blob: 4d5ea3bf45155a0da2708f8e327255318e4b2324 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "type.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "../../cmd/ld/textflag.h"
#pragma dynimport runtime·AddVectoredExceptionHandler AddVectoredExceptionHandler "kernel32.dll"
#pragma dynimport runtime·CloseHandle CloseHandle "kernel32.dll"
#pragma dynimport runtime·CreateEvent CreateEventA "kernel32.dll"
#pragma dynimport runtime·CreateThread CreateThread "kernel32.dll"
#pragma dynimport runtime·CreateWaitableTimer CreateWaitableTimerA "kernel32.dll"
#pragma dynimport runtime·CryptAcquireContextW CryptAcquireContextW "advapi32.dll"
#pragma dynimport runtime·CryptGenRandom CryptGenRandom "advapi32.dll"
#pragma dynimport runtime·CryptReleaseContext CryptReleaseContext "advapi32.dll"
#pragma dynimport runtime·DuplicateHandle DuplicateHandle "kernel32.dll"
#pragma dynimport runtime·ExitProcess ExitProcess "kernel32.dll"
#pragma dynimport runtime·FreeEnvironmentStringsW FreeEnvironmentStringsW "kernel32.dll"
#pragma dynimport runtime·GetEnvironmentStringsW GetEnvironmentStringsW "kernel32.dll"
#pragma dynimport runtime·GetProcAddress GetProcAddress "kernel32.dll"
#pragma dynimport runtime·GetStdHandle GetStdHandle "kernel32.dll"
#pragma dynimport runtime·GetSystemInfo GetSystemInfo "kernel32.dll"
#pragma dynimport runtime·GetSystemTimeAsFileTime GetSystemTimeAsFileTime "kernel32.dll"
#pragma dynimport runtime·GetThreadContext GetThreadContext "kernel32.dll"
#pragma dynimport runtime·LoadLibrary LoadLibraryW "kernel32.dll"
#pragma dynimport runtime·LoadLibraryA LoadLibraryA "kernel32.dll"
#pragma dynimport runtime·NtWaitForSingleObject NtWaitForSingleObject "ntdll.dll"
#pragma dynimport runtime·ResumeThread ResumeThread "kernel32.dll"
#pragma dynimport runtime·SetConsoleCtrlHandler SetConsoleCtrlHandler "kernel32.dll"
#pragma dynimport runtime·SetEvent SetEvent "kernel32.dll"
#pragma dynimport runtime·SetProcessPriorityBoost SetProcessPriorityBoost "kernel32.dll"
#pragma dynimport runtime·SetThreadPriority SetThreadPriority "kernel32.dll"
#pragma dynimport runtime·SetWaitableTimer SetWaitableTimer "kernel32.dll"
#pragma dynimport runtime·Sleep Sleep "kernel32.dll"
#pragma dynimport runtime·SuspendThread SuspendThread "kernel32.dll"
#pragma dynimport runtime·WaitForSingleObject WaitForSingleObject "kernel32.dll"
#pragma dynimport runtime·WriteFile WriteFile "kernel32.dll"
#pragma dynimport runtime·timeBeginPeriod timeBeginPeriod "winmm.dll"
extern void *runtime·AddVectoredExceptionHandler;
extern void *runtime·CloseHandle;
extern void *runtime·CreateEvent;
extern void *runtime·CreateThread;
extern void *runtime·CreateWaitableTimer;
extern void *runtime·CryptAcquireContextW;
extern void *runtime·CryptGenRandom;
extern void *runtime·CryptReleaseContext;
extern void *runtime·DuplicateHandle;
extern void *runtime·ExitProcess;
extern void *runtime·FreeEnvironmentStringsW;
extern void *runtime·GetEnvironmentStringsW;
extern void *runtime·GetProcAddress;
extern void *runtime·GetStdHandle;
