blob: fa30650bd444f3d995b1939e897783e6ef50b768 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
"sort"
"strconv"
"strings"
"unicode"
)
// A declInfo describes a package-level const, type, var, or func declaration.
type declInfo struct {
file *Scope // scope of file containing this declaration
lhs []*Var // lhs of n:1 variable declarations, or nil
vtyp syntax.Expr // type, or nil (for const and var declarations only)
init syntax.Expr // init/orig expression, or nil (for const and var declarations only)
inherited bool // if set, the init expression is inherited from a previous constant declaration
tdecl *syntax.TypeDecl // type declaration, or nil
fdecl *syntax.FuncDecl // func declaration, or nil
// The deps field tracks initialization expression dependencies.
deps map[Object]bool // lazily initialized
}
// hasInitializer reports whether the declared object has an initialization
// expression or function body.
func (d *declInfo) hasInitializer() bool {
return d.init != nil || d.fdecl != nil && d.fdecl.Body != nil
}
// addDep adds obj to the set of objects d's init expression depends on.
func (d *declInfo) addDep(obj Object) {
m := d.deps
if m == nil {
m = make(map[Object]bool)
d.deps = m
}
m[obj] = true
}
// arity checks that the lhs and rhs of a const or var decl
// have a matching number of names and initialization values.
// If inherited is set, the initialization values are from
// another (constant) declaration.
func (check *Checker) arity(pos syntax.Pos, names []*syntax.Name, inits []syntax.Expr, constDecl, inherited bool) {
l := len(names)
r := len(inits)
switch {
case l < r:
n := inits[l]
if inherited {
check.errorf(pos, "extra init expr at %s", n.Pos())
} else {
check.errorf(n, "extra init expr %s", n)
}
case l > r && (constDecl || r != 1): // if r == 1 it may be a multi-valued function and we can't say anything yet
n := names[r]
check.errorf(n, "missing init expr for %s", n.Value)
}
}
func validatedImportPath(path string) (string, error) {
s, err := strconv.Unquote(path)
if err != nil {
return "", err
}
if s == "" {
return "", fmt.Errorf("empty string")
}
const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
for _, r := range s {
if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
return s, fmt.Errorf("invalid character %#U", r)
}
}
return s, nil
}
// declarePkgObj declares obj in the package scope, records its ident -> obj mapping,
// and updates check.objMap. The object must not be a function or method.
func (check *Checker) declarePkgObj(ident *syntax.Name, obj Object, d *declInfo) {
assert(ident.Value == obj.Name())
// spec: "A package-scope or file-scope identifier with name init
// may only be declared to be a function with this (func()) signature."
if ident.Value == "init" {
check.error(ident, "cannot declare init - must be func")
return
}
// spec: "The main package must have package name main and declare
// a function main that takes no arguments and returns no value."
if ident.Value == "main" && check.pkg.name == "main" {
check.error(ident, "cannot declare main - must be func")
return
}
check.declare(check.pkg.scope, ident, obj, nopos)
check.objMap[obj] = d
obj.setOrder(uint32(len(check.objMap)))
}
// filename returns a filename suitable for debugging output.
func (check *Checker) filename(fileNo int) string {
file := check.files[fileNo]
if pos := file.Pos(); pos.IsKnown() {
// return check.fset.File(pos).Name()
// TODO(gri) do we need the actual file name here?
return pos.RelFilename()
}
return fmt.Sprintf("file[%d]", fileNo)
}
func (check *Checker) importPackage(pos syntax.Pos, path, dir string) *Package {
// If we already have a package for the given (path, dir)
// pair, use it instead of doing a full import.
// Checker.impMap only caches packages that are marked Complete
// or fake (dummy packages for failed imports). Incomplete but
// non-fake packages do require an import to complete them.
