blob: a3d1533899431c90b3047fb15b4ddf947a9a6f61 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Action graph execution.
package work
import (
"bytes"
"cmd/internal/cov/covcmd"
"context"
"crypto/sha256"
"encoding/json"
"errors"
"fmt"
"go/token"
"internal/lazyregexp"
"io"
"io/fs"
"log"
"math/rand"
"os"
"os/exec"
"path/filepath"
"regexp"
"runtime"
"slices"
"sort"
"strconv"
"strings"
"sync"
"time"
"cmd/go/internal/base"
"cmd/go/internal/cache"
"cmd/go/internal/cfg"
"cmd/go/internal/fsys"
"cmd/go/internal/gover"
"cmd/go/internal/load"
"cmd/go/internal/modload"
"cmd/go/internal/str"
"cmd/go/internal/trace"
"cmd/internal/buildid"
"cmd/internal/quoted"
"cmd/internal/sys"
)
const defaultCFlags = "-O2 -g"
// actionList returns the list of actions in the dag rooted at root
// as visited in a depth-first post-order traversal.
func actionList(root *Action) []*Action {
seen := map[*Action]bool{}
all := []*Action{}
var walk func(*Action)
walk = func(a *Action) {
if seen[a] {
return
}
seen[a] = true
for _, a1 := range a.Deps {
walk(a1)
}
all = append(all, a)
}
walk(root)
return all
}
// Do runs the action graph rooted at root.
func (b *Builder) Do(ctx context.Context, root *Action) {
ctx, span := trace.StartSpan(ctx, "exec.Builder.Do ("+root.Mode+" "+root.Target+")")
defer span.Done()
if !b.IsCmdList {
// If we're doing real work, take time at the end to trim the cache.
c := cache.Default()
defer func() {
if err := c.Close(); err != nil {
base.Fatalf("go: failed to trim cache: %v", err)
}
}()
}
// Build list of all actions, assigning depth-first post-order priority.
// The original implementation here was a true queue
// (using a channel) but it had the effect of getting
// distracted by low-level leaf actions to the detriment
// of completing higher-level actions. The order of
// work does not matter much to overall execution time,
// but when running "go test std" it is nice to see each test
// results as soon as possible. The priorities assigned
// ensure that, all else being equal, the execution prefers
// to do what it would have done first in a simple depth-first
// dependency order traversal.
all := actionList(root)
for i, a := range all {
a.priority = i
}
// Write action graph, without timing information, in case we fail and exit early.
writeActionGraph := func() {
if file := cfg.DebugActiongraph; file != "" {
if strings.HasSuffix(file, ".go") {
// Do not overwrite Go source code in:
// go build -debug-actiongraph x.go
base.Fatalf("go: refusing to write action graph to %v\n", file)
}
js := actionGraphJSON(root)
if err := os.WriteFile(file, []byte(js), 0666); err != nil {
fmt.Fprintf(os.Stderr, "go: writing action graph: %v\n", err)
base.SetExitStatus(1)
}
}
}
writeActionGraph()
b.readySema = make(chan bool, len(all))
// Initialize per-action execution state.
for _, a := range all {
for _, a1 := range a.Deps {
a1.triggers = append(a1.triggers, a)
}
a.pending = len(a.Deps)
if a.pending == 0 {
b.ready.push(a)
b.readySema <- true
}
}
// Handle runs a single action and takes care of triggering
// any actions that are runnable as a result.
handle := func(ctx context.Context, a *Action) {
if a.json != nil {
a.json.TimeStart = time.Now()
}
var err error
if a.Actor != nil && (!a.Failed || a.IgnoreFail) {
// TODO(matloob): Better action descriptions
desc := "Executing action (" + a.Mode
if a.Package != nil {
desc += " " + a.Package.Desc()
}
desc += ")"
ctx, span := trace.StartSpan(ctx, desc)
a.traceSpan = span
for _, d := range a.Deps {
trace.Flow(ctx, d.traceSpan, a.traceSpan)
}
err = a.Actor.Act(b, ctx, a)
span.Done()
}
if a.json != nil {
a.json.TimeDone = time.Now()
}
// The actions run in parallel but all the updates to the
// shared work state are serialized through b.exec.
b.exec.Lock()
defer b.exec.Unlock()
if err != nil {
if b.AllowErrors && a.Package != nil {
if a.Package.Error == nil {
a.Package.Error = &load.PackageError{Err: err}
a.Package.Incomplete = true
}
} else {
var ipe load.ImportPathError
if a.Package != nil && (!errors.As(err, &ipe) || ipe.ImportPath() != a.Package.ImportPath) {
err = fmt.Errorf("%s: %v", a.Package.ImportPath, err)
}
base.Errorf("%s", err)
}
a.Failed = true
}
for _, a0 := range a.triggers {
if a.Failed {
a0.Failed = true
}
if a0.pending--; a0.pending == 0 {
b.ready.push(a0)
b.readySema <- true
}
}
if a == root {
close(b.readySema)
}
}
var wg sync.WaitGroup
// Kick off goroutines according to parallelism.