extern void *runtime·GetSystemInfo;
extern void *runtime·GetSystemTimeAsFileTime;
extern void *runtime·GetThreadContext;
extern void *runtime·LoadLibrary;
extern void *runtime·LoadLibraryA;
extern void *runtime·NtWaitForSingleObject;
extern void *runtime·ResumeThread;
extern void *runtime·SetConsoleCtrlHandler;
extern void *runtime·SetEvent;
extern void *runtime·SetProcessPriorityBoost;
extern void *runtime·SetThreadPriority;
extern void *runtime·SetWaitableTimer;
extern void *runtime·Sleep;
extern void *runtime·SuspendThread;
extern void *runtime·WaitForSingleObject;
extern void *runtime·WriteFile;
extern void *runtime·timeBeginPeriod;
void *runtime·GetQueuedCompletionStatusEx;
extern uintptr runtime·externalthreadhandlerp;
void runtime·externalthreadhandler(void);
void runtime·sigtramp(void);
static int32
getproccount(void)
{
SystemInfo info;
runtime·stdcall(runtime·GetSystemInfo, 1, &info);
return info.dwNumberOfProcessors;
}
void
runtime·osinit(void)
{
void *kernel32;
runtime·externalthreadhandlerp = (uintptr)runtime·externalthreadhandler;
runtime·stdcall(runtime·AddVectoredExceptionHandler, 2, (uintptr)1, (uintptr)runtime·sigtramp);
runtime·stdcall(runtime·SetConsoleCtrlHandler, 2, runtime·ctrlhandler, (uintptr)1);
runtime·stdcall(runtime·timeBeginPeriod, 1, (uintptr)1);
runtime·ncpu = getproccount();
// Windows dynamic priority boosting assumes that a process has different types
// of dedicated threads -- GUI, IO, computational, etc. Go processes use
// equivalent threads that all do a mix of GUI, IO, computations, etc.
// In such context dynamic priority boosting does nothing but harm, so we turn it off.
runtime·stdcall(runtime·SetProcessPriorityBoost, 2, (uintptr)-1, (uintptr)1);
kernel32 = runtime·stdcall(runtime·LoadLibraryA, 1, "kernel32.dll");
if(kernel32 != nil) {
runtime·GetQueuedCompletionStatusEx = runtime·stdcall(runtime·GetProcAddress, 2, kernel32, "GetQueuedCompletionStatusEx");
}
}
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
uintptr handle;
*rnd = nil;
*rnd_len = 0;
if(runtime·stdcall(runtime·CryptAcquireContextW, 5, &handle, nil, nil,
(uintptr)1 /* PROV_RSA_FULL */,
(uintptr)0xf0000000U /* CRYPT_VERIFYCONTEXT */) != 0) {
static byte random_data[HashRandomBytes];
if(runtime·stdcall(runtime·CryptGenRandom, 3, handle, (uintptr)HashRandomBytes, random_data)) {
*rnd = random_data;
*rnd_len = HashRandomBytes;
}
runtime·stdcall(runtime·CryptReleaseContext, 2, handle, (uintptr)0);
}
}
void
runtime·goenvs(void)
{
extern Slice syscall·envs;
uint16 *env;
String *s;
int32 i, n;
uint16 *p;
env = runtime·stdcall(runtime·GetEnvironmentStringsW, 0);
n = 0;
for(p=env; *p; n++)
p += runtime·findnullw(p)+1;
s = runtime·malloc(n*sizeof s[0]);
p = env;
for(i=0; i<n; i++) {
s[i] = runtime·gostringw(p);
p += runtime·findnullw(p)+1;
}
syscall·envs.array = (byte*)s;
syscall·envs.len = n;
syscall·envs.cap = n;
runtime·stdcall(runtime·FreeEnvironmentStringsW, 1, env);
}
void
runtime·exit(int32 code)
{
runtime·stdcall(runtime·ExitProcess, 1, (uintptr)code);
}
int32
