blob: c8e69a382643c6b397142a381b21bfcb0110e959 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains operations on unsigned multi-precision integers.
// These are the building blocks for the operations on signed integers
// and rationals.
// NOTE: PACKAGE UNDER CONSTRUCTION.
//
// The big package implements multi-precision arithmetic (big numbers).
// The following numeric types are supported:
//
// - Int signed integers
//
// All methods on Int take the result as the receiver; if it is one
// of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned.
//
package big
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
// TODO(gri) - convert these routines into methods for type 'nat'
// - decide if type 'nat' should be exported
func normN(z []Word) []Word {
i := len(z);
for i > 0 && z[i-1] == 0 {
i--
}
z = z[0:i];
return z;
}
func makeN(z []Word, m int, clear bool) []Word {
if len(z) > m {
z = z[0:m]; // reuse z - has at least one extra word for a carry, if any
if clear {
for i := range z {
z[i] = 0
}
}
return z;
}
c := 4; // minimum capacity
if m > c {
c = m
}
return make([]Word, m, c+1); // +1: extra word for a carry, if any
}
func newN(z []Word, x uint64) []Word {
if x == 0 {
return makeN(z, 0, false)
}
// single-digit values
if x == uint64(Word(x)) {
z = makeN(z, 1, false);
z[0] = Word(x);
return z;
}
// compute number of words n required to represent x
n := 0;
for t := x; t > 0; t >>= _W {
n++
}
// split x into n words
z = makeN(z, n, false);
for i := 0; i < n; i++ {
z[i] = Word(x & _M);
x >>= _W;
}
return z;
}
func setN(z, x []Word) []Word {
z = makeN(z, len(x), false);
for i, d := range x {
z[i] = d
}
return z;
}
func addNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
return addNN(z, y, x)
case m == 0:
// n == 0 because m >= n; result is 0
return makeN(z, 0, false)
case n == 0:
// result is x
return setN(z, x)
}
// m > 0
z = makeN(z, m, false);
c := addVV(&z[0], &x[0], &y[0], n);
if m > n {
c = addVW(&z[n], &x[n], c, m-n)
}
if c > 0 {
z = z[0 : m+1];
z[m] = c;
}
return z;
}
func subNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
panic("underflow")
case m == 0:
// n == 0 because m >= n; result is 0
return makeN(z, 0, false)
case n == 0:
// result is x
return setN(z, x)
}
// m > 0
z = makeN(z, m, false);
c := subVV(&z[0], &x[0], &y[0], n);
if m > n {
c = subVW(&z[n], &x[n], c, m-n)
}
if c != 0 {
panic("underflow")
}
z = normN(z);
return z;
}
func cmpNN(x, y []Word) (r int) {
m := len(x);
n := len(y);
if m != n || m == 0 {
switch {
case m < n:
r = -1
case m > n:
r = 1
}
return;
}
i := m - 1;
for i > 0 && x[i] == y[i] {
i--
}
switch {
case x[i] < y[i]:
r = -1
case x[i] > y[i]:
r = 1
}
return;
}
func mulAddNWW(z, x []Word, y, r Word) []Word {
m := len(x);
if m == 0 || y == 0 {
return newN(z, uint64(r)) // result is r
}
// m > 0
z = makeN(z, m, false);
c := mulAddVWW(&z[0], &x[0], y, r, m);
if c > 0 {
z = z[0 : m+1];
z[m] = c;
}
return z;
}
func mulNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
return mulNN(z, y, x)
case m == 0 || n == 0:
return makeN(z, 0, false)
case n == 1:
return mulAddNWW(z, x, y[0], 0)
}
// m >= n && m > 1 && n > 1
z = makeN(z, m+n, true);
if &z[0] == &x[0] || &z[0] == &y[0] {
z = makeN(nil, m+n, true) // z is an alias for x or y - cannot reuse
}
for i := 0; i < n; i++ {
if f := y[i]; f != 0 {
z[m+i] = addMulVVW(&z[i], &x[0], f, m)
}
}
z = normN(z);
return z;
}
// q = (x-r)/y, with 0 <= r < y
func divNW(z, x []Word, y Word) (q []Word, r Word) {
m := len(x);
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = setN(z, x); // result is x
return;
case m == 0:
q = setN(z, nil); // result is 0
return;
}
// m > 0
z = makeN(z, m, false);
r = divWVW(&z[0], 0, &x[0], y, m);
q = normN(z);
return;
}
// q = (uIn-r)/v, with 0 <= r < y
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(v) >= 2
// len(uIn) >= 1 + len(vIn)
func divNN(z, z2, uIn, v []Word) (q, r []Word) {
n := len(v);
m := len(uIn) - len(v);
u := makeN(z2, len(uIn)+1, false);
qhatv := make([]Word, len(v)+1);
q = makeN(z, m+1, false);
// D1.