key := importKey{path, dir}
imp := check.impMap[key]
if imp != nil {
return imp
}
// no package yet => import it
if path == "C" && (check.conf.FakeImportC || check.conf.go115UsesCgo) {
imp = NewPackage("C", "C")
imp.fake = true // package scope is not populated
imp.cgo = check.conf.go115UsesCgo
} else {
// ordinary import
var err error
if importer := check.conf.Importer; importer == nil {
err = fmt.Errorf("Config.Importer not installed")
} else if importerFrom, ok := importer.(ImporterFrom); ok {
imp, err = importerFrom.ImportFrom(path, dir, 0)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.ImportFrom(%s, %s, 0) returned nil but no error", path, dir)
}
} else {
imp, err = importer.Import(path)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.Import(%s) returned nil but no error", path)
}
}
// make sure we have a valid package name
// (errors here can only happen through manipulation of packages after creation)
if err == nil && imp != nil && (imp.name == "_" || imp.name == "") {
err = fmt.Errorf("invalid package name: %q", imp.name)
imp = nil // create fake package below
}
if err != nil {
check.errorf(pos, "could not import %s (%s)", path, err)
if imp == nil {
// create a new fake package
// come up with a sensible package name (heuristic)
name := path
if i := len(name); i > 0 && name[i-1] == '/' {
name = name[:i-1]
}
if i := strings.LastIndex(name, "/"); i >= 0 {
name = name[i+1:]
}
imp = NewPackage(path, name)
}
// continue to use the package as best as we can
imp.fake = true // avoid follow-up lookup failures
}
}
// package should be complete or marked fake, but be cautious
if imp.complete || imp.fake {
check.impMap[key] = imp
// Once we've formatted an error message once, keep the pkgPathMap
// up-to-date on subsequent imports.
if check.pkgPathMap != nil {
check.markImports(imp)
}
return imp
}
// something went wrong (importer may have returned incomplete package without error)
return nil
}
// collectObjects collects all file and package objects and inserts them
// into their respective scopes. It also performs imports and associates
// methods with receiver base type names.
func (check *Checker) collectObjects() {
pkg := check.pkg
// pkgImports is the set of packages already imported by any package file seen
// so far. Used to avoid duplicate entries in pkg.imports. Allocate and populate
// it (pkg.imports may not be empty if we are checking test files incrementally).
// Note that pkgImports is keyed by package (and thus package path), not by an
// importKey value. Two different importKey values may map to the same package
// which is why we cannot use the check.impMap here.
var pkgImports = make(map[*Package]bool)
for _, imp := range pkg.imports {
pkgImports[imp] = true
}
type methodInfo struct {
obj *Func // method
ptr bool // true if pointer receiver
recv *syntax.Name // receiver type name
}
var methods []methodInfo // collected methods with valid receivers and non-blank _ names
var fileScopes []*Scope
for fileNo, file := range check.files {
// The package identifier denotes the current package,
// but there is no corresponding package object.
check.recordDef(file.PkgName, nil)
fileScope := NewScope(check.pkg.scope, syntax.StartPos(file), syntax.EndPos(file), check.filename(fileNo))
fileScopes = append(fileScopes, fileScope)
check.recordScope(file, fileScope)
// determine file directory, necessary to resolve imports
// FileName may be "" (typically for tests) in which case
// we get "." as the directory which is what we would want.
fileDir := dir(file.PkgName.Pos().RelFilename()) // TODO(gri) should this be filename?
first := -1 // index of first ConstDecl in the current group, or -1
var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
for index, decl := range file.DeclList {
if _, ok := decl.(*syntax.ConstDecl); !ok {
first = -1 // we're not in a constant declaration
}
switch s := decl.(type) {
case *syntax.ImportDecl:
// import package
if s.Path == nil || s.Path.Bad {
continue // error reported during parsing
}
path, err := validatedImportPath(s.Path.Value)
if err != nil {
check.errorf(s.Path, "invalid import path (%s)", err)
continue
}
imp := check.importPackage(s.Path.Pos(), path, fileDir)
if imp == nil {
continue
}
// local name overrides imported package name
name := imp.name
if s.LocalPkgName != nil {
name = s.LocalPkgName.Value
if path == "C" {
// match cmd/compile (not prescribed by spec)
check.error(s.LocalPkgName, `cannot rename import "C"`)
continue
}
}
if name == "init" {
check.error(s.LocalPkgName, "cannot import package as init - init must be a func")
continue
}
// add package to list of explicit imports
// (this functionality is provided as a convenience
// for clients; it is not needed for type-checking)
if !pkgImports[imp] {
pkgImports[imp] = true
pkg.imports = append(pkg.imports, imp)
}
pkgName := NewPkgName(s.Pos(), pkg, name, imp)
if s.LocalPkgName != nil {
// in a dot-import, the dot represents the package
check.recordDef(s.LocalPkgName, pkgName)
} else {
check.recordImplicit(s, pkgName)
}
if path == "C" {
// match cmd/compile (not prescribed by spec)
pkgName.used = true
}
// add import to file scope
check.imports = append(check.imports, pkgName)
if name == "." {
// dot-import
if check.dotImportMap == nil {
check.dotImportMap = make(map[dotImportKey]*PkgName)
}
// merge imported scope with file scope
for _, obj := range imp.scope.elems {
// A package scope may contain non-exported objects,
// do not import them!