// If we are using the -n flag (just printing commands)
// drop the parallelism to 1, both to make the output
// deterministic and because there is no real work anyway.
par := cfg.BuildP
if cfg.BuildN {
par = 1
}
for i := 0; i < par; i++ {
wg.Add(1)
go func() {
ctx := trace.StartGoroutine(ctx)
defer wg.Done()
for {
select {
case _, ok := <-b.readySema:
if !ok {
return
}
// Receiving a value from b.readySema entitles
// us to take from the ready queue.
b.exec.Lock()
a := b.ready.pop()
b.exec.Unlock()
handle(ctx, a)
case <-base.Interrupted:
base.SetExitStatus(1)
return
}
}
}()
}
wg.Wait()
// Write action graph again, this time with timing information.
writeActionGraph()
}
// buildActionID computes the action ID for a build action.
func (b *Builder) buildActionID(a *Action) cache.ActionID {
p := a.Package
h := cache.NewHash("build " + p.ImportPath)
// Configuration independent of compiler toolchain.
// Note: buildmode has already been accounted for in buildGcflags
// and should not be inserted explicitly. Most buildmodes use the
// same compiler settings and can reuse each other's results.
// If not, the reason is already recorded in buildGcflags.
fmt.Fprintf(h, "compile\n")
// Include information about the origin of the package that
// may be embedded in the debug info for the object file.
if cfg.BuildTrimpath {
// When -trimpath is used with a package built from the module cache,
// its debug information refers to the module path and version
// instead of the directory.
if p.Module != nil {
fmt.Fprintf(h, "module %s@%s\n", p.Module.Path, p.Module.Version)
}
} else if p.Goroot {
// The Go compiler always hides the exact value of $GOROOT
// when building things in GOROOT.
//
// The C compiler does not, but for packages in GOROOT we rewrite the path
// as though -trimpath were set. This used to be so that we did not invalidate
// the build cache (and especially precompiled archive files) when changing
// GOROOT_FINAL, but we no longer ship precompiled archive files as of Go 1.20
// (https://go.dev/issue/47257) and no longer support GOROOT_FINAL
// (https://go.dev/issue/62047).
// TODO(bcmills): Figure out whether this behavior is still useful.
//
// b.WorkDir is always either trimmed or rewritten to
// the literal string "/tmp/go-build".
} else if !strings.HasPrefix(p.Dir, b.WorkDir) {
// -trimpath is not set and no other rewrite rules apply,
// so the object file may refer to the absolute directory
// containing the package.
fmt.Fprintf(h, "dir %s\n", p.Dir)
}
if p.Module != nil {
fmt.Fprintf(h, "go %s\n", p.Module.GoVersion)
}
fmt.Fprintf(h, "goos %s goarch %s\n", cfg.Goos, cfg.Goarch)
fmt.Fprintf(h, "import %q\n", p.ImportPath)
fmt.Fprintf(h, "omitdebug %v standard %v local %v prefix %q\n", p.Internal.OmitDebug, p.Standard, p.Internal.Local, p.Internal.LocalPrefix)
if cfg.BuildTrimpath {
fmt.Fprintln(h, "trimpath")
}
if p.Internal.ForceLibrary {
fmt.Fprintf(h, "forcelibrary\n")
}
if len(p.CgoFiles)+len(p.SwigFiles)+len(p.SwigCXXFiles) > 0 {
fmt.Fprintf(h, "cgo %q\n", b.toolID("cgo"))
cppflags, cflags, cxxflags, fflags, ldflags, _ := b.CFlags(p)
ccExe := b.ccExe()
fmt.Fprintf(h, "CC=%q %q %q %q\n", ccExe, cppflags, cflags, ldflags)
// Include the C compiler tool ID so that if the C
// compiler changes we rebuild the package.
if ccID, _, err := b.gccToolID(ccExe[0], "c"); err == nil {
fmt.Fprintf(h, "CC ID=%q\n", ccID)
}
if len(p.CXXFiles)+len(p.SwigCXXFiles) > 0 {
cxxExe := b.cxxExe()
fmt.Fprintf(h, "CXX=%q %q\n", cxxExe, cxxflags)
if cxxID, _, err := b.gccToolID(cxxExe[0], "c++"); err == nil {
fmt.Fprintf(h, "CXX ID=%q\n", cxxID)
}
}
if len(p.FFiles) > 0 {
fcExe := b.fcExe()
fmt.Fprintf(h, "FC=%q %q\n", fcExe, fflags)
if fcID, _, err := b.gccToolID(fcExe[0], "f95"); err == nil {
fmt.Fprintf(h, "FC ID=%q\n", fcID)
}
}
// TODO(rsc): Should we include the SWIG version?
