blob: 38914bb2b9f0912b5caf76a03d03981eaecea2b0 [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
// Look up symbols in the Linux vDSO.
// This code was originally based on the sample Linux vDSO parser at
// https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/vDSO/parse_vdso.c
// This implements the ELF dynamic linking spec at
// http://sco.com/developers/gabi/latest/ch5.dynamic.html
// The version section is documented at
// http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/symversion.html
const (
_AT_RANDOM = 25
_AT_SYSINFO_EHDR = 33
_AT_NULL = 0 /* End of vector */
_PT_LOAD = 1 /* Loadable program segment */
_PT_DYNAMIC = 2 /* Dynamic linking information */
_DT_NULL = 0 /* Marks end of dynamic section */
_DT_HASH = 4 /* Dynamic symbol hash table */
_DT_STRTAB = 5 /* Address of string table */
_DT_SYMTAB = 6 /* Address of symbol table */
_DT_VERSYM = 0x6ffffff0
_DT_VERDEF = 0x6ffffffc
_VER_FLG_BASE = 0x1 /* Version definition of file itself */
_SHN_UNDEF = 0 /* Undefined section */
_SHT_DYNSYM = 11 /* Dynamic linker symbol table */
_STT_FUNC = 2 /* Symbol is a code object */
_STB_GLOBAL = 1 /* Global symbol */
_STB_WEAK = 2 /* Weak symbol */
_EI_NIDENT = 16
)
/* How to extract and insert information held in the st_info field. */
func _ELF64_ST_BIND(val byte) byte { return val >> 4 }
func _ELF64_ST_TYPE(val byte) byte { return val & 0xf }
type elf64Sym struct {
st_name uint32
st_info byte
st_other byte
st_shndx uint16
st_value uint64
st_size uint64
}
type elf64Verdef struct {
vd_version uint16 /* Version revision */
vd_flags uint16 /* Version information */
vd_ndx uint16 /* Version Index */
vd_cnt uint16 /* Number of associated aux entries */
vd_hash uint32 /* Version name hash value */
vd_aux uint32 /* Offset in bytes to verdaux array */
vd_next uint32 /* Offset in bytes to next verdef entry */
}
type elf64Ehdr struct {
e_ident [_EI_NIDENT]byte /* Magic number and other info */
e_type uint16 /* Object file type */
e_machine uint16 /* Architecture */
e_version uint32 /* Object file version */
e_entry uint64 /* Entry point virtual address */
e_phoff uint64 /* Program header table file offset */
e_shoff uint64 /* Section header table file offset */
e_flags uint32 /* Processor-specific flags */
e_ehsize uint16 /* ELF header size in bytes */
e_phentsize uint16 /* Program header table entry size */
e_phnum uint16 /* Program header table entry count */
e_shentsize uint16 /* Section header table entry size */
e_shnum uint16 /* Section header table entry count */
e_shstrndx uint16 /* Section header string table index */
}
type elf64Phdr struct {
p_type uint32 /* Segment type */
p_flags uint32 /* Segment flags */
p_offset uint64 /* Segment file offset */
p_vaddr uint64 /* Segment virtual address */
p_paddr uint64 /* Segment physical address */
p_filesz uint64 /* Segment size in file */
p_memsz uint64 /* Segment size in memory */
p_align uint64 /* Segment alignment */
}
type elf64Shdr struct {
sh_name uint32 /* Section name (string tbl index) */
sh_type uint32 /* Section type */
sh_flags uint64 /* Section flags */
sh_addr uint64 /* Section virtual addr at execution */
sh_offset uint64 /* Section file offset */
sh_size uint64 /* Section size in bytes */
sh_link uint32 /* Link to another section */
sh_info uint32 /* Additional section information */
sh_addralign uint64 /* Section alignment */
sh_entsize uint64 /* Entry size if section holds table */
}
type elf64Dyn struct {
d_tag int64 /* Dynamic entry type */
d_val uint64 /* Integer value */
}
type elf64Verdaux struct {
vda_name uint32 /* Version or dependency names */
vda_next uint32 /* Offset in bytes to next verdaux entry */
}
type elf64Auxv struct {
a_type uint64 /* Entry type */
a_val uint64 /* Integer value */
}
type symbol_key struct {
name string
sym_hash uint32
ptr *uintptr
}
type version_key struct {
version string
ver_hash uint32
}
type vdso_info struct {
valid bool
/* Load information */
load_addr uintptr
load_offset uintptr /* load_addr - recorded vaddr */
/* Symbol table */
symtab *[1 << 32]elf64Sym
symstrings *[1 << 32]byte
chain []uint32
bucket []uint32
/* Version table */
versym *[1 << 32]uint16
verdef *elf64Verdef
}
var linux26 = version_key{"LINUX_2.6", 0x3ae75f6}
var sym_keys = []symbol_key{
{"__vdso_time", 0xa33c485, &__vdso_time_sym},
{"__vdso_gettimeofday", 0x315ca59, &__vdso_gettimeofday_sym},
{"__vdso_clock_gettime", 0xd35ec75, &__vdso_clock_gettime_sym},
}
// initialize with vsyscall fallbacks
var (
__vdso_time_sym uintptr = 0xffffffffff600400
__vdso_gettimeofday_sym uintptr = 0xffffffffff600000
__vdso_clock_gettime_sym uintptr = 0
)
func vdso_init_from_sysinfo_ehdr(info *vdso_info, hdr *elf64Ehdr) {
info.valid = false
info.load_addr = uintptr(unsafe.Pointer(hdr))
pt := unsafe.Pointer(info.load_addr + uintptr(hdr.e_phoff))
// We need two things from the segment table: the load offset
// and the dynamic table.
