 0) { |
| if(s->k == 0) |
| initsema(&s->k); |
| runtime·mach_semacquire(s->k); |
| } |
| } |
| |
| void |
| runtime·usemrelease(Usema *s) |
| { |
| if((int32)runtime·xadd(&s->u, 1) <= 0) { |
| if(s->k == 0) |
| initsema(&s->k); |
| runtime·mach_semrelease(s->k); |
| } |
| } |
| |
| |
| // Event notifications. |
| void |
| runtime·noteclear(Note *n) |
| { |
| n->wakeup = 0; |
| } |
| |
| void |
| runtime·notesleep(Note *n) |
| { |
| while(!n->wakeup) |
| runtime·usemacquire(&n->sema); |
| } |
| |
| void |
| runtime·notewakeup(Note *n) |
| { |
| n->wakeup = 1; |
| runtime·usemrelease(&n->sema); |
| } |
| |
| |
| // BSD interface for threading. |
| void |
| runtime·osinit(void) |
| { |
| // Register our thread-creation callback (see {amd64,386}/sys.s) |
| // but only if we're not using cgo. If we are using cgo we need |
| // to let the C pthread libary install its own thread-creation callback. |
| if(!runtime·iscgo) |
| runtime·bsdthread_register(); |
| runtime·destroylock = destroylock; |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| } |
| |
| void |
| runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) |
| { |
| int32 errno; |
| |
| m->tls[0] = m->id; // so 386 asm can find it |
| if(0){ |
| runtime·printf("newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", |
| stk, m, g, fn, m->id, m->tls[0], &m); |
| } |
| if((errno = runtime·bsdthread_create(stk, m, g, fn)) < 0) { |
| runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno); |
| runtime·throw("runtime.newosproc"); |
| } |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling. |
| m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K |
| runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); |
| } |
| |
| // Mach IPC, to get at semaphores |
| // Definitions are in /usr/include/mach on a Mac. |
| |
| static void |
| macherror(int32 r, int8 *fn) |
| { |
| runtime·printf("mach error %s: %d\n", fn, r); |
| runtime·throw("mach error"); |
| } |
| |
| enum |
| { |
| DebugMach = 0 |
| }; |
| |
| static MachNDR zerondr; |
| |
| #define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8)) |
| |
| static int32 |
| mach_msg(MachHeader *h, |
| int32 op, |
| uint32 send_size, |
| uint32 rcv_size, |
| uint32 rcv_name, |
| uint32 timeout, |
| uint32 notify) |
| { |
| // TODO: Loop on interrupt. |
| return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify); |
| } |
| |
| // Mach RPC (MIG) |
| |
| enum |
| { |
| MinMachMsg = 48, |
| Reply = 100, |
| }; |
| |
| #pragma pack on |
| typedef struct CodeMsg CodeMsg; |
| struct CodeMsg |
| { |
| MachHeader h; |
| MachNDR NDR; |
| int32 code; |
| }; |
| #pragma pack off |
| |
| static int32 |
| machcall(MachHeader *h, int32 maxsize, int32 rxsize) |
| { |
| uint32 *p; |
| int32 i, ret, id; |
| uint32 port; |
| CodeMsg *c; |
| |
| if((port = m->machport) == 0){ |
| port = runtime·mach_reply_port(); |
| m->machport = port; |
| } |
| |
| h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE); |
| h->msgh_local_port = port; |
| h->msgh_reserved = 0; |
| id = h->msgh_id; |
| |
| if(DebugMach){ |
| p = (uint32*)h; |
| runtime·prints("send:\t"); |
| for(i=0; i<h->msgh_size/sizeof(p[0]); i++){ |
| runtime·prints(" "); |
| runtime·printpointer((void*)p[i]); |
| if(i%8 == 7) |
| runtime·prints("\n\t"); |
| } |
| if(i%8) |
| runtime·prints("\n"); |
| } |
| |
| ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG, |
| h->msgh_size, maxsize, port, 0, 0); |
| if(ret != 0){ |
| if(DebugMach){ |
| runtime·prints("mach_msg error "); |
| runtime·printint(ret); |
| runtime·prints("\n"); |
| } |
| return ret; |
| } |
| |
| if(DebugMach){ |
| p = (uint32*)h; |
| runtime·prints("recv:\t"); |
| for(i=0; i<h->msgh_size/sizeof(p[0]); i++){ |
| runtime·prints(" "); |
| runtime·printpointer((void*)p[i]); |
| if(i%8 == 7) |
| runtime·prints("\n\t"); |
| } |
| if(i%8) |
| runtime·prints("\n"); |
| } |
| |
| if(h->msgh_id != id+Reply){ |
| if(DebugMach){ |
| runtime·prints("mach_msg reply id mismatch "); |
| runtime·printint(h->msgh_id); |
| runtime·prints(" != "); |
| runtime·printint(id+Reply); |
| runtime·prints("\n"); |
| } |
| return -303; // MIG_REPLY_MISMATCH |
| } |
| |
| // Look for a response giving the return value. |
| // Any call can send this back with an error, |
| // and some calls only have return values so they |