if obj.Exported() {
// declare dot-imported object
// (Do not use check.declare because it modifies the object
// via Object.setScopePos, which leads to a race condition;
// the object may be imported into more than one file scope
// concurrently. See issue #32154.)
if alt := fileScope.Insert(obj); alt != nil {
var err error_
err.errorf(s.LocalPkgName, "%s redeclared in this block", obj.Name())
err.recordAltDecl(alt)
check.report(&err)
} else {
check.dotImportMap[dotImportKey{fileScope, obj}] = pkgName
}
}
}
} else {
// declare imported package object in file scope
// (no need to provide s.LocalPkgName since we called check.recordDef earlier)
check.declare(fileScope, nil, pkgName, nopos)
}
case *syntax.ConstDecl:
// iota is the index of the current constDecl within the group
if first < 0 || file.DeclList[index-1].(*syntax.ConstDecl).Group != s.Group {
first = index
last = nil
}
iota := constant.MakeInt64(int64(index - first))
// determine which initialization expressions to use
inherited := true
switch {
case s.Type != nil || s.Values != nil:
last = s
inherited = false
case last == nil:
last = new(syntax.ConstDecl) // make sure last exists
inherited = false
}
// declare all constants
values := unpackExpr(last.Values)
for i, name := range s.NameList {
obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
var init syntax.Expr
if i < len(values) {
init = values[i]
}
d := &declInfo{file: fileScope, vtyp: last.Type, init: init, inherited: inherited}
check.declarePkgObj(name, obj, d)
}
// Constants must always have init values.
check.arity(s.Pos(), s.NameList, values, true, inherited)
case *syntax.VarDecl:
lhs := make([]*Var, len(s.NameList))
// If there's exactly one rhs initializer, use
// the same declInfo d1 for all lhs variables
// so that each lhs variable depends on the same
// rhs initializer (n:1 var declaration).
var d1 *declInfo
if _, ok := s.Values.(*syntax.ListExpr); !ok {
// The lhs elements are only set up after the for loop below,
// but that's ok because declarePkgObj only collects the declInfo
// for a later phase.
d1 = &declInfo{file: fileScope, lhs: lhs, vtyp: s.Type, init: s.Values}
}
// declare all variables
values := unpackExpr(s.Values)
for i, name := range s.NameList {
obj := NewVar(name.Pos(), pkg, name.Value, nil)
lhs[i] = obj
d := d1
if d == nil {
// individual assignments
var init syntax.Expr
if i < len(values) {
init = values[i]
}
d = &declInfo{file: fileScope, vtyp: s.Type, init: init}
}
check.declarePkgObj(name, obj, d)
}
// If we have no type, we must have values.
if s.Type == nil || values != nil {
check.arity(s.Pos(), s.NameList, values, false, false)
}
case *syntax.TypeDecl:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
check.declarePkgObj(s.Name, obj, &declInfo{file: fileScope, tdecl: s})
case *syntax.FuncDecl:
d := s // TODO(gri) get rid of this
name := d.Name.Value
obj := NewFunc(d.Name.Pos(), pkg, name, nil)
if d.Recv == nil {
// regular function
if name == "init" || name == "main" && pkg.name == "main" {
if d.TParamList != nil {
check.softErrorf(d, "func %s must have no type parameters", name)
}
if t := d.Type; len(t.ParamList) != 0 || len(t.ResultList) != 0 {
check.softErrorf(d, "func %s must have no arguments and no return values", name)
}
}
// don't declare init functions in the package scope - they are invisible
if name == "init" {
obj.parent = pkg.scope
check.recordDef(d.Name, obj)
// init functions must have a body
if d.Body == nil {
// TODO(gri) make this error message consistent with the others above
check.softErrorf(obj.pos, "missing function body")
}
} else {
check.declare(pkg.scope, d.Name, obj, nopos)
}
} else {
// method
// d.Recv != nil
if !acceptMethodTypeParams && len(d.TParamList) != 0 {
//check.error(d.TParamList.Pos(), invalidAST + "method must have no type parameters")
check.error(d, invalidAST+"method must have no type parameters")
}
ptr, recv, _ := check.unpackRecv(d.Recv.Type, false)
// (Methods with invalid receiver cannot be associated to a type, and
// methods with blank _ names are never found; no need to collect any
// of them. They will still be type-checked with all the other functions.)