runtime·write(int32 fd, void *buf, int32 n)
{
void *handle;
uint32 written;
written = 0;
switch(fd) {
case 1:
handle = runtime·stdcall(runtime·GetStdHandle, 1, (uintptr)-11);
break;
case 2:
handle = runtime·stdcall(runtime·GetStdHandle, 1, (uintptr)-12);
break;
default:
return -1;
}
runtime·stdcall(runtime·WriteFile, 5, handle, buf, (uintptr)n, &written, (uintptr)0);
return written;
}
#define INFINITE ((uintptr)0xFFFFFFFF)
#pragma textflag NOSPLIT
int32
runtime·semasleep(int64 ns)
{
// store ms in ns to save stack space
if(ns < 0)
ns = INFINITE;
else {
ns = runtime·timediv(ns, 1000000, nil);
if(ns == 0)
ns = 1;
}
if(runtime·stdcall(runtime·WaitForSingleObject, 2, m->waitsema, (uintptr)ns) != 0)
return -1; // timeout
return 0;
}
void
runtime·semawakeup(M *mp)
{
runtime·stdcall(runtime·SetEvent, 1, mp->waitsema);
}
uintptr
runtime·semacreate(void)
{
return (uintptr)runtime·stdcall(runtime·CreateEvent, 4, (uintptr)0, (uintptr)0, (uintptr)0, (uintptr)0);
}
#define STACK_SIZE_PARAM_IS_A_RESERVATION ((uintptr)0x00010000)
void
runtime·newosproc(M *mp, void *stk)
{
void *thandle;
USED(stk);
thandle = runtime·stdcall(runtime·CreateThread, 6,
nil, (uintptr)0x20000, runtime·tstart_stdcall, mp,
STACK_SIZE_PARAM_IS_A_RESERVATION, nil);
if(thandle == nil) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), runtime·getlasterror());
runtime·throw("runtime.newosproc");
}
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
USED(mp);
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
void *thandle;
// -1 = current process, -2 = current thread
runtime·stdcall(runtime·DuplicateHandle, 7,
(uintptr)-1, (uintptr)-2, (uintptr)-1, &thandle,
(uintptr)0, (uintptr)0, (uintptr)DUPLICATE_SAME_ACCESS);
runtime·atomicstorep(&m->thread, thandle);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
}
#pragma textflag NOSPLIT
int64
runtime·nanotime(void)
{
int64 filetime;
runtime·stdcall(runtime·GetSystemTimeAsFileTime, 1, &filetime);
// Filetime is 100s of nanoseconds since January 1, 1601.
// Convert to nanoseconds since January 1, 1970.
return (filetime - 116444736000000000LL) * 100LL;
}
void
time·now(int64 sec, int32 usec)
{
int64 ns;
ns = runtime·nanotime();
sec = ns / 1000000000LL;
usec = ns - sec * 1000000000LL;
FLUSH(&sec);
FLUSH(&usec);
}
// Calling stdcall on os stack.
#pragma textflag NOSPLIT
void *
runtime·stdcall(void *fn, int32 count, ...)
{
m->libcall.fn = fn;
m->libcall.n = count;
m->libcall.args = (uintptr*)&count + 1;
if(m->profilehz != 0) {
// leave pc/sp for cpu profiler
m->libcallg = g;
m->libcallpc = (uintptr)runtime·getcallerpc(&fn);
// sp must be the last, because once async cpu profiler finds
// all three values to be non-zero, it will use them
m->libcallsp = (uintptr)runtime·getcallersp(&fn);
}
runtime·asmcgocall(runtime·asmstdcall, &m->libcall);
m->libcallsp = 0;
return (void*)m->libcall.r1;
}
extern void runtime·usleep1(uint32);
#pragma textflag NOSPLIT
void
runtime·osyield(void)
{
runtime·usleep1(1);
}
#pragma textflag NOSPLIT
void
runtime·usleep(uint32 us)
{
// Have 1us units; want 100ns units.