}
if p.Internal.Cover.Mode != "" {
fmt.Fprintf(h, "cover %q %q\n", p.Internal.Cover.Mode, b.toolID("cover"))
}
if p.Internal.FuzzInstrument {
if fuzzFlags := fuzzInstrumentFlags(); fuzzFlags != nil {
fmt.Fprintf(h, "fuzz %q\n", fuzzFlags)
}
}
if p.Internal.BuildInfo != nil {
fmt.Fprintf(h, "modinfo %q\n", p.Internal.BuildInfo.String())
}
// Configuration specific to compiler toolchain.
switch cfg.BuildToolchainName {
default:
base.Fatalf("buildActionID: unknown build toolchain %q", cfg.BuildToolchainName)
case "gc":
fmt.Fprintf(h, "compile %s %q %q\n", b.toolID("compile"), forcedGcflags, p.Internal.Gcflags)
if len(p.SFiles) > 0 {
fmt.Fprintf(h, "asm %q %q %q\n", b.toolID("asm"), forcedAsmflags, p.Internal.Asmflags)
}
// GOARM, GOMIPS, etc.
key, val := cfg.GetArchEnv()
fmt.Fprintf(h, "%s=%s\n", key, val)
if cfg.CleanGOEXPERIMENT != "" {
fmt.Fprintf(h, "GOEXPERIMENT=%q\n", cfg.CleanGOEXPERIMENT)
}
// TODO(rsc): Convince compiler team not to add more magic environment variables,
// or perhaps restrict the environment variables passed to subprocesses.
// Because these are clumsy, undocumented special-case hacks
// for debugging the compiler, they are not settable using 'go env -w',
// and so here we use os.Getenv, not cfg.Getenv.
magic := []string{
"GOCLOBBERDEADHASH",
"GOSSAFUNC",
"GOSSADIR",
"GOCOMPILEDEBUG",
}
for _, env := range magic {
if x := os.Getenv(env); x != "" {
fmt.Fprintf(h, "magic %s=%s\n", env, x)
}
}
case "gccgo":
id, _, err := b.gccToolID(BuildToolchain.compiler(), "go")
if err != nil {
base.Fatalf("%v", err)
}
fmt.Fprintf(h, "compile %s %q %q\n", id, forcedGccgoflags, p.Internal.Gccgoflags)
fmt.Fprintf(h, "pkgpath %s\n", gccgoPkgpath(p))
fmt.Fprintf(h, "ar %q\n", BuildToolchain.(gccgoToolchain).ar())
if len(p.SFiles) > 0 {
id, _, _ = b.gccToolID(BuildToolchain.compiler(), "assembler-with-cpp")
// Ignore error; different assembler versions
// are unlikely to make any difference anyhow.
fmt.Fprintf(h, "asm %q\n", id)
}
}
// Input files.
inputFiles := str.StringList(
p.GoFiles,
p.CgoFiles,
p.CFiles,
p.CXXFiles,
p.FFiles,
p.MFiles,
p.HFiles,
p.SFiles,
p.SysoFiles,
p.SwigFiles,
p.SwigCXXFiles,
p.EmbedFiles,
)
for _, file := range inputFiles {
fmt.Fprintf(h, "file %s %s\n", file, b.fileHash(filepath.Join(p.Dir, file)))
}
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 != nil {
fmt.Fprintf(h, "import %s %s\n", p1.ImportPath, contentID(a1.buildID))
}
if a1.Mode == "preprocess PGO profile" {
fmt.Fprintf(h, "pgofile %s\n", b.fileHash(a1.built))
}
}
return h.Sum()
}
// needCgoHdr reports whether the actions triggered by this one
// expect to be able to access the cgo-generated header file.
func (b *Builder) needCgoHdr(a *Action) bool {
// If this build triggers a header install, run cgo to get the header.
if !b.IsCmdList && (a.Package.UsesCgo() || a.Package.UsesSwig()) && (cfg.BuildBuildmode == "c-archive" || cfg.BuildBuildmode == "c-shared") {
for _, t1 := range a.triggers {
if t1.Mode == "install header" {
return true
}
}
for _, t1 := range a.triggers {
for _, t2 := range t1.triggers {
if t2.Mode == "install header" {
return true
}
}
}
}
return false
}
// allowedVersion reports whether the version v is an allowed version of go
// (one that we can compile).
// v is known to be of the form "1.23".
func allowedVersion(v string) bool {
// Special case: no requirement.
if v == "" {
return true
}
return gover.Compare(gover.Local(), v) >= 0
}
const (
needBuild uint32 = 1 << iota
needCgoHdr
needVet
needCompiledGoFiles
needCovMetaFile
needStale
)
// build is the action for building a single package.
// Note that any new influence on this logic must be reported in b.buildActionID above as well.
func (b *Builder) build(ctx context.Context, a *Action) (err error) {
p := a.Package
sh := b.Shell(a)
bit := func(x uint32, b bool) uint32 {
if b {
return x
}
return 0
}
cachedBuild := false
needCovMeta := p.Internal.Cover.GenMeta
need := bit(needBuild, !b.IsCmdList && a.needBuild || b.NeedExport) |
bit(needCgoHdr, b.needCgoHdr(a)) |
bit(needVet, a.needVet) |
bit(needCovMetaFile, needCovMeta) |
bit(needCompiledGoFiles, b.NeedCompiledGoFiles)
if !p.BinaryOnly {
if b.useCache(a, b.buildActionID(a), p.Target, need&needBuild != 0) {
// We found the main output in the cache.