if recv != nil && name != "_" {
methods = append(methods, methodInfo{obj, ptr, recv})
}
check.recordDef(d.Name, obj)
}
info := &declInfo{file: fileScope, fdecl: d}
// Methods are not package-level objects but we still track them in the
// object map so that we can handle them like regular functions (if the
// receiver is invalid); also we need their fdecl info when associating
// them with their receiver base type, below.
check.objMap[obj] = info
obj.setOrder(uint32(len(check.objMap)))
default:
check.errorf(s, invalidAST+"unknown syntax.Decl node %T", s)
}
}
}
// verify that objects in package and file scopes have different names
for _, scope := range fileScopes {
for _, obj := range scope.elems {
if alt := pkg.scope.Lookup(obj.Name()); alt != nil {
var err error_
if pkg, ok := obj.(*PkgName); ok {
err.errorf(alt, "%s already declared through import of %s", alt.Name(), pkg.Imported())
err.recordAltDecl(pkg)
} else {
err.errorf(alt, "%s already declared through dot-import of %s", alt.Name(), obj.Pkg())
// TODO(gri) dot-imported objects don't have a position; recordAltDecl won't print anything
err.recordAltDecl(obj)
}
check.report(&err)
}
}
}
// Now that we have all package scope objects and all methods,
// associate methods with receiver base type name where possible.
// Ignore methods that have an invalid receiver. They will be
// type-checked later, with regular functions.
if methods != nil {
check.methods = make(map[*TypeName][]*Func)
for i := range methods {
m := &methods[i]
// Determine the receiver base type and associate m with it.
ptr, base := check.resolveBaseTypeName(m.ptr, m.recv)
if base != nil {
m.obj.hasPtrRecv = ptr
check.methods[base] = append(check.methods[base], m.obj)
}
}
}
}
// unpackRecv unpacks a receiver type and returns its components: ptr indicates whether
// rtyp is a pointer receiver, rname is the receiver type name, and tparams are its
// type parameters, if any. The type parameters are only unpacked if unpackParams is
// set. If rname is nil, the receiver is unusable (i.e., the source has a bug which we
// cannot easily work around).
func (check *Checker) unpackRecv(rtyp syntax.Expr, unpackParams bool) (ptr bool, rname *syntax.Name, tparams []*syntax.Name) {
L: // unpack receiver type
// This accepts invalid receivers such as ***T and does not
// work for other invalid receivers, but we don't care. The
// validity of receiver expressions is checked elsewhere.
for {
switch t := rtyp.(type) {
case *syntax.ParenExpr:
rtyp = t.X
// case *ast.StarExpr:
// ptr = true
// rtyp = t.X
case *syntax.Operation:
if t.Op != syntax.Mul || t.Y != nil {
break
}
ptr = true
rtyp = t.X
default:
break L
}
}
// unpack type parameters, if any
if ptyp, _ := rtyp.(*syntax.IndexExpr); ptyp != nil {
rtyp = ptyp.X
if unpackParams {
for _, arg := range unpackExpr(ptyp.Index) {
var par *syntax.Name
switch arg := arg.(type) {
case *syntax.Name:
par = arg
case *syntax.BadExpr:
// ignore - error already reported by parser
case nil:
check.error(ptyp, invalidAST+"parameterized receiver contains nil parameters")
default:
check.errorf(arg, "receiver type parameter %s must be an identifier", arg)
}
if par == nil {
par = syntax.NewName(arg.Pos(), "_")
}
tparams = append(tparams, par)
}
}
}
// unpack receiver name
if name, _ := rtyp.(*syntax.Name); name != nil {
rname = name
}
return
}
// resolveBaseTypeName returns the non-alias base type name for typ, and whether
// there was a pointer indirection to get to it. The base type name must be declared
// in package scope, and there can be at most one pointer indirection. If no such type
// name exists, the returned base is nil.
func (check *Checker) resolveBaseTypeName(seenPtr bool, typ syntax.Expr) (ptr bool, base *TypeName) {
// Algorithm: Starting from a type expression, which may be a name,
// we follow that type through alias declarations until we reach a
// non-alias type name. If we encounter anything but pointer types or
// parentheses we're done. If we encounter more than one pointer type
// we're done.
ptr = seenPtr
var seen map[*TypeName]bool
for {
typ = unparen(typ)
// check if we have a pointer type
// if pexpr, _ := typ.(*ast.StarExpr); pexpr != nil {
if pexpr, _ := typ.(*syntax.Operation); pexpr != nil && pexpr.Op == syntax.Mul && pexpr.Y == nil {
// if we've already seen a pointer, we're done
if ptr {
return false, nil
}
ptr = true
typ = unparen(pexpr.X) // continue with pointer base type
}
// typ must be a name
name, _ := typ.(*syntax.Name)
if name == nil {
return false, nil
}
// name must denote an object found in the current package scope
// (note that dot-imported objects are not in the package scope!)
