blob: a4d50d77a0102d880dd9b0d0efc5df6917b05bbc [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Go execution tracer.
// The tracer captures a wide range of execution events like goroutine
// creation/blocking/unblocking, syscall enter/exit/block, GC-related events,
// changes of heap size, processor start/stop, etc and writes them to a buffer
// in a compact form. A precise nanosecond-precision timestamp and a stack
// trace is captured for most events.
// See https://golang.org/s/go15trace for more info.
package runtime
import (
"internal/abi"
"internal/goarch"
"internal/goos"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Event types in the trace, args are given in square brackets.
const (
traceEvNone = 0 // unused
traceEvBatch = 1 // start of per-P batch of events [pid, timestamp]
traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)]
traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
traceEvProcStart = 5 // start of P [timestamp, thread id]
traceEvProcStop = 6 // stop of P [timestamp]
traceEvGCStart = 7 // GC start [timestamp, seq, stack id]
traceEvGCDone = 8 // GC done [timestamp]
traceEvSTWStart = 9 // STW start [timestamp, kind]
traceEvSTWDone = 10 // STW done [timestamp]
traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id]
traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed]
traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq]
traceEvGoEnd = 15 // goroutine ends [timestamp]
traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack]
traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack]
traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack]
traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack]
traceEvGoBlock = 20 // goroutine blocks [timestamp, stack]
traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack]
traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack]
traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack]
traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack]
traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack]
traceEvGoSysCall = 28 // syscall enter [timestamp, stack]
traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
traceEvGoSysBlock = 30 // syscall blocks [timestamp]
traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
traceEvHeapAlloc = 33 // gcController.heapLive change [timestamp, heap_alloc]
traceEvHeapGoal = 34 // gcController.heapGoal() (formerly next_gc) change [timestamp, heap goal in bytes]
traceEvTimerGoroutine = 35 // not currently used; previously denoted timer goroutine [timer goroutine id]
traceEvFutileWakeup = 36 // not currently used; denotes that the previous wakeup of this goroutine was futile [timestamp]
traceEvString = 37 // string dictionary entry [ID, length, string]
traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack]
traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack]
traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp]
traceEvUserTaskCreate = 45 // trace.NewTask [timestamp, internal task id, internal parent task id, name string, stack]
traceEvUserTaskEnd = 46 // end of a task [timestamp, internal task id, stack]
traceEvUserRegion = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), name string, stack]
traceEvUserLog = 48 // trace.Log [timestamp, internal task id, key string id, stack, value string]
traceEvCPUSample = 49 // CPU profiling sample [timestamp, real timestamp, real P id (-1 when absent), goroutine id, stack]
traceEvCount = 50
// Byte is used but only 6 bits are available for event type.
// The remaining 2 bits are used to specify the number of arguments.
// That means, the max event type value is 63.
)
// traceBlockReason is an enumeration of reasons a goroutine might block.
// This is the interface the rest of the runtime uses to tell the
// tracer why a goroutine blocked. The tracer then propagates this information
// into the trace however it sees fit.
//
// Note that traceBlockReasons should not be compared, since reasons that are
// distinct by name may *not* be distinct by value.
type traceBlockReason uint8
// For maximal efficiency, just map the trace block reason directly to a trace
// event.
const (
traceBlockGeneric traceBlockReason = traceEvGoBlock
traceBlockForever = traceEvGoStop
traceBlockNet = traceEvGoBlockNet
traceBlockSelect = traceEvGoBlockSelect
traceBlockCondWait = traceEvGoBlockCond
traceBlockSync = traceEvGoBlockSync
traceBlockChanSend = traceEvGoBlockSend
traceBlockChanRecv = traceEvGoBlockRecv
traceBlockGCMarkAssist = traceEvGoBlockGC
traceBlockGCSweep = traceEvGoBlock
traceBlockSystemGoroutine = traceEvGoBlock
traceBlockPreempted = traceEvGoBlock
traceBlockDebugCall = traceEvGoBlock
traceBlockUntilGCEnds = traceEvGoBlock
traceBlockSleep = traceEvGoSleep
)
const (
// Timestamps in trace are cputicks/traceTickDiv.
// This makes absolute values of timestamp diffs smaller,
// and so they are encoded in less number of bytes.
// 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine).
// The suggested increment frequency for PowerPC's time base register is
// 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64
// and ppc64le.
traceTimeDiv = 16 + 48*(goarch.Is386|goarch.IsAmd64)
// Maximum number of PCs in a single stack trace.
// Since events contain only stack id rather than whole stack trace,
// we can allow quite large values here.
traceStackSize = 128
// Identifier of a fake P that is used when we trace without a real P.
traceGlobProc = -1
// Maximum number of bytes to encode uint64 in base-128.
traceBytesPerNumber = 10
// Shift of the number of arguments in the first event byte.
traceArgCountShift = 6
)
// trace is global tracing context.
var trace struct {
// trace.lock must only be acquired on the system stack where
// stack splits cannot happen while it is held.
lock mutex // protects the following members
enabled bool // when set runtime traces events
shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false
headerWritten bool // whether ReadTrace has emitted trace header
footerWritten bool // whether ReadTrace has emitted trace footer
shutdownSema uint32 // used to wait for ReadTrace completion
seqStart uint64 // sequence number when tracing was started
startTicks int64 // cputicks when tracing was started
endTicks int64 // cputicks when tracing was stopped
startNanotime int64 // nanotime when tracing was started
endNanotime int64 // nanotime when tracing was stopped
startTime traceTime // traceClockNow when tracing started
endTime traceTime // traceClockNow when tracing stopped
seqGC uint64 // GC start/done sequencer
reading traceBufPtr // buffer currently handed off to user
empty traceBufPtr // stack of empty buffers
fullHead traceBufPtr // queue of full buffers
fullTail traceBufPtr
stackTab traceStackTable // maps stack traces to unique ids
// cpuLogRead accepts CPU profile samples from the signal handler where
// they're generated. It uses a two-word header to hold the IDs of the P and
// G (respectively) that were active at the time of the sample. Because
// profBuf uses a record with all zeros in its header to indicate overflow,
// we make sure to make the P field always non-zero: The ID of a real P will
// start at bit 1, and bit 0 will be set. Samples that arrive while no P is
// running (such as near syscalls) will set the first header field to 0b10.
// This careful handling of the first header field allows us to store ID of
// the active G directly in the second field, even though that will be 0
// when sampling g0.
cpuLogRead *profBuf
// cpuLogBuf is a trace buffer to hold events corresponding to CPU profile
// samples, which arrive out of band and not directly connected to a
// specific P.
cpuLogBuf traceBufPtr
reader atomic.Pointer[g] // goroutine that called ReadTrace, or nil
signalLock atomic.Uint32 // protects use of the following member, only usable in signal handlers
cpuLogWrite *profBuf // copy of cpuLogRead for use in signal handlers, set without signalLock
// Dictionary for traceEvString.
//
// TODO: central lock to access the map is not ideal.