// If we don't need any other outputs, we can stop.
// Otherwise, we need to write files to a.Objdir (needVet, needCgoHdr).
// Remember that we might have them in cache
// and check again after we create a.Objdir.
cachedBuild = true
a.output = []byte{} // start saving output in case we miss any cache results
need &^= needBuild
if b.NeedExport {
p.Export = a.built
p.BuildID = a.buildID
}
if need&needCompiledGoFiles != 0 {
if err := b.loadCachedCompiledGoFiles(a); err == nil {
need &^= needCompiledGoFiles
}
}
}
// Source files might be cached, even if the full action is not
// (e.g., go list -compiled -find).
if !cachedBuild && need&needCompiledGoFiles != 0 {
if err := b.loadCachedCompiledGoFiles(a); err == nil {
need &^= needCompiledGoFiles
}
}
if need == 0 {
return nil
}
defer b.flushOutput(a)
}
defer func() {
if err != nil && b.IsCmdList && b.NeedError && p.Error == nil {
p.Error = &load.PackageError{Err: err}
}
}()
if cfg.BuildN {
// In -n mode, print a banner between packages.
// The banner is five lines so that when changes to
// different sections of the bootstrap script have to
// be merged, the banners give patch something
// to use to find its context.
sh.Print("\n#\n# " + p.ImportPath + "\n#\n\n")
}
if cfg.BuildV {
sh.Print(p.ImportPath + "\n")
}
if p.Error != nil {
// Don't try to build anything for packages with errors. There may be a
// problem with the inputs that makes the package unsafe to build.
return p.Error
}
if p.BinaryOnly {
p.Stale = true
p.StaleReason = "binary-only packages are no longer supported"
if b.IsCmdList {
return nil
}
return errors.New("binary-only packages are no longer supported")
}
if p.Module != nil && !allowedVersion(p.Module.GoVersion) {
return errors.New("module requires Go " + p.Module.GoVersion + " or later")
}
if err := b.checkDirectives(a); err != nil {
return err
}
if err := sh.Mkdir(a.Objdir); err != nil {
return err
}
objdir := a.Objdir
// Load cached cgo header, but only if we're skipping the main build (cachedBuild==true).
if cachedBuild && need&needCgoHdr != 0 {
if err := b.loadCachedCgoHdr(a); err == nil {
need &^= needCgoHdr
}
}
// Load cached coverage meta-data file fragment, but only if we're
// skipping the main build (cachedBuild==true).
if cachedBuild && need&needCovMetaFile != 0 {
bact := a.Actor.(*buildActor)
if err := b.loadCachedObjdirFile(a, cache.Default(), bact.covMetaFileName); err == nil {
need &^= needCovMetaFile
}
}
// Load cached vet config, but only if that's all we have left
// (need == needVet, not testing just the one bit).
// If we are going to do a full build anyway,
// we're going to regenerate the files below anyway.
if need == needVet {
if err := b.loadCachedVet(a); err == nil {
need &^= needVet
}
}
if need == 0 {
return nil
}
if err := AllowInstall(a); err != nil {
return err
}
// make target directory
dir, _ := filepath.Split(a.Target)
if dir != "" {
if err := sh.Mkdir(dir); err != nil {
return err
}
}
gofiles := str.StringList(p.GoFiles)
cgofiles := str.StringList(p.CgoFiles)
cfiles := str.StringList(p.CFiles)
sfiles := str.StringList(p.SFiles)
cxxfiles := str.StringList(p.CXXFiles)
var objects, cgoObjects, pcCFLAGS, pcLDFLAGS []string
if p.UsesCgo() || p.UsesSwig() {
if pcCFLAGS, pcLDFLAGS, err = b.getPkgConfigFlags(a); err != nil {
return
}
}
// Compute overlays for .c/.cc/.h/etc. and if there are any overlays
// put correct contents of all those files in the objdir, to ensure
// the correct headers are included. nonGoOverlay is the overlay that
// points from nongo files to the copied files in objdir.
nonGoFileLists := [][]string{p.CFiles, p.SFiles, p.CXXFiles, p.HFiles, p.FFiles}
OverlayLoop:
for _, fs := range nonGoFileLists {
for _, f := range fs {
if _, ok := fsys.OverlayPath(mkAbs(p.Dir, f)); ok {
a.nonGoOverlay = make(map[string]string)
break OverlayLoop
}
}
}
if a.nonGoOverlay != nil {
for _, fs := range nonGoFileLists {
for i := range fs {
from := mkAbs(p.Dir, fs[i])
opath, _ := fsys.OverlayPath(from)
dst := objdir + filepath.Base(fs[i])
if err := sh.CopyFile(dst, opath, 0666, false); err != nil {
return err
}
a.nonGoOverlay[from] = dst
}
}
}
// If we're doing coverage, preprocess the .go files and put them in the work directory
if p.Internal.Cover.Mode != "" {
outfiles := []string{}
infiles := []string{}
for i, file := range str.StringList(gofiles, cgofiles) {
if base.IsTestFile(file) {
continue // Not covering this file.