runtime·usleep1(10*us);
}
uint32
runtime·issigpanic(uint32 code)
{
switch(code) {
case EXCEPTION_ACCESS_VIOLATION:
case EXCEPTION_INT_DIVIDE_BY_ZERO:
case EXCEPTION_INT_OVERFLOW:
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_UNDERFLOW:
return 1;
}
return 0;
}
void
runtime·sigpanic(void)
{
if(!runtime·canpanic(g))
runtime·throw("unexpected signal during runtime execution");
switch(g->sig) {
case EXCEPTION_ACCESS_VIOLATION:
if(g->sigcode1 < 0x1000 || g->paniconfault) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case EXCEPTION_INT_DIVIDE_BY_ZERO:
runtime·panicstring("integer divide by zero");
case EXCEPTION_INT_OVERFLOW:
runtime·panicstring("integer overflow");
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_UNDERFLOW:
runtime·panicstring("floating point error");
}
runtime·throw("fault");
}
void
runtime·initsig(void)
{
// following line keeps sigtramp alive at link stage
// if there's a better way please write it here
void *p = runtime·sigtramp;
USED(p);
}
uint32
runtime·ctrlhandler1(uint32 type)
{
int32 s;
switch(type) {
case CTRL_C_EVENT:
case CTRL_BREAK_EVENT:
s = SIGINT;
break;
default:
return 0;
}
if(runtime·sigsend(s))
return 1;
runtime·exit(2); // SIGINT, SIGTERM, etc
return 0;
}
extern void runtime·dosigprof(Context *r, G *gp, M *mp);
extern void runtime·profileloop(void);
static void *profiletimer;
static void
profilem(M *mp)
{
extern M runtime·m0;
extern uint32 runtime·tls0[];
byte rbuf[sizeof(Context)+15];
Context *r;
void *tls;
G *gp;
tls = mp->tls;
if(mp == &runtime·m0)
tls = runtime·tls0;
gp = *(G**)tls;
// align Context to 16 bytes
r = (Context*)((uintptr)(&rbuf[15]) & ~15);
r->ContextFlags = CONTEXT_CONTROL;
runtime·stdcall(runtime·GetThreadContext, 2, mp->thread, r);
runtime·dosigprof(r, gp, mp);
}
void
runtime·profileloop1(void)
{
M *mp, *allm;
void *thread;
runtime·stdcall(runtime·SetThreadPriority, 2,
(uintptr)-2, (uintptr)THREAD_PRIORITY_HIGHEST);
for(;;) {
runtime·stdcall(runtime·WaitForSingleObject, 2, profiletimer, (uintptr)-1);
allm = runtime·atomicloadp(&runtime·allm);
for(mp = allm; mp != nil; mp = mp->alllink) {
thread = runtime·atomicloadp(&mp->thread);
// Do not profile threads blocked on Notes,
// this includes idle worker threads,
// idle timer thread, idle heap scavenger, etc.
if(thread == nil || mp->profilehz == 0 || mp->blocked)
continue;
runtime·stdcall(runtime·SuspendThread, 1, thread);
if(mp->profilehz != 0 && !mp->blocked)
profilem(mp);
runtime·stdcall(runtime·ResumeThread, 1, thread);
}
}
}
void
runtime·resetcpuprofiler(int32 hz)
{
static Lock lock;
void *timer, *thread;
int32 ms;
int64 due;
runtime·lock(&lock);
if(profiletimer == nil) {
timer = runtime·stdcall(runtime·CreateWaitableTimer, 3, nil, nil, nil);
runtime·atomicstorep(&profiletimer, timer);
thread = runtime·stdcall(runtime·CreateThread, 6,
nil, nil, runtime·profileloop, nil, nil, nil);
runtime·stdcall(runtime·CloseHandle, 1, thread);
}
runtime·unlock(&lock);
ms = 0;
due = 1LL<<63;
if(hz > 0) {
ms = 1000 / hz;
if(ms == 0)
ms = 1;
due = ms * -10000;
}
runtime·stdcall(runtime·SetWaitableTimer, 6,
profiletimer, &due, (uintptr)ms, nil, nil, nil);
runtime·atomicstore((uint32*)&m->profilehz, hz);
}
void
os·sigpipe(void)
{
runtime·throw("too many writes on closed pipe");
}
uintptr
runtime·memlimit(void)
{
return 0;
}
#pragma dataflag NOPTR
int8 runtime·badsignalmsg[] = "runtime: signal received on thread not created by Go.\n";
int32 runtime·badsignallen = sizeof runtime·badsignalmsg - 1;
void
runtime·crash(void)
{
// TODO: This routine should do whatever is needed
// to make the Windows program abort/crash as it
// would if Go was not intercepting signals.
// On Unix the routine would remove the custom signal
// handler and then raise a signal (like SIGABRT).
// Something like that should happen here.
// It's okay to leave this empty for now: if crash returns
// the ordinary exit-after-panic happens.
}