// option: pre-assign ids to all user annotation region names and tags
// option: per-P cache
// option: sync.Map like data structure
stringsLock mutex
strings map[string]uint64
stringSeq uint64
// markWorkerLabels maps gcMarkWorkerMode to string ID.
markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64
bufLock mutex // protects buf
buf traceBufPtr // global trace buffer, used when running without a p
}
// gTraceState is per-G state for the tracer.
type gTraceState struct {
sysExitTime traceTime // timestamp when syscall has returned
tracedSyscallEnter bool // syscall or cgo was entered while trace was enabled or StartTrace has emitted EvGoInSyscall about this goroutine
seq uint64 // trace event sequencer
lastP puintptr // last P emitted an event for this goroutine
}
// mTraceState is per-M state for the tracer.
type mTraceState struct {
startingTrace bool // this M is in TraceStart, potentially before traceEnabled is true
tracedSTWStart bool // this M traced a STW start, so it should trace an end
}
// pTraceState is per-P state for the tracer.
type pTraceState struct {
buf traceBufPtr
// inSweep indicates the sweep events should be traced.
// This is used to defer the sweep start event until a span
// has actually been swept.
inSweep bool
// swept and reclaimed track the number of bytes swept and reclaimed
// by sweeping in the current sweep loop (while inSweep was true).
swept, reclaimed uintptr
}
// traceLockInit initializes global trace locks.
func traceLockInit() {
lockInit(&trace.bufLock, lockRankTraceBuf)
lockInit(&trace.stringsLock, lockRankTraceStrings)
lockInit(&trace.lock, lockRankTrace)
lockInit(&trace.stackTab.lock, lockRankTraceStackTab)
}
// traceBufHeader is per-P tracing buffer.
type traceBufHeader struct {
link traceBufPtr // in trace.empty/full
lastTime traceTime // when we wrote the last event
pos int // next write offset in arr
stk [traceStackSize]uintptr // scratch buffer for traceback
}
// traceBuf is per-P tracing buffer.
type traceBuf struct {
_ sys.NotInHeap
traceBufHeader
arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf
}
// traceBufPtr is a *traceBuf that is not traced by the garbage
// collector and doesn't have write barriers. traceBufs are not
// allocated from the GC'd heap, so this is safe, and are often
// manipulated in contexts where write barriers are not allowed, so
// this is necessary.
//
// TODO: Since traceBuf is now embedded runtime/internal/sys.NotInHeap, this isn't necessary.
type traceBufPtr uintptr
func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) }
func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) }
func traceBufPtrOf(b *traceBuf) traceBufPtr {
return traceBufPtr(unsafe.Pointer(b))
}
// traceEnabled returns true if the trace is currently enabled.
func traceEnabled() bool {
return trace.enabled
}
// traceShuttingDown returns true if the trace is currently shutting down.
func traceShuttingDown() bool {
return trace.shutdown
}
// StartTrace enables tracing for the current process.
// While tracing, the data will be buffered and available via ReadTrace.
// StartTrace returns an error if tracing is already enabled.
// Most clients should use the runtime/trace package or the testing package's
// -test.trace flag instead of calling StartTrace directly.
func StartTrace() error {
// Stop the world so that we can take a consistent snapshot
// of all goroutines at the beginning of the trace.
// Do not stop the world during GC so we ensure we always see
// a consistent view of GC-related events (e.g. a start is always
// paired with an end).
stopTheWorldGC(stwStartTrace)
// Prevent sysmon from running any code that could generate events.
lock(&sched.sysmonlock)
// We are in stop-the-world, but syscalls can finish and write to trace concurrently.
// Exitsyscall could check trace.enabled long before and then suddenly wake up
// and decide to write to trace at a random point in time.
// However, such syscall will use the global trace.buf buffer, because we've
// acquired all p's by doing stop-the-world. So this protects us from such races.
lock(&trace.bufLock)
if trace.enabled || trace.shutdown {
unlock(&trace.bufLock)
unlock(&sched.sysmonlock)
startTheWorldGC()
return errorString("tracing is already enabled")
}
// Can't set trace.enabled yet. While the world is stopped, exitsyscall could
// already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here.
// That would lead to an inconsistent trace:
// - either GoSysExit appears before EvGoInSyscall,
// - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below.
// To instruct traceEvent that it must not ignore events below, we set trace.startingTrace.
// trace.enabled is set afterwards once we have emitted all preliminary events.
mp := getg().m
mp.trace.startingTrace = true
// Obtain current stack ID to use in all traceEvGoCreate events below.
stkBuf := make([]uintptr, traceStackSize)
stackID := traceStackID(mp, stkBuf, 2)
profBuf := newProfBuf(2, profBufWordCount, profBufTagCount) // after the timestamp, header is [pp.id, gp.goid]
trace.cpuLogRead = profBuf
// We must not acquire trace.signalLock outside of a signal handler: a
// profiling signal may arrive at any time and try to acquire it, leading to
// deadlock. Because we can't use that lock to protect updates to
// trace.cpuLogWrite (only use of the structure it references), reads and
// writes of the pointer must be atomic. (And although this field is never
// the sole pointer to the profBuf value, it's best to allow a write barrier
// here.)
atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), unsafe.Pointer(profBuf))
// World is stopped, no need to lock.
forEachGRace(func(gp *g) {
status := readgstatus(gp)
if status != _Gdead {
gp.trace.seq = 0
gp.trace.lastP = getg().m.p
// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
id := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace(gp.startpc) + sys.PCQuantum})
traceEvent(traceEvGoCreate, -1, gp.goid, uint64(id), stackID)
}
if status == _Gwaiting {
// traceEvGoWaiting is implied to have seq=1.
gp.trace.seq++
traceEvent(traceEvGoWaiting, -1, gp.goid)
}
if status == _Gsyscall {
gp.trace.seq++
gp.trace.tracedSyscallEnter = true
traceEvent(traceEvGoInSyscall, -1, gp.goid)
} else if status == _Gdead && gp.m != nil && gp.m.isextra {
// Trigger two trace events for the dead g in the extra m,
// since the next event of the g will be traceEvGoSysExit in exitsyscall,
// while calling from C thread to Go.
gp.trace.seq = 0
gp.trace.lastP = getg().m.p
// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
id := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace(0) + sys.PCQuantum}) // no start pc
traceEvent(traceEvGoCreate, -1, gp.goid, uint64(id), stackID)
gp.trace.seq++
gp.trace.tracedSyscallEnter = true
traceEvent(traceEvGoInSyscall, -1, gp.goid)
} else {
// We need to explicitly clear the flag. A previous trace might have ended with a goroutine
// not emitting a GoSysExit and clearing the flag, leaving it in a stale state. Clearing
// it here makes it unambiguous to any goroutine exiting a syscall racing with us that
// no EvGoInSyscall event was emitted for it. (It's not racy to set this flag here, because
// it'll only get checked when the goroutine runs again, which will be after the world starts
// again.)
gp.trace.tracedSyscallEnter = false
}
})
traceProcStart()
traceGoStart()
// Note: startTicks needs to be set after we emit traceEvGoInSyscall events.
// If we do it the other way around, it is possible that exitsyscall will
// query sysExitTime after startTicks but before traceEvGoInSyscall timestamp.
// It will lead to a false conclusion that cputicks is broken.
trace.startTime = traceClockNow()
trace.startTicks = cputicks()
trace.startNanotime = nanotime()
trace.headerWritten = false
trace.footerWritten = false
// string to id mapping
// 0 : reserved for an empty string
// remaining: other strings registered by traceString
trace.stringSeq = 0
trace.strings = make(map[string]uint64)
trace.seqGC = 0
mp.trace.startingTrace = false
trace.enabled = true
// Register runtime goroutine labels.