}
var sourceFile string
var coverFile string
var key string
if base, found := strings.CutSuffix(file, ".cgo1.go"); found {
// cgo files have absolute paths
base = filepath.Base(base)
sourceFile = file
coverFile = objdir + base + ".cgo1.go"
key = base + ".go"
} else {
sourceFile = filepath.Join(p.Dir, file)
coverFile = objdir + file
key = file
}
coverFile = strings.TrimSuffix(coverFile, ".go") + ".cover.go"
if cfg.Experiment.CoverageRedesign {
infiles = append(infiles, sourceFile)
outfiles = append(outfiles, coverFile)
} else {
cover := p.Internal.CoverVars[key]
if cover == nil {
continue // Not covering this file.
}
if err := b.cover(a, coverFile, sourceFile, cover.Var); err != nil {
return err
}
}
if i < len(gofiles) {
gofiles[i] = coverFile
} else {
cgofiles[i-len(gofiles)] = coverFile
}
}
if cfg.Experiment.CoverageRedesign {
if len(infiles) != 0 {
// Coverage instrumentation creates new top level
// variables in the target package for things like
// meta-data containers, counter vars, etc. To avoid
// collisions with user variables, suffix the var name
// with 12 hex digits from the SHA-256 hash of the
// import path. Choice of 12 digits is historical/arbitrary,
// we just need enough of the hash to avoid accidents,
// as opposed to precluding determined attempts by
// users to break things.
sum := sha256.Sum256([]byte(a.Package.ImportPath))
coverVar := fmt.Sprintf("goCover_%x_", sum[:6])
mode := a.Package.Internal.Cover.Mode
if mode == "" {
panic("covermode should be set at this point")
}
if newoutfiles, err := b.cover2(a, infiles, outfiles, coverVar, mode); err != nil {
return err
} else {
outfiles = newoutfiles
gofiles = append([]string{newoutfiles[0]}, gofiles...)
}
} else {
// If there are no input files passed to cmd/cover,
// then we don't want to pass -covercfg when building
// the package with the compiler, so set covermode to
// the empty string so as to signal that we need to do
// that.
p.Internal.Cover.Mode = ""
}
if ba, ok := a.Actor.(*buildActor); ok && ba.covMetaFileName != "" {
b.cacheObjdirFile(a, cache.Default(), ba.covMetaFileName)
}
}
}
// Run SWIG on each .swig and .swigcxx file.
// Each run will generate two files, a .go file and a .c or .cxx file.
// The .go file will use import "C" and is to be processed by cgo.
// For -cover test or build runs, this needs to happen after the cover
// tool is run; we don't want to instrument swig-generated Go files,
// see issue #64661.
if p.UsesSwig() {
outGo, outC, outCXX, err := b.swig(a, objdir, pcCFLAGS)
if err != nil {
return err
}
cgofiles = append(cgofiles, outGo...)
cfiles = append(cfiles, outC...)
cxxfiles = append(cxxfiles, outCXX...)
}
// Run cgo.
if p.UsesCgo() || p.UsesSwig() {
// In a package using cgo, cgo compiles the C, C++ and assembly files with gcc.
// There is one exception: runtime/cgo's job is to bridge the
// cgo and non-cgo worlds, so it necessarily has files in both.
// In that case gcc only gets the gcc_* files.
var gccfiles []string
gccfiles = append(gccfiles, cfiles...)
cfiles = nil
if p.Standard && p.ImportPath == "runtime/cgo" {
filter := func(files, nongcc, gcc []string) ([]string, []string) {
for _, f := range files {
if strings.HasPrefix(f, "gcc_") {
gcc = append(gcc, f)
} else {
nongcc = append(nongcc, f)
}
}
return nongcc, gcc
}
sfiles, gccfiles = filter(sfiles, sfiles[:0], gccfiles)
} else {
for _, sfile := range sfiles {
data, err := os.ReadFile(filepath.Join(p.Dir, sfile))
if err == nil {
if bytes.HasPrefix(data, []byte("TEXT")) || bytes.Contains(data, []byte("\nTEXT")) ||
bytes.HasPrefix(data, []byte("DATA")) || bytes.Contains(data, []byte("\nDATA")) ||
bytes.HasPrefix(data, []byte("GLOBL")) || bytes.Contains(data, []byte("\nGLOBL")) {
return fmt.Errorf("package using cgo has Go assembly file %s", sfile)
}
}
}
gccfiles = append(gccfiles, sfiles...)
sfiles = nil
}
outGo, outObj, err := b.cgo(a, base.Tool("cgo"), objdir, pcCFLAGS, pcLDFLAGS, mkAbsFiles(p.Dir, cgofiles), gccfiles, cxxfiles, p.MFiles, p.FFiles)
// The files in cxxfiles have now been handled by b.cgo.