shift := leadingZeroBits(v[n-1]);
shiftLeft(v, v, shift);
shiftLeft(u, uIn, shift);
u[len(uIn)] = uIn[len(uIn)-1] >> (uint(_W) - uint(shift));
// D2.
for j := m; j >= 0; j-- {
// D3.
qhat, rhat := divWW_g(u[j+n], u[j+n-1], v[n-1]);
// x1 | x2 = q̂v_{n-2}
x1, x2 := mulWW_g(qhat, v[n-2]);
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
for greaterThan(x1, x2, rhat, u[j+n-2]) {
qhat--;
prevRhat := rhat;
rhat += v[n-1];
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW_g(qhat, v[n-2]);
}
// D4.
qhatv[len(v)] = mulAddVWW(&qhatv[0], &v[0], qhat, 0, len(v));
c := subVV(&u[j], &u[j], &qhatv[0], len(qhatv));
if c != 0 {
c := addVV(&u[j], &u[j], &v[0], len(v));
u[j+len(v)] += c;
qhat--;
}
q[j] = qhat;
}
q = normN(q);
shiftRight(u, u, shift);
shiftRight(v, v, shift);
r = normN(u);
return q, r;
}
// log2 computes the integer binary logarithm of x.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0, the result is -1.
func log2(x Word) int {
n := 0;
for ; x > 0; x >>= 1 {
n++
}
return n - 1;
}
// log2N computes the integer binary logarithm of x.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0, the result is -1.
func log2N(x []Word) int {
m := len(x);
if m > 0 {
return (m-1)*int(_W) + log2(x[m-1])
}
return -1;
}
func hexValue(ch byte) int {
var d byte;
switch {
case '0' <= ch && ch <= '9':
d = ch - '0'
case 'a' <= ch && ch <= 'f':
d = ch - 'a' + 10
case 'A' <= ch && ch <= 'F':
d = ch - 'A' + 10
default:
return -1
}
return int(d);
}
// scanN returns the natural number corresponding to the
// longest possible prefix of s representing a natural number in a
// given conversion base, the actual conversion base used, and the
// prefix length. The syntax of natural numbers follows the syntax
// of unsigned integer literals in Go.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
// ``0'' prefix selects base 8. Otherwise the selected base is 10.
//
func scanN(z []Word, s string, base int) ([]Word, int, int) {
// determine base if necessary
i, n := 0, len(s);
if base == 0 {
base = 10;
if n > 0 && s[0] == '0' {
if n > 1 && (s[1] == 'x' || s[1] == 'X') {
if n == 2 {
// Reject a string which is just '0x' as nonsense.
return nil, 0, 0
}
base, i = 16, 2;
} else {
base, i = 8, 1
}
}
}
if base < 2 || 16 < base {
panic("illegal base")
}
// convert string
z = makeN(z, len(z), false);
for ; i < n; i++ {
d := hexValue(s[i]);
if 0 <= d && d < base {
z = mulAddNWW(z, z, Word(base), Word(d))
} else {
break
}
}
return z, base, i;
}
// string converts x to a string for a given base, with 2 <= base <= 16.
// TODO(gri) in the style of the other routines, perhaps this should take
// a []byte buffer and return it
func stringN(x []Word, base int) string {
if base < 2 || 16 < base {
panic("illegal base")
}
if len(x) == 0 {
return "0"
}
// allocate buffer for conversion
i := (log2N(x)+1)/log2(Word(base)) + 1; // +1: round up
s := make([]byte, i);
// don't destroy x
q := setN(nil, x);
// convert
for len(q) > 0 {
i--;
var r Word;
q, r = divNW(q, q, Word(base));
s[i] = "0123456789abcdef"[r];
}
return string(s[i:len(s)]);
}
// leadingZeroBits returns the number of leading zero bits in x.
func leadingZeroBits(x Word) int {
c := 0;
if x < 1<<(_W/2) {
x <<= _W / 2;
c = int(_W / 2);
}
for i := 0; x != 0; i++ {
if x&(1<<(_W-1)) != 0 {
return i + c
}
x <<= 1;
}
return int(_W);
}
func shiftLeft(dst, src []Word, n int) {
if len(src) == 0 {
return
}
ñ := uint(_W) - uint(n);
for i := len(src) - 1; i >= 1; i-- {
dst[i] = src[i] << uint(n);
dst[i] |= src[i-1] >> ñ;
}
dst[0] = src[0] << uint(n);
}
func shiftRight(dst, src []Word, n int) {
if len(src) == 0 {
return
}
ñ := uint(_W) - uint(n);
for i := 0; i < len(src)-1; i++ {
dst[i] = src[i] >> uint(n);
dst[i] |= src[i+1] << ñ;
}
dst[len(src)-1] = src[len(src)-1] >> uint(n);
}
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 }