_, pid, bufp := traceAcquireBuffer()
for i, label := range gcMarkWorkerModeStrings[:] {
trace.markWorkerLabels[i], bufp = traceString(bufp, pid, label)
}
traceReleaseBuffer(mp, pid)
unlock(&trace.bufLock)
unlock(&sched.sysmonlock)
// Record the current state of HeapGoal to avoid information loss in trace.
traceHeapGoal()
startTheWorldGC()
return nil
}
// StopTrace stops tracing, if it was previously enabled.
// StopTrace only returns after all the reads for the trace have completed.
func StopTrace() {
// Stop the world so that we can collect the trace buffers from all p's below,
// and also to avoid races with traceEvent.
stopTheWorldGC(stwStopTrace)
// See the comment in StartTrace.
lock(&sched.sysmonlock)
// See the comment in StartTrace.
lock(&trace.bufLock)
if !trace.enabled {
unlock(&trace.bufLock)
unlock(&sched.sysmonlock)
startTheWorldGC()
return
}
traceGoSched()
atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), nil)
trace.cpuLogRead.close()
traceReadCPU()
// Loop over all allocated Ps because dead Ps may still have
// trace buffers.
for _, p := range allp[:cap(allp)] {
buf := p.trace.buf
if buf != 0 {
traceFullQueue(buf)
p.trace.buf = 0
}
}
if trace.buf != 0 {
buf := trace.buf
trace.buf = 0
if buf.ptr().pos != 0 {
traceFullQueue(buf)
}
}
if trace.cpuLogBuf != 0 {
buf := trace.cpuLogBuf
trace.cpuLogBuf = 0
if buf.ptr().pos != 0 {
traceFullQueue(buf)
}
}
// Wait for startNanotime != endNanotime. On Windows the default interval between
// system clock ticks is typically between 1 and 15 milliseconds, which may not
// have passed since the trace started. Without nanotime moving forward, trace
// tooling has no way of identifying how much real time each cputicks time deltas
// represent.
for {
trace.endTime = traceClockNow()
trace.endTicks = cputicks()
trace.endNanotime = nanotime()
if trace.endNanotime != trace.startNanotime || faketime != 0 {
break
}
osyield()
}
trace.enabled = false
trace.shutdown = true
unlock(&trace.bufLock)
unlock(&sched.sysmonlock)
startTheWorldGC()
// The world is started but we've set trace.shutdown, so new tracing can't start.
// Wait for the trace reader to flush pending buffers and stop.
semacquire(&trace.shutdownSema)
if raceenabled {
raceacquire(unsafe.Pointer(&trace.shutdownSema))
}
systemstack(func() {
// The lock protects us from races with StartTrace/StopTrace because they do stop-the-world.
lock(&trace.lock)
for _, p := range allp[:cap(allp)] {
if p.trace.buf != 0 {
throw("trace: non-empty trace buffer in proc")
}
}
if trace.buf != 0 {
throw("trace: non-empty global trace buffer")
}
if trace.fullHead != 0 || trace.fullTail != 0 {
throw("trace: non-empty full trace buffer")
}
if trace.reading != 0 || trace.reader.Load() != nil {
throw("trace: reading after shutdown")
}
for trace.empty != 0 {
buf := trace.empty
trace.empty = buf.ptr().link
sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys)
}
trace.strings = nil
trace.shutdown = false
trace.cpuLogRead = nil
unlock(&trace.lock)
})
}
// ReadTrace returns the next chunk of binary tracing data, blocking until data
// is available. If tracing is turned off and all the data accumulated while it
// was on has been returned, ReadTrace returns nil. The caller must copy the
// returned data before calling ReadTrace again.
// ReadTrace must be called from one goroutine at a time.
func ReadTrace() []byte {
top:
var buf []byte
var park bool
systemstack(func() {
buf, park = readTrace0()
})
if park {
gopark(func(gp *g, _ unsafe.Pointer) bool {
if !trace.reader.CompareAndSwapNoWB(nil, gp) {
// We're racing with another reader.
// Wake up and handle this case.
return false
}
if g2 := traceReader(); gp == g2 {
// New data arrived between unlocking
// and the CAS and we won the wake-up
// race, so wake up directly.
return false
} else if g2 != nil {
printlock()
println("runtime: got trace reader", g2, g2.goid)
throw("unexpected trace reader")
}
return true
}, nil, waitReasonTraceReaderBlocked, traceBlockSystemGoroutine, 2)
goto top
}
return buf
}
// readTrace0 is ReadTrace's continuation on g0. This must run on the
// system stack because it acquires trace.lock.
//
//go:systemstack
func readTrace0() (buf []byte, park bool) {
if raceenabled {
// g0 doesn't have a race context. Borrow the user G's.
if getg().racectx != 0 {
throw("expected racectx == 0")
}
getg().racectx = getg().m.curg.racectx
// (This defer should get open-coded, which is safe on
// the system stack.)
defer func() { getg().racectx = 0 }()
}
// Optimistically look for CPU profile samples. This may write new stack
// records, and may write new tracing buffers. This must be done with the
// trace lock not held. footerWritten and shutdown are safe to access
// here. They are only mutated by this goroutine or during a STW.
if !trace.footerWritten && !trace.shutdown {
traceReadCPU()
}
// This function must not allocate while holding trace.lock:
// allocation can call heap allocate, which will try to emit a trace
// event while holding heap lock.
lock(&trace.lock)
if trace.reader.Load() != nil {
// More than one goroutine reads trace. This is bad.
// But we rather do not crash the program because of tracing,
// because tracing can be enabled at runtime on prod servers.
unlock(&trace.lock)
println("runtime: ReadTrace called from multiple goroutines simultaneously")
return nil, false
}
// Recycle the old buffer.
if buf := trace.reading; buf != 0 {
buf.ptr().link = trace.empty
trace.empty = buf
trace.reading = 0
}
// Write trace header.
if !trace.headerWritten {
trace.headerWritten = true
unlock(&trace.lock)
return []byte("go 1.21 trace\x00\x00\x00"), false
}
// Wait for new data.
if trace.fullHead == 0 && !trace.shutdown {
// We don't simply use a note because the scheduler
// executes this goroutine directly when it wakes up
// (also a note would consume an M).
unlock(&trace.lock)
return nil, true
}
newFull:
assertLockHeld(&trace.lock)
// Write a buffer.
if trace.fullHead != 0 {
buf := traceFullDequeue()
trace.reading = buf
unlock(&trace.lock)
return buf.ptr().arr[:buf.ptr().pos], false
}
// Write footer with timer frequency.
if !trace.footerWritten {
trace.footerWritten = true
freq := (float64(trace.endTicks-trace.startTicks) / traceTimeDiv) / (float64(trace.endNanotime-trace.startNanotime) / 1e9)
if freq <= 0 {
throw("trace: ReadTrace got invalid frequency")
}
unlock(&trace.lock)
// Write frequency event.
bufp := traceFlush(0, 0)
buf := bufp.ptr()
buf.byte(traceEvFrequency | 0<<traceArgCountShift)
buf.varint(uint64(freq))
// Dump stack table.