cxxfiles = nil
if err != nil {
return err
}
if cfg.BuildToolchainName == "gccgo" {
cgoObjects = append(cgoObjects, a.Objdir+"_cgo_flags")
}
cgoObjects = append(cgoObjects, outObj...)
gofiles = append(gofiles, outGo...)
switch cfg.BuildBuildmode {
case "c-archive", "c-shared":
b.cacheCgoHdr(a)
}
}
var srcfiles []string // .go and non-.go
srcfiles = append(srcfiles, gofiles...)
srcfiles = append(srcfiles, sfiles...)
srcfiles = append(srcfiles, cfiles...)
srcfiles = append(srcfiles, cxxfiles...)
b.cacheSrcFiles(a, srcfiles)
// Running cgo generated the cgo header.
need &^= needCgoHdr
// Sanity check only, since Package.load already checked as well.
if len(gofiles) == 0 {
return &load.NoGoError{Package: p}
}
// Prepare Go vet config if needed.
if need&needVet != 0 {
buildVetConfig(a, srcfiles)
need &^= needVet
}
if need&needCompiledGoFiles != 0 {
if err := b.loadCachedCompiledGoFiles(a); err != nil {
return fmt.Errorf("loading compiled Go files from cache: %w", err)
}
need &^= needCompiledGoFiles
}
if need == 0 {
// Nothing left to do.
return nil
}
// Collect symbol ABI requirements from assembly.
symabis, err := BuildToolchain.symabis(b, a, sfiles)
if err != nil {
return err
}
// Prepare Go import config.
// We start it off with a comment so it can't be empty, so icfg.Bytes() below is never nil.
// It should never be empty anyway, but there have been bugs in the past that resulted
// in empty configs, which then unfortunately turn into "no config passed to compiler",
// and the compiler falls back to looking in pkg itself, which mostly works,
// except when it doesn't.
var icfg bytes.Buffer
fmt.Fprintf(&icfg, "# import config\n")
for i, raw := range p.Internal.RawImports {
final := p.Imports[i]
if final != raw {
fmt.Fprintf(&icfg, "importmap %s=%s\n", raw, final)
}
}
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 == nil || p1.ImportPath == "" || a1.built == "" {
continue
}
fmt.Fprintf(&icfg, "packagefile %s=%s\n", p1.ImportPath, a1.built)
}
// Prepare Go embed config if needed.
// Unlike the import config, it's okay for the embed config to be empty.
var embedcfg []byte
if len(p.Internal.Embed) > 0 {
var embed struct {
Patterns map[string][]string
Files map[string]string
}
embed.Patterns = p.Internal.Embed
embed.Files = make(map[string]string)
for _, file := range p.EmbedFiles {
embed.Files[file] = filepath.Join(p.Dir, file)
}
js, err := json.MarshalIndent(&embed, "", "\t")
if err != nil {
return fmt.Errorf("marshal embedcfg: %v", err)
}
embedcfg = js
}
// Find PGO profile if needed.
var pgoProfile string
for _, a1 := range a.Deps {
if a1.Mode != "preprocess PGO profile" {
continue
}
if pgoProfile != "" {
return fmt.Errorf("action contains multiple PGO profile dependencies")
}
pgoProfile = a1.built
}
if p.Internal.BuildInfo != nil && cfg.ModulesEnabled {
prog := modload.ModInfoProg(p.Internal.BuildInfo.String(), cfg.BuildToolchainName == "gccgo")
if len(prog) > 0 {
if err := sh.writeFile(objdir+"_gomod_.go", prog); err != nil {
return err
}
gofiles = append(gofiles, objdir+"_gomod_.go")
}
}
// Compile Go.
objpkg := objdir + "_pkg_.a"
ofile, out, err := BuildToolchain.gc(b, a, objpkg, icfg.Bytes(), embedcfg, symabis, len(sfiles) > 0, pgoProfile, gofiles)
if err := sh.reportCmd("", "", out, err); err != nil {
return err
}
if ofile != objpkg {
objects = append(objects, ofile)
}
// Copy .h files named for goos or goarch or goos_goarch
// to names using GOOS and GOARCH.
// For example, defs_linux_amd64.h becomes defs_GOOS_GOARCH.h.
_goos_goarch := "_" + cfg.Goos + "_" + cfg.Goarch
_goos := "_" + cfg.Goos
_goarch := "_" + cfg.Goarch
for _, file := range p.HFiles {
name, ext := fileExtSplit(file)
switch {
case strings.HasSuffix(name, _goos_goarch):
targ := file[:len(name)-len(_goos_goarch)] + "_GOOS_GOARCH." + ext
if err := sh.CopyFile(objdir+targ, filepath.Join(p.Dir, file), 0666, true); err != nil {
return err
}
case strings.HasSuffix(name, _goarch):
targ := file[:len(name)-len(_goarch)] + "_GOARCH." + ext
if err := sh.CopyFile(objdir+targ, filepath.Join(p.Dir, file), 0666, true); err != nil {
return err
}
case strings.HasSuffix(name, _goos):
targ := file[:len(name)-len(_goos)] + "_GOOS." + ext
if err := sh.CopyFile(objdir+targ, filepath.Join(p.Dir, file), 0666, true); err != nil {
return err
}
}
}
for _, file := range cfiles {
out := file[:len(file)-len(".c")] + ".o"
if err := BuildToolchain.cc(b, a, objdir+out, file); err != nil {
return err
}
objects = append(objects, out)
}
// Assemble .s files.
if len(sfiles) > 0 {
ofiles, err := BuildToolchain.asm(b, a, sfiles)
if err != nil {
return err
}
objects = append(objects, ofiles...)
