blob: bf3e1ccb839b23383a6b745a1ad563a4ce08b667 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// From DragonFly's <sys/sysctl.h>
const (
_CTL_HW = 6
_HW_NCPU = 3
)
var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}}
func getncpu() int32 {
mib := [2]uint32{_CTL_HW, _HW_NCPU}
out := uint32(0)
nout := unsafe.Sizeof(out)
ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0)
if ret >= 0 {
return int32(out)
}
return 1
}
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
systemstack(func() {
futexsleep1(addr, val, ns)
})
}
func futexsleep1(addr *uint32, val uint32, ns int64) {
var timeout int32
if ns >= 0 {
// The timeout is specified in microseconds - ensure that we
// do not end up dividing to zero, which would put us to sleep
// indefinitely...
timeout = timediv(ns, 1000, nil)
if timeout == 0 {
timeout = 1
}
}
// sys_umtx_sleep will return EWOULDBLOCK (EAGAIN) when the timeout
// expires or EBUSY if the mutex value does not match.
ret := sys_umtx_sleep(addr, int32(val), timeout)
if ret >= 0 || ret == -_EINTR || ret == -_EAGAIN || ret == -_EBUSY {
return
}
print("umtx_sleep addr=", addr, " val=", val, " ret=", ret, "\n")
*(*int32)(unsafe.Pointer(uintptr(0x1005))) = 0x1005
}
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := sys_umtx_wakeup(addr, int32(cnt))
if ret >= 0 {
return
}
systemstack(func() {
print("umtx_wake_addr=", addr, " ret=", ret, "\n")
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
})
}
func lwp_start(uintptr)
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newosproc(mp *m, stk unsafe.Pointer) {
if false {
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " lwp_start=", funcPC(lwp_start), " id=", mp.id, " ostk=", &mp, "\n")
}
var oset sigset
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
params := lwpparams{
start_func: funcPC(lwp_start),
arg: unsafe.Pointer(mp),
stack: uintptr(stk),
tid1: unsafe.Pointer(&mp.procid),
tid2: nil,
}
lwp_create(&params)
sigprocmask(_SIG_SETMASK, &oset, nil)
}
func osinit() {
ncpu = getncpu()
}
var urandom_dev = []byte("/dev/urandom\x00")
//go:nosplit
func getRandomData(r []byte) {
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
closefd(fd)
extendRandom(r, int(n))
}
func goenvs() {
goenvs_unix()
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
func mpreinit(mp *m) {
mp.gsignal = malg(32 * 1024)
mp.gsignal.m = mp
}
//go:nosplit
func msigsave(mp *m) {
sigprocmask(_SIG_SETMASK, nil, &mp.sigmask)
}
//go:nosplit
func msigrestore(sigmask sigset) {
sigprocmask(_SIG_SETMASK, &sigmask, nil)
}
//go:nosplit
func sigblock() {
sigprocmask(_SIG_SETMASK, &sigset_all, nil)
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
func minit() {
_g_ := getg()
// m.procid is a uint64, but lwp_start writes an int32. Fix it up.
_g_.m.procid = uint64(*(*int32)(unsafe.Pointer(&_g_.m.procid)))
// Initialize signal handling.
// On DragonFly a thread created by pthread_create inherits
// the signal stack of the creating thread. We always create
// a new signal stack here, to avoid having two Go threads
// using the same signal stack. This breaks the case of a
// thread created in C that calls sigaltstack and then calls a
// Go function, because we will lose track of the C code's
// sigaltstack, but it's the best we can do.
signalstack(&_g_.m.gsignal.stack)
_g_.m.newSigstack = true
// restore signal mask from m.sigmask and unblock essential signals
nmask := _g_.m.sigmask
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
nmask.__bits[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
}
sigprocmask(_SIG_SETMASK, &nmask, nil)
}
// Called from dropm to undo the effect of an minit.
//go:nosplit
func unminit() {
if getg().m.newSigstack {
signalstack(nil)
}
}
func memlimit() uintptr {
/*
TODO: Convert to Go when something actually uses the result.
Rlimit rl;
extern byte runtime·text[], runtime·end[];
uintptr used;
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
return 0;
if(rl.rlim_cur >= 0x7fffffff)
return 0;
// Estimate our VM footprint excluding the heap.
// Not an exact science: use size of binary plus
// some room for thread stacks.
used = runtime·end - runtime·text + (64<<20);
if(used >= rl.rlim_cur)
return 0;
// If there's not at least 16 MB left, we're probably
// not going to be able to do much. Treat as no limit.
rl.rlim_cur -= used;
if(rl.rlim_cur < (16<<20))
return 0;
return rl.rlim_cur - used;
*/
return 0
}
func sigtramp()
type sigactiont struct {
sa_sigaction uintptr
sa_flags int32
sa_mask sigset
}
//go:nosplit
//go:nowritebarrierrec
func setsig(i int32, fn uintptr, restart bool) {
var sa sigactiont
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK
if restart {
sa.sa_flags |= _SA_RESTART
}
sa.sa_mask = sigset_all
if fn == funcPC(sighandler) {
fn = funcPC(sigtramp)
}
sa.sa_sigaction = fn
sigaction(i, &sa, nil)
}
//go:nosplit
//go:nowritebarrierrec
func setsigstack(i int32) {
throw("setsigstack")
}
//go:nosplit
//go:nowritebarrierrec
func getsig(i int32) uintptr {
var sa sigactiont
sigaction(i, nil, &sa)
if sa.sa_sigaction == funcPC(sigtramp) {
return funcPC(sighandler)
}
return sa.sa_sigaction
}
//go:nosplit
func signalstack(s *stack) {
var st sigaltstackt
if s == nil {
st.ss_flags = _SS_DISABLE
} else {
st.ss_sp = s.lo
st.ss_size = s.hi - s.lo
st.ss_flags = 0
}
sigaltstack(&st, nil)
}
//go:nosplit
//go:nowritebarrierrec
func updatesigmask(m sigmask) {
var mask sigset
copy(mask.__bits[:], m[:])
sigprocmask(_SIG_SETMASK, &mask, nil)
}
func unblocksig(sig int32) {
var mask sigset
mask.__bits[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31)
sigprocmask(_SIG_UNBLOCK, &mask, nil)
}