// This will emit a bunch of full buffers, we will pick them up
// on the next iteration.
bufp = trace.stackTab.dump(bufp)
// Flush final buffer.
lock(&trace.lock)
traceFullQueue(bufp)
goto newFull // trace.lock should be held at newFull
}
// Done.
if trace.shutdown {
unlock(&trace.lock)
if raceenabled {
// Model synchronization on trace.shutdownSema, which race
// detector does not see. This is required to avoid false
// race reports on writer passed to trace.Start.
racerelease(unsafe.Pointer(&trace.shutdownSema))
}
// trace.enabled is already reset, so can call traceable functions.
semrelease(&trace.shutdownSema)
return nil, false
}
// Also bad, but see the comment above.
unlock(&trace.lock)
println("runtime: spurious wakeup of trace reader")
return nil, false
}
// traceReader returns the trace reader that should be woken up, if any.
// Callers should first check that trace.enabled or trace.shutdown is set.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func traceReader() *g {
// Optimistic check first
if traceReaderAvailable() == nil {
return nil
}
lock(&trace.lock)
gp := traceReaderAvailable()
if gp == nil || !trace.reader.CompareAndSwapNoWB(gp, nil) {
unlock(&trace.lock)
return nil
}
unlock(&trace.lock)
return gp
}
// traceReaderAvailable returns the trace reader if it is not currently
// scheduled and should be. Callers should first check that trace.enabled
// or trace.shutdown is set.
func traceReaderAvailable() *g {
if trace.fullHead != 0 || trace.shutdown {
return trace.reader.Load()
}
return nil
}
// traceProcFree frees trace buffer associated with pp.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func traceProcFree(pp *p) {
buf := pp.trace.buf
pp.trace.buf = 0
if buf == 0 {
return
}
lock(&trace.lock)
traceFullQueue(buf)
unlock(&trace.lock)
}
// traceFullQueue queues buf into queue of full buffers.
func traceFullQueue(buf traceBufPtr) {
buf.ptr().link = 0
if trace.fullHead == 0 {
trace.fullHead = buf
} else {
trace.fullTail.ptr().link = buf
}
trace.fullTail = buf
}
// traceFullDequeue dequeues from queue of full buffers.
func traceFullDequeue() traceBufPtr {
buf := trace.fullHead
if buf == 0 {
return 0
}
trace.fullHead = buf.ptr().link
if trace.fullHead == 0 {
trace.fullTail = 0
}
buf.ptr().link = 0
return buf
}
// traceEvent writes a single event to trace buffer, flushing the buffer if necessary.
// ev is event type.
// If skip > 0, write current stack id as the last argument (skipping skip top frames).
// If skip = 0, this event type should contain a stack, but we don't want
// to collect and remember it for this particular call.
func traceEvent(ev byte, skip int, args ...uint64) {
mp, pid, bufp := traceAcquireBuffer()
// Double-check trace.enabled now that we've done m.locks++ and acquired bufLock.
// This protects from races between traceEvent and StartTrace/StopTrace.
// The caller checked that trace.enabled == true, but trace.enabled might have been
// turned off between the check and now. Check again. traceLockBuffer did mp.locks++,
// StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero,
// so if we see trace.enabled == true now, we know it's true for the rest of the function.
// Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace
// during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer.
//
// Note trace_userTaskCreate runs the same check.
if !trace.enabled && !mp.trace.startingTrace {
traceReleaseBuffer(mp, pid)
return
}
if skip > 0 {
if getg() == mp.curg {
skip++ // +1 because stack is captured in traceEventLocked.
}
}
traceEventLocked(0, mp, pid, bufp, ev, 0, skip, args...)
traceReleaseBuffer(mp, pid)
}
// traceEventLocked writes a single event of type ev to the trace buffer bufp,
// flushing the buffer if necessary. pid is the id of the current P, or
// traceGlobProc if we're tracing without a real P.
//
// Preemption is disabled, and if running without a real P the global tracing
// buffer is locked.
//
// Events types that do not include a stack set skip to -1. Event types that
// include a stack may explicitly reference a stackID from the trace.stackTab
// (obtained by an earlier call to traceStackID). Without an explicit stackID,
// this function will automatically capture the stack of the goroutine currently
// running on mp, skipping skip top frames or, if skip is 0, writing out an
// empty stack record.
//
// It records the event's args to the traceBuf, and also makes an effort to
// reserve extraBytes bytes of additional space immediately following the event,
// in the same traceBuf.
func traceEventLocked(extraBytes int, mp *m, pid int32, bufp *traceBufPtr, ev byte, stackID uint32, skip int, args ...uint64) {
buf := bufp.ptr()
// TODO: test on non-zero extraBytes param.
maxSize := 2 + 5*traceBytesPerNumber + extraBytes // event type, length, sequence, timestamp, stack id and two add params
if buf == nil || len(buf.arr)-buf.pos < maxSize {
systemstack(func() {
buf = traceFlush(traceBufPtrOf(buf), pid).ptr()
})
bufp.set(buf)
}
ts := traceClockNow()
if ts <= buf.lastTime {
ts = buf.lastTime + 1
}
tsDiff := uint64(ts - buf.lastTime)
buf.lastTime = ts
narg := byte(len(args))
if stackID != 0 || skip >= 0 {
narg++
}
// We have only 2 bits for number of arguments.
// If number is >= 3, then the event type is followed by event length in bytes.
if narg > 3 {
narg = 3
}
startPos := buf.pos
buf.byte(ev | narg<<traceArgCountShift)
var lenp *byte
if narg == 3 {
// Reserve the byte for length assuming that length < 128.
buf.varint(0)
lenp = &buf.arr[buf.pos-1]
}
buf.varint(tsDiff)
for _, a := range args {
buf.varint(a)
}
if stackID != 0 {
buf.varint(uint64(stackID))
} else if skip == 0 {
buf.varint(0)
} else if skip > 0 {
buf.varint(traceStackID(mp, buf.stk[:], skip))
}
evSize := buf.pos - startPos
if evSize > maxSize {
throw("invalid length of trace event")
}
if lenp != nil {
// Fill in actual length.
*lenp = byte(evSize - 2)
}
}
// traceCPUSample writes a CPU profile sample stack to the execution tracer's
// profiling buffer. It is called from a signal handler, so is limited in what
// it can do.
func traceCPUSample(gp *g, pp *p, stk []uintptr) {
if !trace.enabled {
// Tracing is usually turned off; don't spend time acquiring the signal
// lock unless it's active.
return
}
// Match the clock used in traceEventLocked
now := traceClockNow()
// The "header" here is the ID of the P that was running the profiled code,
// followed by the ID of the goroutine. (For normal CPU profiling, it's
// usually the number of samples with the given stack.) Near syscalls, pp
// may be nil. Reporting goid of 0 is fine for either g0 or a nil gp.
var hdr [2]uint64
if pp != nil {
// Overflow records in profBuf have all header values set to zero. Make
// sure that real headers have at least one bit set.
hdr[0] = uint64(pp.id)<<1 | 0b1
} else {
hdr[0] = 0b10
}
if gp != nil {
hdr[1] = gp.goid
}
// Allow only one writer at a time
for !trace.signalLock.CompareAndSwap(0, 1) {
// TODO: Is it safe to osyield here? https://go.dev/issue/52672
osyield()
}
if log := (*profBuf)(atomic.Loadp(unsafe.Pointer(&trace.cpuLogWrite))); log != nil {
// Note: we don't pass a tag pointer here (how should profiling tags
// interact with the execution tracer?), but if we did we'd need to be
// careful about write barriers. See the long comment in profBuf.write.