obj := check.pkg.scope.Lookup(name.Value)
if obj == nil {
return false, nil
}
// the object must be a type name...
tname, _ := obj.(*TypeName)
if tname == nil {
return false, nil
}
// ... which we have not seen before
if seen[tname] {
return false, nil
}
// we're done if tdecl defined tname as a new type
// (rather than an alias)
tdecl := check.objMap[tname].tdecl // must exist for objects in package scope
if !tdecl.Alias {
return ptr, tname
}
// otherwise, continue resolving
typ = tdecl.Type
if seen == nil {
seen = make(map[*TypeName]bool)
}
seen[tname] = true
}
}
// packageObjects typechecks all package objects, but not function bodies.
func (check *Checker) packageObjects() {
// process package objects in source order for reproducible results
objList := make([]Object, len(check.objMap))
i := 0
for obj := range check.objMap {
objList[i] = obj
i++
}
sort.Sort(inSourceOrder(objList))
// add new methods to already type-checked types (from a prior Checker.Files call)
for _, obj := range objList {
if obj, _ := obj.(*TypeName); obj != nil && obj.typ != nil {
check.collectMethods(obj)
}
}
// We process non-alias declarations first, in order to avoid situations where
// the type of an alias declaration is needed before it is available. In general
// this is still not enough, as it is possible to create sufficiently convoluted
// recursive type definitions that will cause a type alias to be needed before it
// is available (see issue #25838 for examples).
// As an aside, the cmd/compiler suffers from the same problem (#25838).
var aliasList []*TypeName
// phase 1
for _, obj := range objList {
// If we have a type alias, collect it for the 2nd phase.
if tname, _ := obj.(*TypeName); tname != nil && check.objMap[tname].tdecl.Alias {
aliasList = append(aliasList, tname)
continue
}
check.objDecl(obj, nil)
}
// phase 2
for _, obj := range aliasList {
check.objDecl(obj, nil)
}
// At this point we may have a non-empty check.methods map; this means that not all
// entries were deleted at the end of typeDecl because the respective receiver base
// types were not found. In that case, an error was reported when declaring those
// methods. We can now safely discard this map.
check.methods = nil
}
// inSourceOrder implements the sort.Sort interface.
type inSourceOrder []Object
func (a inSourceOrder) Len() int { return len(a) }
func (a inSourceOrder) Less(i, j int) bool { return a[i].order() < a[j].order() }
func (a inSourceOrder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// unusedImports checks for unused imports.
func (check *Checker) unusedImports() {
// if function bodies are not checked, packages' uses are likely missing - don't check
if check.conf.IgnoreFuncBodies {
return
}
// spec: "It is illegal (...) to directly import a package without referring to
// any of its exported identifiers. To import a package solely for its side-effects
// (initialization), use the blank identifier as explicit package name."
for _, obj := range check.imports {
if !obj.used && obj.name != "_" {
check.errorUnusedPkg(obj)
}
}
}
func (check *Checker) errorUnusedPkg(obj *PkgName) {
// If the package was imported with a name other than the final
// import path element, show it explicitly in the error message.
// Note that this handles both renamed imports and imports of
// packages containing unconventional package declarations.
// Note that this uses / always, even on Windows, because Go import
// paths always use forward slashes.
path := obj.imported.path
elem := path
if i := strings.LastIndex(elem, "/"); i >= 0 {
elem = elem[i+1:]
}
if obj.name == "" || obj.name == "." || obj.name == elem {
if check.conf.CompilerErrorMessages {
check.softErrorf(obj, "imported and not used: %q", path)
} else {
check.softErrorf(obj, "%q imported but not used", path)
}
} else {
if check.conf.CompilerErrorMessages {
check.softErrorf(obj, "imported and not used: %q as %s", path, obj.name)
} else {
check.softErrorf(obj, "%q imported but not used as %s", path, obj.name)
}
}
}
// dir makes a good-faith attempt to return the directory
// portion of path. If path is empty, the result is ".".
// (Per the go/build package dependency tests, we cannot import
// path/filepath and simply use filepath.Dir.)
func dir(path string) string {
if i := strings.LastIndexAny(path, `/\`); i > 0 {
return path[:i]
}
// i <= 0
return "."
}