}
// For gccgo on ELF systems, we write the build ID as an assembler file.
// This lets us set the SHF_EXCLUDE flag.
// This is read by readGccgoArchive in cmd/internal/buildid/buildid.go.
if a.buildID != "" && cfg.BuildToolchainName == "gccgo" {
switch cfg.Goos {
case "aix", "android", "dragonfly", "freebsd", "illumos", "linux", "netbsd", "openbsd", "solaris":
asmfile, err := b.gccgoBuildIDFile(a)
if err != nil {
return err
}
ofiles, err := BuildToolchain.asm(b, a, []string{asmfile})
if err != nil {
return err
}
objects = append(objects, ofiles...)
}
}
// NOTE(rsc): On Windows, it is critically important that the
// gcc-compiled objects (cgoObjects) be listed after the ordinary
// objects in the archive. I do not know why this is.
// https://golang.org/issue/2601
objects = append(objects, cgoObjects...)
// Add system object files.
for _, syso := range p.SysoFiles {
objects = append(objects, filepath.Join(p.Dir, syso))
}
// Pack into archive in objdir directory.
// If the Go compiler wrote an archive, we only need to add the
// object files for non-Go sources to the archive.
// If the Go compiler wrote an archive and the package is entirely
// Go sources, there is no pack to execute at all.
if len(objects) > 0 {
if err := BuildToolchain.pack(b, a, objpkg, objects); err != nil {
return err
}
}
if err := b.updateBuildID(a, objpkg, true); err != nil {
return err
}
a.built = objpkg
return nil
}
func (b *Builder) checkDirectives(a *Action) error {
var msg *bytes.Buffer
p := a.Package
var seen map[string]token.Position
for _, d := range p.Internal.Build.Directives {
if strings.HasPrefix(d.Text, "//go:debug") {
key, _, err := load.ParseGoDebug(d.Text)
if err != nil && err != load.ErrNotGoDebug {
if msg == nil {
msg = new(bytes.Buffer)
}
fmt.Fprintf(msg, "%s: invalid //go:debug: %v\n", d.Pos, err)
continue
}
if pos, ok := seen[key]; ok {
fmt.Fprintf(msg, "%s: repeated //go:debug for %v\n\t%s: previous //go:debug\n", d.Pos, key, pos)
continue
}
if seen == nil {
seen = make(map[string]token.Position)
}
seen[key] = d.Pos
}
}
if msg != nil {
// We pass a non-nil error to reportCmd to trigger the failure reporting
// path, but the content of the error doesn't matter because msg is
// non-empty.
err := errors.New("invalid directive")
return b.Shell(a).reportCmd("", "", msg.Bytes(), err)
}
return nil
}
func (b *Builder) cacheObjdirFile(a *Action, c cache.Cache, name string) error {
f, err := os.Open(a.Objdir + name)
if err != nil {
return err
}
defer f.Close()
_, _, err = c.Put(cache.Subkey(a.actionID, name), f)
return err
}
func (b *Builder) findCachedObjdirFile(a *Action, c cache.Cache, name string) (string, error) {
file, _, err := cache.GetFile(c, cache.Subkey(a.actionID, name))
if err != nil {
return "", fmt.Errorf("loading cached file %s: %w", name, err)
}
return file, nil
}
func (b *Builder) loadCachedObjdirFile(a *Action, c cache.Cache, name string) error {
cached, err := b.findCachedObjdirFile(a, c, name)
if err != nil {
return err
}
return b.Shell(a).CopyFile(a.Objdir+name, cached, 0666, true)
}
func (b *Builder) cacheCgoHdr(a *Action) {
c := cache.Default()
b.cacheObjdirFile(a, c, "_cgo_install.h")
}
func (b *Builder) loadCachedCgoHdr(a *Action) error {
c := cache.Default()
return b.loadCachedObjdirFile(a, c, "_cgo_install.h")
}
func (b *Builder) cacheSrcFiles(a *Action, srcfiles []string) {
c := cache.Default()
var buf bytes.Buffer
for _, file := range srcfiles {
if !strings.HasPrefix(file, a.Objdir) {
// not generated
buf.WriteString("./")
buf.WriteString(file)
buf.WriteString("\n")
continue
}
name := file[len(a.Objdir):]
buf.WriteString(name)
buf.WriteString("\n")
if err := b.cacheObjdirFile(a, c, name); err != nil {
return
}
}
cache.PutBytes(c, cache.Subkey(a.actionID, "srcfiles"), buf.Bytes())
}
func (b *Builder) loadCachedVet(a *Action) error {
c := cache.Default()
list, _, err := cache.GetBytes(c, cache.Subkey(a.actionID, "srcfiles"))
if err != nil {
return fmt.Errorf("reading srcfiles list: %w", err)
}
var srcfiles []string
for _, name := range strings.Split(string(list), "\n") {
if name == "" { // end of list
continue
}
if strings.HasPrefix(name, "./") {
srcfiles = append(srcfiles, name[2:])
continue
}
if err := b.loadCachedObjdirFile(a, c, name); err != nil {