log.write(nil, int64(now), hdr[:], stk)
}
trace.signalLock.Store(0)
}
func traceReadCPU() {
bufp := &trace.cpuLogBuf
for {
data, tags, _ := trace.cpuLogRead.read(profBufNonBlocking)
if len(data) == 0 {
break
}
for len(data) > 0 {
if len(data) < 4 || data[0] > uint64(len(data)) {
break // truncated profile
}
if data[0] < 4 || tags != nil && len(tags) < 1 {
break // malformed profile
}
if len(tags) < 1 {
break // mismatched profile records and tags
}
timestamp := data[1]
ppid := data[2] >> 1
if hasP := (data[2] & 0b1) != 0; !hasP {
ppid = ^uint64(0)
}
goid := data[3]
stk := data[4:data[0]]
empty := len(stk) == 1 && data[2] == 0 && data[3] == 0
data = data[data[0]:]
// No support here for reporting goroutine tags at the moment; if
// that information is to be part of the execution trace, we'd
// probably want to see when the tags are applied and when they
// change, instead of only seeing them when we get a CPU sample.
tags = tags[1:]
if empty {
// Looks like an overflow record from the profBuf. Not much to
// do here, we only want to report full records.
//
// TODO: should we start a goroutine to drain the profBuf,
// rather than relying on a high-enough volume of tracing events
// to keep ReadTrace busy? https://go.dev/issue/52674
continue
}
buf := bufp.ptr()
if buf == nil {
systemstack(func() {
*bufp = traceFlush(*bufp, 0)
})
buf = bufp.ptr()
}
nstk := 1
buf.stk[0] = logicalStackSentinel
for ; nstk < len(buf.stk) && nstk-1 < len(stk); nstk++ {
buf.stk[nstk] = uintptr(stk[nstk-1])
}
stackID := trace.stackTab.put(buf.stk[:nstk])
traceEventLocked(0, nil, 0, bufp, traceEvCPUSample, stackID, 1, uint64(timestamp), ppid, goid)
}
}
}
// logicalStackSentinel is a sentinel value at pcBuf[0] signifying that
// pcBuf[1:] holds a logical stack requiring no further processing. Any other
// value at pcBuf[0] represents a skip value to apply to the physical stack in
// pcBuf[1:] after inline expansion.
const logicalStackSentinel = ^uintptr(0)
// traceStackID captures a stack trace into pcBuf, registers it in the trace
// stack table, and returns its unique ID. pcBuf should have a length equal to
// traceStackSize. skip controls the number of leaf frames to omit in order to
// hide tracer internals from stack traces, see CL 5523.
func traceStackID(mp *m, pcBuf []uintptr, skip int) uint64 {
gp := getg()
curgp := mp.curg
nstk := 1
if tracefpunwindoff() || mp.hasCgoOnStack() {
// Slow path: Unwind using default unwinder. Used when frame pointer
// unwinding is unavailable or disabled (tracefpunwindoff), or might
// produce incomplete results or crashes (hasCgoOnStack). Note that no
// cgo callback related crashes have been observed yet. The main
// motivation is to take advantage of a potentially registered cgo
// symbolizer.
pcBuf[0] = logicalStackSentinel
if curgp == gp {
nstk += callers(skip+1, pcBuf[1:])
} else if curgp != nil {
nstk += gcallers(curgp, skip, pcBuf[1:])
}
} else {
// Fast path: Unwind using frame pointers.
pcBuf[0] = uintptr(skip)
if curgp == gp {
nstk += fpTracebackPCs(unsafe.Pointer(getfp()), pcBuf[1:])
} else if curgp != nil {
// We're called on the g0 stack through mcall(fn) or systemstack(fn). To
// behave like gcallers above, we start unwinding from sched.bp, which
// points to the caller frame of the leaf frame on g's stack. The return
// address of the leaf frame is stored in sched.pc, which we manually
// capture here.
pcBuf[1] = curgp.sched.pc
nstk += 1 + fpTracebackPCs(unsafe.Pointer(curgp.sched.bp), pcBuf[2:])
}
}
if nstk > 0 {
nstk-- // skip runtime.goexit
}
if nstk > 0 && curgp.goid == 1 {
nstk-- // skip runtime.main
}
id := trace.stackTab.put(pcBuf[:nstk])
return uint64(id)
}
// tracefpunwindoff returns true if frame pointer unwinding for the tracer is
// disabled via GODEBUG or not supported by the architecture.
// TODO(#60254): support frame pointer unwinding on plan9/amd64.
func tracefpunwindoff() bool {
return debug.tracefpunwindoff != 0 || (goarch.ArchFamily != goarch.AMD64 && goarch.ArchFamily != goarch.ARM64) || goos.IsPlan9 == 1
}
// fpTracebackPCs populates pcBuf with the return addresses for each frame and
// returns the number of PCs written to pcBuf. The returned PCs correspond to
// "physical frames" rather than "logical frames"; that is if A is inlined into
// B, this will return a PC for only B.
func fpTracebackPCs(fp unsafe.Pointer, pcBuf []uintptr) (i int) {
for i = 0; i < len(pcBuf) && fp != nil; i++ {
// return addr sits one word above the frame pointer
pcBuf[i] = *(*uintptr)(unsafe.Pointer(uintptr(fp) + goarch.PtrSize))
// follow the frame pointer to the next one
fp = unsafe.Pointer(*(*uintptr)(fp))
}
return i
}
// traceAcquireBuffer returns trace buffer to use and, if necessary, locks it.
func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) {
// Any time we acquire a buffer, we may end up flushing it,
// but flushes are rare. Record the lock edge even if it
// doesn't happen this time.
lockRankMayTraceFlush()
mp = acquirem()
if p := mp.p.ptr(); p != nil {
return mp, p.id, &p.trace.buf
}
lock(&trace.bufLock)
return mp, traceGlobProc, &trace.buf
}
// traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer.
func traceReleaseBuffer(mp *m, pid int32) {
if pid == traceGlobProc {
unlock(&trace.bufLock)
}
releasem(mp)
}
// lockRankMayTraceFlush records the lock ranking effects of a
// potential call to traceFlush.
func lockRankMayTraceFlush() {
lockWithRankMayAcquire(&trace.lock, getLockRank(&trace.lock))
}
// traceFlush puts buf onto stack of full buffers and returns an empty buffer.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func traceFlush(buf traceBufPtr, pid int32) traceBufPtr {
lock(&trace.lock)
if buf != 0 {
traceFullQueue(buf)
}
if trace.empty != 0 {
buf = trace.empty
trace.empty = buf.ptr().link
} else {
buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys))
if buf == 0 {
throw("trace: out of memory")
}
}
bufp := buf.ptr()
bufp.link.set(nil)
bufp.pos = 0
// initialize the buffer for a new batch
ts := traceClockNow()
if ts <= bufp.lastTime {
ts = bufp.lastTime + 1
}
bufp.lastTime = ts
bufp.byte(traceEvBatch | 1<<traceArgCountShift)
bufp.varint(uint64(pid))
bufp.varint(uint64(ts))
unlock(&trace.lock)
return buf
}
// traceString adds a string to the trace.strings and returns the id.