var found_vaddr bool
var dyn *[1 << 20]elf64Dyn
for i := uint16(0); i < hdr.e_phnum; i++ {
pt := (*elf64Phdr)(add(pt, uintptr(i)*unsafe.Sizeof(elf64Phdr{})))
switch pt.p_type {
case _PT_LOAD:
if !found_vaddr {
found_vaddr = true
info.load_offset = info.load_addr + uintptr(pt.p_offset-pt.p_vaddr)
}
case _PT_DYNAMIC:
dyn = (*[1 << 20]elf64Dyn)(unsafe.Pointer(info.load_addr + uintptr(pt.p_offset)))
}
}
if !found_vaddr || dyn == nil {
return // Failed
}
// Fish out the useful bits of the dynamic table.
var hash *[1 << 30]uint32
hash = nil
info.symstrings = nil
info.symtab = nil
info.versym = nil
info.verdef = nil
for i := 0; dyn[i].d_tag != _DT_NULL; i++ {
dt := &dyn[i]
p := info.load_offset + uintptr(dt.d_val)
switch dt.d_tag {
case _DT_STRTAB:
info.symstrings = (*[1 << 32]byte)(unsafe.Pointer(p))
case _DT_SYMTAB:
info.symtab = (*[1 << 32]elf64Sym)(unsafe.Pointer(p))
case _DT_HASH:
hash = (*[1 << 30]uint32)(unsafe.Pointer(p))
case _DT_VERSYM:
info.versym = (*[1 << 32]uint16)(unsafe.Pointer(p))
case _DT_VERDEF:
info.verdef = (*elf64Verdef)(unsafe.Pointer(p))
}
}
if info.symstrings == nil || info.symtab == nil || hash == nil {
return // Failed
}
if info.verdef == nil {
info.versym = nil
}
// Parse the hash table header.
nbucket := hash[0]
nchain := hash[1]
info.bucket = hash[2 : 2+nbucket]
info.chain = hash[2+nbucket : 2+nbucket+nchain]
// That's all we need.
info.valid = true
}
func vdso_find_version(info *vdso_info, ver *version_key) int32 {
if !info.valid {
return 0
}
def := info.verdef
for {
if def.vd_flags&_VER_FLG_BASE == 0 {
aux := (*elf64Verdaux)(add(unsafe.Pointer(def), uintptr(def.vd_aux)))
if def.vd_hash == ver.ver_hash && ver.version == gostringnocopy(&info.symstrings[aux.vda_name]) {
return int32(def.vd_ndx & 0x7fff)
}
}
if def.vd_next == 0 {
break
}
def = (*elf64Verdef)(add(unsafe.Pointer(def), uintptr(def.vd_next)))
}
return -1 // can not match any version
}
func vdso_parse_symbols(info *vdso_info, version int32) {
if !info.valid {
return
}
for _, k := range sym_keys {
for chain := info.bucket[k.sym_hash%uint32(len(info.bucket))]; chain != 0; chain = info.chain[chain] {
sym := &info.symtab[chain]
typ := _ELF64_ST_TYPE(sym.st_info)
bind := _ELF64_ST_BIND(sym.st_info)
if typ != _STT_FUNC || bind != _STB_GLOBAL && bind != _STB_WEAK || sym.st_shndx == _SHN_UNDEF {
continue
}
if k.name != gostringnocopy(&info.symstrings[sym.st_name]) {
continue
}
// Check symbol version.
if info.versym != nil && version != 0 && int32(info.versym[chain]&0x7fff) != version {
continue
}
*k.ptr = info.load_offset + uintptr(sym.st_value)
break
}
}
}
func sysargs(argc int32, argv **byte) {
n := argc + 1
// skip envp to get to ELF auxiliary vector.
for argv_index(argv, n) != nil {
n++
}
// skip NULL separator
n++
// now argv+n is auxv
auxv := (*[1 << 32]elf64Auxv)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize))
for i := 0; auxv[i].a_type != _AT_NULL; i++ {
av := &auxv[i]
switch av.a_type {
case _AT_SYSINFO_EHDR:
if av.a_val == 0 {
// Something went wrong
continue
}
var info vdso_info
// TODO(rsc): I don't understand why the compiler thinks info escapes
// when passed to the three functions below.
info1 := (*vdso_info)(noescape(unsafe.Pointer(&info)))
vdso_init_from_sysinfo_ehdr(info1, (*elf64Ehdr)(unsafe.Pointer(uintptr(av.a_val))))
vdso_parse_symbols(info1, vdso_find_version(info1, &linux26))
case _AT_RANDOM:
startupRandomData = (*[16]byte)(unsafe.Pointer(uintptr(av.a_val)))[:]
}
}
}