blob: b49fdba86ea11bb53579130e19c4df1daab3ded3 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements runtime support for signal handling.
//
// Most synchronization primitives are not available from
// the signal handler (it cannot block and cannot use locks)
// so the handler communicates with a processing goroutine
// via struct sig, below.
//
// Ownership for sig.Note passes back and forth between
// the signal handler and the signal goroutine in rounds.
// The initial state is that sig.note is cleared (setup by signal_enable).
// At the beginning of each round, mask == 0.
// The round goes through three stages:
//
// (In parallel)
// 1a) One or more signals arrive and are handled
// by sigsend using cas to set bits in sig.mask.
// The handler that changes sig.mask from zero to non-zero
// calls notewakeup(&sig).
// 1b) Sigrecv calls notesleep(&sig) to wait for the wakeup.
//
// 2) Having received the wakeup, sigrecv knows that sigsend
// will not send another wakeup, so it can noteclear(&sig)
// to prepare for the next round. (Sigsend may still be adding
// signals to sig.mask at this point, which is fine.)
//
// 3) Sigrecv uses cas to grab the current sig.mask and zero it,
// triggering the next round.
//
// The signal handler takes ownership of the note by atomically
// changing mask from a zero to non-zero value. It gives up
// ownership by calling notewakeup. The signal goroutine takes
// ownership by returning from notesleep (caused by the notewakeup)
// and gives up ownership by clearing mask.
package runtime
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
static struct {
Note;
uint32 mask[(NSIG+31)/32];
uint32 wanted[(NSIG+31)/32];
uint32 kick;
bool inuse;
} sig;
// Called from sighandler to send a signal back out of the signal handling thread.
bool
runtime·sigsend(int32 s)
{
uint32 bit, mask;
if(!sig.inuse || s < 0 || s >= 32*nelem(sig.wanted) || !(sig.wanted[s/32]&(1U<<(s&31))))
return false;
bit = 1 << (s&31);
for(;;) {
mask = sig.mask[s/32];
if(mask & bit)
break; // signal already in queue
if(runtime·cas(&sig.mask[s/32], mask, mask|bit)) {
// Added to queue.
// Only send a wakeup if the receiver needs a kick.
if(runtime·cas(&sig.kick, 1, 0))
runtime·notewakeup(&sig);
break;
}
}
return true;
}
// Called to receive the next queued signal.
// Must only be called from a single goroutine at a time.
func signal_recv() (m uint32) {
static uint32 recv[nelem(sig.mask)];
int32 i, more;
for(;;) {
// Serve from local copy if there are bits left.
for(i=0; i<NSIG; i++) {
if(recv[i/32]&(1U<<(i&31))) {
recv[i/32] ^= 1U<<(i&31);
m = i;
goto done;
}
}
// Get a new local copy.
// Ask for a kick if more signals come in
// during or after our check (before the sleep).
if(sig.kick == 0) {
runtime·noteclear(&sig);
runtime·cas(&sig.kick, 0, 1);
}
more = 0;
for(i=0; i<nelem(sig.mask); i++) {
for(;;) {
m = sig.mask[i];
if(runtime·cas(&sig.mask[i], m, 0))
break;
}
recv[i] = m;
if(m != 0)
more = 1;
}
if(more)
continue;
// Sleep waiting for more.
runtime·entersyscall();
runtime·notesleep(&sig);
runtime·exitsyscall();
}
done:;
// goc requires that we fall off the end of functions
// that return values instead of using our own return
// statements.
}
// Must only be called from a single goroutine at a time.
func signal_enable(s uint32) {
int32 i;
if(!sig.inuse) {
// The first call to signal_enable is for us
// to use for initialization. It does not pass
// signal information in m.
sig.inuse = true; // enable reception of signals; cannot disable
runtime·noteclear(&sig);
return;
}
if(~s == 0) {
// Special case: want everything.
for(i=0; i<nelem(sig.wanted); i++)
sig.wanted[i] = ~(uint32)0;
runtime·sigenable(s);
return;
}
if(s >= nelem(sig.wanted)*32)
return;
sig.wanted[s/32] |= 1U<<(s&31);
runtime·sigenable(s);
}