func traceString(bufp *traceBufPtr, pid int32, s string) (uint64, *traceBufPtr) {
if s == "" {
return 0, bufp
}
lock(&trace.stringsLock)
if raceenabled {
// raceacquire is necessary because the map access
// below is race annotated.
raceacquire(unsafe.Pointer(&trace.stringsLock))
}
if id, ok := trace.strings[s]; ok {
if raceenabled {
racerelease(unsafe.Pointer(&trace.stringsLock))
}
unlock(&trace.stringsLock)
return id, bufp
}
trace.stringSeq++
id := trace.stringSeq
trace.strings[s] = id
if raceenabled {
racerelease(unsafe.Pointer(&trace.stringsLock))
}
unlock(&trace.stringsLock)
// memory allocation in above may trigger tracing and
// cause *bufp changes. Following code now works with *bufp,
// so there must be no memory allocation or any activities
// that causes tracing after this point.
buf := bufp.ptr()
size := 1 + 2*traceBytesPerNumber + len(s)
if buf == nil || len(buf.arr)-buf.pos < size {
systemstack(func() {
buf = traceFlush(traceBufPtrOf(buf), pid).ptr()
bufp.set(buf)
})
}
buf.byte(traceEvString)
buf.varint(id)
// double-check the string and the length can fit.
// Otherwise, truncate the string.
slen := len(s)
if room := len(buf.arr) - buf.pos; room < slen+traceBytesPerNumber {
slen = room
}
buf.varint(uint64(slen))
buf.pos += copy(buf.arr[buf.pos:], s[:slen])
bufp.set(buf)
return id, bufp
}
// varint appends v to buf in little-endian-base-128 encoding.
func (buf *traceBuf) varint(v uint64) {
pos := buf.pos
for ; v >= 0x80; v >>= 7 {
buf.arr[pos] = 0x80 | byte(v)
pos++
}
buf.arr[pos] = byte(v)
pos++
buf.pos = pos
}
// varintAt writes varint v at byte position pos in buf. This always
// consumes traceBytesPerNumber bytes. This is intended for when the
// caller needs to reserve space for a varint but can't populate it
// until later.
func (buf *traceBuf) varintAt(pos int, v uint64) {
for i := 0; i < traceBytesPerNumber; i++ {
if i < traceBytesPerNumber-1 {
buf.arr[pos] = 0x80 | byte(v)
} else {
buf.arr[pos] = byte(v)
}
v >>= 7
pos++
}
}
// byte appends v to buf.
func (buf *traceBuf) byte(v byte) {
buf.arr[buf.pos] = v
buf.pos++
}
// traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids.
// It is lock-free for reading.
type traceStackTable struct {
lock mutex // Must be acquired on the system stack
seq uint32
mem traceAlloc
tab [1 << 13]traceStackPtr
}
// traceStack is a single stack in traceStackTable.
type traceStack struct {
link traceStackPtr
hash uintptr
id uint32
n int
stk [0]uintptr // real type [n]uintptr
}
type traceStackPtr uintptr
func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) }
// stack returns slice of PCs.
func (ts *traceStack) stack() []uintptr {
return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n]
}
// put returns a unique id for the stack trace pcs and caches it in the table,
// if it sees the trace for the first time.
func (tab *traceStackTable) put(pcs []uintptr) uint32 {
if len(pcs) == 0 {
return 0
}
hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0]))
// First, search the hashtable w/o the mutex.
if id := tab.find(pcs, hash); id != 0 {
return id
}
// Now, double check under the mutex.
// Switch to the system stack so we can acquire tab.lock
var id uint32
systemstack(func() {
lock(&tab.lock)
if id = tab.find(pcs, hash); id != 0 {
unlock(&tab.lock)
return
}
// Create new record.
tab.seq++
stk := tab.newStack(len(pcs))
stk.hash = hash
stk.id = tab.seq
id = stk.id
stk.n = len(pcs)
stkpc := stk.stack()
copy(stkpc, pcs)
part := int(hash % uintptr(len(tab.tab)))
stk.link = tab.tab[part]
atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk))
unlock(&tab.lock)
})
return id
}
// find checks if the stack trace pcs is already present in the table.
func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 {
part := int(hash % uintptr(len(tab.tab)))
Search:
for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() {
if stk.hash == hash && stk.n == len(pcs) {
for i, stkpc := range stk.stack() {
if stkpc != pcs[i] {
continue Search
}
}
return stk.id
}
}
return 0
}
// newStack allocates a new stack of size n.
func (tab *traceStackTable) newStack(n int) *traceStack {
return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*goarch.PtrSize))
}
// traceFrames returns the frames corresponding to pcs. It may
// allocate and may emit trace events.
func traceFrames(bufp traceBufPtr, pcs []uintptr) ([]traceFrame, traceBufPtr) {
frames := make([]traceFrame, 0, len(pcs))
ci := CallersFrames(pcs)
for {
var frame traceFrame
f, more := ci.Next()
frame, bufp = traceFrameForPC(bufp, 0, f)
frames = append(frames, frame)
if !more {
return frames, bufp
}
}
}
// dump writes all previously cached stacks to trace buffers,
// releases all memory and resets state.
//
// This must run on the system stack because it calls traceFlush.
//
//go:systemstack
func (tab *traceStackTable) dump(bufp traceBufPtr) traceBufPtr {
for i := range tab.tab {
stk := tab.tab[i].ptr()
for ; stk != nil; stk = stk.link.ptr() {
var frames []traceFrame
frames, bufp = traceFrames(bufp, fpunwindExpand(stk.stack()))
// Estimate the size of this record. This
// bound is pretty loose, but avoids counting
// lots of varint sizes.
maxSize := 1 + traceBytesPerNumber + (2+4*len(frames))*traceBytesPerNumber
// Make sure we have enough buffer space.
if buf := bufp.ptr(); len(buf.arr)-buf.pos < maxSize {
bufp = traceFlush(bufp, 0)
}
// Emit header, with space reserved for length.
buf := bufp.ptr()
buf.byte(traceEvStack | 3<<traceArgCountShift)
lenPos := buf.pos
buf.pos += traceBytesPerNumber
// Emit body.
recPos := buf.pos
buf.varint(uint64(stk.id))
buf.varint(uint64(len(frames)))
for _, frame := range frames {
buf.varint(uint64(frame.PC))
buf.varint(frame.funcID)
buf.varint(frame.fileID)
buf.varint(frame.line)
}
// Fill in size header.
buf.varintAt(lenPos, uint64(buf.pos-recPos))
}
}
tab.mem.drop()
*tab = traceStackTable{}
lockInit(&((*tab).lock), lockRankTraceStackTab)
return bufp
}
// fpunwindExpand checks if pcBuf contains logical frames (which include inlined
// frames) or physical frames (produced by frame pointer unwinding) using a
// sentinel value in pcBuf[0]. Logical frames are simply returned without the
// sentinel. Physical frames are turned into logical frames via inline unwinding
// and by applying the skip value that's stored in pcBuf[0].
func fpunwindExpand(pcBuf []uintptr) []uintptr {
if len(pcBuf) > 0 && pcBuf[0] == logicalStackSentinel {
// pcBuf contains logical rather than inlined frames, skip has already been
// applied, just return it without the sentinel value in pcBuf[0].