| // send it back on success too. I don't quite see how |
| // you know it's one of these and not the full response |
| // format, so just look if the message is right. |
| c = (CodeMsg*)h; |
| if(h->msgh_size == sizeof(CodeMsg) |
| && !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){ |
| if(DebugMach){ |
| runtime·prints("mig result "); |
| runtime·printint(c->code); |
| runtime·prints("\n"); |
| } |
| return c->code; |
| } |
| |
| if(h->msgh_size != rxsize){ |
| if(DebugMach){ |
| runtime·prints("mach_msg reply size mismatch "); |
| runtime·printint(h->msgh_size); |
| runtime·prints(" != "); |
| runtime·printint(rxsize); |
| runtime·prints("\n"); |
| } |
| return -307; // MIG_ARRAY_TOO_LARGE |
| } |
| |
| return 0; |
| } |
| |
| |
| // Semaphores! |
| |
| enum |
| { |
| Tmach_semcreate = 3418, |
| Rmach_semcreate = Tmach_semcreate + Reply, |
| |
| Tmach_semdestroy = 3419, |
| Rmach_semdestroy = Tmach_semdestroy + Reply, |
| |
| // Mach calls that get interrupted by Unix signals |
| // return this error code. We retry them. |
| KERN_ABORTED = 14, |
| }; |
| |
| typedef struct Tmach_semcreateMsg Tmach_semcreateMsg; |
| typedef struct Rmach_semcreateMsg Rmach_semcreateMsg; |
| typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg; |
| // Rmach_semdestroyMsg = CodeMsg |
| |
| #pragma pack on |
| struct Tmach_semcreateMsg |
| { |
| MachHeader h; |
| MachNDR ndr; |
| int32 policy; |
| int32 value; |
| }; |
| |
| struct Rmach_semcreateMsg |
| { |
| MachHeader h; |
| MachBody body; |
| MachPort semaphore; |
| }; |
| |
| struct Tmach_semdestroyMsg |
| { |
| MachHeader h; |
| MachBody body; |
| MachPort semaphore; |
| }; |
| #pragma pack off |
| |
| uint32 |
| runtime·mach_semcreate(void) |
| { |
| union { |
| Tmach_semcreateMsg tx; |
| Rmach_semcreateMsg rx; |
| uint8 pad[MinMachMsg]; |
| } m; |
| int32 r; |
| |
| m.tx.h.msgh_bits = 0; |
| m.tx.h.msgh_size = sizeof(m.tx); |
| m.tx.h.msgh_remote_port = runtime·mach_task_self(); |
| m.tx.h.msgh_id = Tmach_semcreate; |
| m.tx.ndr = zerondr; |
| |
| m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO |
| m.tx.value = 0; |
| |
| while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){ |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_create"); |
| } |
| if(m.rx.body.msgh_descriptor_count != 1) |
| unimplemented("mach_semcreate desc count"); |
| return m.rx.semaphore.name; |
| } |
| |
| void |
| runtime·mach_semdestroy(uint32 sem) |
| { |
| union { |
| Tmach_semdestroyMsg tx; |
| uint8 pad[MinMachMsg]; |
| } m; |
| int32 r; |
| |
| m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX; |
| m.tx.h.msgh_size = sizeof(m.tx); |
| m.tx.h.msgh_remote_port = runtime·mach_task_self(); |
| m.tx.h.msgh_id = Tmach_semdestroy; |
| m.tx.body.msgh_descriptor_count = 1; |
| m.tx.semaphore.name = sem; |
| m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND; |
| m.tx.semaphore.type = 0; |
| |
| while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){ |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_destroy"); |
| } |
| } |
| |
| // The other calls have simple system call traps in sys.s |
| int32 runtime·mach_semaphore_wait(uint32 sema); |
| int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec); |
| int32 runtime·mach_semaphore_signal(uint32 sema); |
| int32 runtime·mach_semaphore_signal_all(uint32 sema); |
| |
| void |
| runtime·mach_semacquire(uint32 sem) |
| { |
| int32 r; |
| |
| while((r = runtime·mach_semaphore_wait(sem)) != 0) { |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_wait"); |
| } |
| } |
| |
| void |
| runtime·mach_semrelease(uint32 sem) |
| { |
| int32 r; |
| |
| while((r = runtime·mach_semaphore_signal(sem)) != 0) { |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_signal"); |
| } |
| } |
| |
| void |
| runtime·sigpanic(void) |
| { |
| switch(g->sig) { |
| case SIGBUS: |
| if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGSEGV: |
| if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGFPE: |
| switch(g->sigcode0) { |
| case FPE_INTDIV: |
| runtime·panicstring("integer divide by zero"); |
| case FPE_INTOVF: |
| runtime·panicstring("integer overflow"); |
| } |
| runtime·panicstring("floating point error"); |
| } |
| runtime·panicstring(runtime·sigtab[g->sig].name); |
| } |