return pcBuf[1:]
}
var (
cache pcvalueCache
lastFuncID = abi.FuncIDNormal
newPCBuf = make([]uintptr, 0, traceStackSize)
skip = pcBuf[0]
// skipOrAdd skips or appends retPC to newPCBuf and returns true if more
// pcs can be added.
skipOrAdd = func(retPC uintptr) bool {
if skip > 0 {
skip--
} else {
newPCBuf = append(newPCBuf, retPC)
}
return len(newPCBuf) < cap(newPCBuf)
}
)
outer:
for _, retPC := range pcBuf[1:] {
callPC := retPC - 1
fi := findfunc(callPC)
if !fi.valid() {
// There is no funcInfo if callPC belongs to a C function. In this case
// we still keep the pc, but don't attempt to expand inlined frames.
if more := skipOrAdd(retPC); !more {
break outer
}
continue
}
u, uf := newInlineUnwinder(fi, callPC, &cache)
for ; uf.valid(); uf = u.next(uf) {
sf := u.srcFunc(uf)
if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(lastFuncID) {
// ignore wrappers
} else if more := skipOrAdd(uf.pc + 1); !more {
break outer
}
lastFuncID = sf.funcID
}
}
return newPCBuf
}
type traceFrame struct {
PC uintptr
funcID uint64
fileID uint64
line uint64
}
// traceFrameForPC records the frame information.
// It may allocate memory.
func traceFrameForPC(buf traceBufPtr, pid int32, f Frame) (traceFrame, traceBufPtr) {
bufp := &buf
var frame traceFrame
frame.PC = f.PC
fn := f.Function
const maxLen = 1 << 10
if len(fn) > maxLen {
fn = fn[len(fn)-maxLen:]
}
frame.funcID, bufp = traceString(bufp, pid, fn)
frame.line = uint64(f.Line)
file := f.File
if len(file) > maxLen {
file = file[len(file)-maxLen:]
}
frame.fileID, bufp = traceString(bufp, pid, file)
return frame, (*bufp)
}
// traceAlloc is a non-thread-safe region allocator.
// It holds a linked list of traceAllocBlock.
type traceAlloc struct {
head traceAllocBlockPtr
off uintptr
}
// traceAllocBlock is a block in traceAlloc.
//
// traceAllocBlock is allocated from non-GC'd memory, so it must not
// contain heap pointers. Writes to pointers to traceAllocBlocks do
// not need write barriers.
type traceAllocBlock struct {
_ sys.NotInHeap
next traceAllocBlockPtr
data [64<<10 - goarch.PtrSize]byte
}
// TODO: Since traceAllocBlock is now embedded runtime/internal/sys.NotInHeap, this isn't necessary.
type traceAllocBlockPtr uintptr
func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) }
func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) }
// alloc allocates n-byte block.
func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer {
n = alignUp(n, goarch.PtrSize)
if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) {
if n > uintptr(len(a.head.ptr().data)) {
throw("trace: alloc too large")
}
block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys))
if block == nil {
throw("trace: out of memory")
}
block.next.set(a.head.ptr())
a.head.set(block)
a.off = 0
}
p := &a.head.ptr().data[a.off]
a.off += n
return unsafe.Pointer(p)
}
// drop frees all previously allocated memory and resets the allocator.
func (a *traceAlloc) drop() {
for a.head != 0 {
block := a.head.ptr()
a.head.set(block.next.ptr())
sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)
}
}
// The following functions write specific events to trace.
func traceGomaxprocs(procs int32) {
traceEvent(traceEvGomaxprocs, 1, uint64(procs))
}
func traceProcStart() {
traceEvent(traceEvProcStart, -1, uint64(getg().m.id))
}
func traceProcStop(pp *p) {
// Sysmon and stopTheWorld can stop Ps blocked in syscalls,
// to handle this we temporary employ the P.
mp := acquirem()
oldp := mp.p
mp.p.set(pp)
traceEvent(traceEvProcStop, -1)
mp.p = oldp
releasem(mp)
}
func traceGCStart() {
traceEvent(traceEvGCStart, 3, trace.seqGC)
trace.seqGC++
}
func traceGCDone() {
traceEvent(traceEvGCDone, -1)
}
func traceSTWStart(reason stwReason) {
// Don't trace if this STW is for trace start/stop, since traceEnabled
// switches during a STW.
if reason == stwStartTrace || reason == stwStopTrace {
return
}
getg().m.trace.tracedSTWStart = true
traceEvent(traceEvSTWStart, -1, uint64(reason))
}
func traceSTWDone() {
mp := getg().m
if !mp.trace.tracedSTWStart {
return
}
mp.trace.tracedSTWStart = false
traceEvent(traceEvSTWDone, -1)
}
// traceGCSweepStart prepares to trace a sweep loop. This does not
// emit any events until traceGCSweepSpan is called.
//
// traceGCSweepStart must be paired with traceGCSweepDone and there
// must be no preemption points between these two calls.
func traceGCSweepStart() {
// Delay the actual GCSweepStart event until the first span
// sweep. If we don't sweep anything, don't emit any events.
pp := getg().m.p.ptr()
if pp.trace.inSweep {
throw("double traceGCSweepStart")
}
pp.trace.inSweep, pp.trace.swept, pp.trace.reclaimed = true, 0, 0
}
// traceGCSweepSpan traces the sweep of a single page.
//
// This may be called outside a traceGCSweepStart/traceGCSweepDone
// pair; however, it will not emit any trace events in this case.
func traceGCSweepSpan(bytesSwept uintptr) {
pp := getg().m.p.ptr()
if pp.trace.inSweep {
if pp.trace.swept == 0 {
traceEvent(traceEvGCSweepStart, 1)
}
pp.trace.swept += bytesSwept
}
}
func traceGCSweepDone() {
pp := getg().m.p.ptr()
if !pp.trace.inSweep {
throw("missing traceGCSweepStart")
}
if pp.trace.swept != 0 {
traceEvent(traceEvGCSweepDone, -1, uint64(pp.trace.swept), uint64(pp.trace.reclaimed))
}
pp.trace.inSweep = false
}
func traceGCMarkAssistStart() {
traceEvent(traceEvGCMarkAssistStart, 1)
}
func traceGCMarkAssistDone() {
traceEvent(traceEvGCMarkAssistDone, -1)
}
func traceGoCreate(newg *g, pc uintptr) {
newg.trace.seq = 0
newg.trace.lastP = getg().m.p
// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
id := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace(pc) + sys.PCQuantum})
traceEvent(traceEvGoCreate, 2, newg.goid, uint64(id))
}
func traceGoStart() {
gp := getg().m.curg
pp := gp.m.p
gp.trace.seq++
if pp.ptr().gcMarkWorkerMode != gcMarkWorkerNotWorker {
traceEvent(traceEvGoStartLabel, -1, gp.goid, gp.trace.seq, trace.markWorkerLabels[pp.ptr().gcMarkWorkerMode])
} else if gp.trace.lastP == pp {
traceEvent(traceEvGoStartLocal, -1, gp.goid)
} else {
gp.trace.lastP = pp
traceEvent(traceEvGoStart, -1, gp.goid, gp.trace.seq)
}
}
func traceGoEnd() {
traceEvent(traceEvGoEnd, -1)
}
func traceGoSched() {
gp := getg()
gp.trace.lastP = gp.m.p
traceEvent(traceEvGoSched, 1)
}
func traceGoPreempt() {
gp := getg()
gp.trace.lastP = gp.m.p
traceEvent(traceEvGoPreempt, 1)
}
func traceGoPark(reason traceBlockReason, skip int) {
// Convert the block reason directly to a trace event type.
// See traceBlockReason for more information.
traceEvent(byte(reason), skip)
}
func traceGoUnpark(gp *g, skip int) {
pp := getg().m.p
gp.trace.seq++
if gp.trace.lastP == pp {
traceEvent(traceEvGoUnblockLocal, skip, gp.goid)
} else {
gp.trace.lastP = pp
traceEvent(traceEvGoUnblock, skip, gp.goid, gp.trace.seq)
}
}
func traceGoSysCall() {
var skip int
switch {
case tracefpunwindoff():
// Unwind by skipping 1 frame relative to gp.syscallsp which is captured 3
// frames above this frame. For frame pointer unwinding we produce the same
// results by hard coding the number of frames in between our caller and the
// actual syscall, see cases below.
// TODO(felixge): Implement gp.syscallbp to avoid this workaround?
skip = 1
case GOOS == "solaris" || GOOS == "illumos":
// These platforms don't use a libc_read_trampoline.
skip = 3
default:
// Skip the extra trampoline frame used on most systems.
skip = 4
}
getg().m.curg.trace.tracedSyscallEnter = true
traceEvent(traceEvGoSysCall, skip)
}
func traceGoSysExit() {
gp := getg().m.curg
if !gp.trace.tracedSyscallEnter {
// There was no syscall entry traced for us at all, so there's definitely
// no EvGoSysBlock or EvGoInSyscall before us, which EvGoSysExit requires.
return
}
gp.trace.tracedSyscallEnter = false
ts := gp.trace.sysExitTime
if ts != 0 && ts < trace.startTime {
// There is a race between the code that initializes sysExitTimes
// (in exitsyscall, which runs without a P, and therefore is not
// stopped with the rest of the world) and the code that initializes
// a new trace. The recorded sysExitTime must therefore be treated
// as "best effort". If they are valid for this trace, then great,
// use them for greater accuracy. But if they're not valid for this
// trace, assume that the trace was started after the actual syscall
// exit (but before we actually managed to start the goroutine,
// aka right now), and assign a fresh time stamp to keep the log consistent.
ts = 0
}
gp.trace.sysExitTime = 0
gp.trace.seq++
gp.trace.lastP = gp.m.p
traceEvent(traceEvGoSysExit, -1, gp.goid, gp.trace.seq, uint64(ts))
}
func traceGoSysBlock(pp *p) {
// Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked,
// to handle this we temporary employ the P.
mp := acquirem()
oldp := mp.p
mp.p.set(pp)
traceEvent(traceEvGoSysBlock, -1)
mp.p = oldp
releasem(mp)
}
func traceHeapAlloc(live uint64) {
traceEvent(traceEvHeapAlloc, -1, live)
}
func traceHeapGoal() {
heapGoal := gcController.heapGoal()
if heapGoal == ^uint64(0) {
// Heap-based triggering is disabled.
traceEvent(traceEvHeapGoal, -1, 0)
} else {
traceEvent(traceEvHeapGoal, -1, heapGoal)
}
}
// To access runtime functions from runtime/trace.
// See runtime/trace/annotation.go
//go:linkname trace_userTaskCreate runtime/trace.userTaskCreate
func trace_userTaskCreate(id, parentID uint64, taskType string) {
if !trace.enabled {
return
}
// Same as in traceEvent.
mp, pid, bufp := traceAcquireBuffer()
if !trace.enabled && !mp.trace.startingTrace {
traceReleaseBuffer(mp, pid)
return
}
typeStringID, bufp := traceString(bufp, pid, taskType)
traceEventLocked(0, mp, pid, bufp, traceEvUserTaskCreate, 0, 3, id, parentID, typeStringID)
traceReleaseBuffer(mp, pid)
}
//go:linkname trace_userTaskEnd runtime/trace.userTaskEnd
func trace_userTaskEnd(id uint64) {
traceEvent(traceEvUserTaskEnd, 2, id)
}
//go:linkname trace_userRegion runtime/trace.userRegion
func trace_userRegion(id, mode uint64, name string) {
if !trace.enabled {
return
}
mp, pid, bufp := traceAcquireBuffer()
if !trace.enabled && !mp.trace.startingTrace {
traceReleaseBuffer(mp, pid)
return
}
nameStringID, bufp := traceString(bufp, pid, name)
traceEventLocked(0, mp, pid, bufp, traceEvUserRegion, 0, 3, id, mode, nameStringID)
traceReleaseBuffer(mp, pid)
}
//go:linkname trace_userLog runtime/trace.userLog
func trace_userLog(id uint64, category, message string) {
if !trace.enabled {
return
}
mp, pid, bufp := traceAcquireBuffer()
if !trace.enabled && !mp.trace.startingTrace {
traceReleaseBuffer(mp, pid)
return
}
categoryID, bufp := traceString(bufp, pid, category)
// The log message is recorded after all of the normal trace event
// arguments, including the task, category, and stack IDs. We must ask
// traceEventLocked to reserve extra space for the length of the message
// and the message itself.
extraSpace := traceBytesPerNumber + len(message)
traceEventLocked(extraSpace, mp, pid, bufp, traceEvUserLog, 0, 3, id, categoryID)
buf := bufp.ptr()
// double-check the message and its length can fit.
// Otherwise, truncate the message.
slen := len(message)
if room := len(buf.arr) - buf.pos; room < slen+traceBytesPerNumber {
slen = room
}
buf.varint(uint64(slen))
buf.pos += copy(buf.arr[buf.pos:], message[:slen])
traceReleaseBuffer(mp, pid)
}
// the start PC of a goroutine for tracing purposes. If pc is a wrapper,
// it returns the PC of the wrapped function. Otherwise it returns pc.
func startPCforTrace(pc uintptr) uintptr {
f := findfunc(pc)
if !f.valid() {
return pc // may happen for locked g in extra M since its pc is 0.
}
w := funcdata(f, abi.FUNCDATA_WrapInfo)
if w == nil {
return pc // not a wrapper
}
return f.datap.textAddr(*(*uint32)(w))
}
// traceOneNewExtraM registers the fact that a new extra M was created with
// the tracer. This matters if the M (which has an attached G) is used while
// the trace is still active because if it is, we need the fact that it exists
// to show up in the final trace.
func traceOneNewExtraM(gp *g) {
// Trigger two trace events for the locked g in the extra m,
// since the next event of the g will be traceEvGoSysExit in exitsyscall,
// while calling from C thread to Go.
traceGoCreate(gp, 0) // no start pc
gp.trace.seq++
traceEvent(traceEvGoInSyscall, -1, gp.goid)
}
// traceTime represents a timestamp for the trace.
type traceTime uint64
// traceClockNow returns a monotonic timestamp. The clock this function gets
// the timestamp from is specific to tracing, and shouldn't be mixed with other
// clock sources.
//
// nosplit because it's called from exitsyscall, which is nosplit.
//
//go:nosplit
func traceClockNow() traceTime {
return traceTime(cputicks() / traceTimeDiv)
}