return err
}
srcfiles = append(srcfiles, a.Objdir+name)
}
buildVetConfig(a, srcfiles)
return nil
}
func (b *Builder) loadCachedCompiledGoFiles(a *Action) error {
c := cache.Default()
list, _, err := cache.GetBytes(c, cache.Subkey(a.actionID, "srcfiles"))
if err != nil {
return fmt.Errorf("reading srcfiles list: %w", err)
}
var gofiles []string
for _, name := range strings.Split(string(list), "\n") {
if name == "" { // end of list
continue
} else if !strings.HasSuffix(name, ".go") {
continue
}
if strings.HasPrefix(name, "./") {
gofiles = append(gofiles, name[len("./"):])
continue
}
file, err := b.findCachedObjdirFile(a, c, name)
if err != nil {
return fmt.Errorf("finding %s: %w", name, err)
}
gofiles = append(gofiles, file)
}
a.Package.CompiledGoFiles = gofiles
return nil
}
// vetConfig is the configuration passed to vet describing a single package.
type vetConfig struct {
ID string // package ID (example: "fmt [fmt.test]")
Compiler string // compiler name (gc, gccgo)
Dir string // directory containing package
ImportPath string // canonical import path ("package path")
GoFiles []string // absolute paths to package source files
NonGoFiles []string // absolute paths to package non-Go files
IgnoredFiles []string // absolute paths to ignored source files
ImportMap map[string]string // map import path in source code to package path
PackageFile map[string]string // map package path to .a file with export data
Standard map[string]bool // map package path to whether it's in the standard library
PackageVetx map[string]string // map package path to vetx data from earlier vet run
VetxOnly bool // only compute vetx data; don't report detected problems
VetxOutput string // write vetx data to this output file
GoVersion string // Go version for package
SucceedOnTypecheckFailure bool // awful hack; see #18395 and below
}
func buildVetConfig(a *Action, srcfiles []string) {
// Classify files based on .go extension.
// srcfiles does not include raw cgo files.
var gofiles, nongofiles []string
for _, name := range srcfiles {
if strings.HasSuffix(name, ".go") {
gofiles = append(gofiles, name)
} else {
nongofiles = append(nongofiles, name)
}
}
ignored := str.StringList(a.Package.IgnoredGoFiles, a.Package.IgnoredOtherFiles)
// Pass list of absolute paths to vet,
// so that vet's error messages will use absolute paths,
// so that we can reformat them relative to the directory
// in which the go command is invoked.
vcfg := &vetConfig{
ID: a.Package.ImportPath,
Compiler: cfg.BuildToolchainName,
Dir: a.Package.Dir,
GoFiles: mkAbsFiles(a.Package.Dir, gofiles),
NonGoFiles: mkAbsFiles(a.Package.Dir, nongofiles),
IgnoredFiles: mkAbsFiles(a.Package.Dir, ignored),
ImportPath: a.Package.ImportPath,
ImportMap: make(map[string]string),
PackageFile: make(map[string]string),
Standard: make(map[string]bool),
}
if a.Package.Module != nil {
v := a.Package.Module.GoVersion
if v == "" {
v = gover.DefaultGoModVersion
}
vcfg.GoVersion = "go" + v
}
a.vetCfg = vcfg
for i, raw := range a.Package.Internal.RawImports {
final := a.Package.Imports[i]
vcfg.ImportMap[raw] = final
}
// Compute the list of mapped imports in the vet config
// so that we can add any missing mappings below.
vcfgMapped := make(map[string]bool)
for _, p := range vcfg.ImportMap {
vcfgMapped[p] = true
}
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 == nil || p1.ImportPath == "" {
continue
}
// Add import mapping if needed
// (for imports like "runtime/cgo" that appear only in generated code).
if !vcfgMapped[p1.ImportPath] {
vcfg.ImportMap[p1.ImportPath] = p1.ImportPath
}
if a1.built != "" {
vcfg.PackageFile[p1.ImportPath] = a1.built
}
if p1.Standard {
vcfg.Standard[p1.ImportPath] = true
}
}
}
// VetTool is the path to an alternate vet tool binary.
// The caller is expected to set it (if needed) before executing any vet actions.
var VetTool string
// VetFlags are the default flags to pass to vet.
// The caller is expected to set them before executing any vet actions.
var VetFlags []string
// VetExplicit records whether the vet flags were set explicitly on the command line.
var VetExplicit bool
func (b *Builder) vet(ctx context.Context, a *Action) error {
// a.Deps[0] is the build of the package being vetted.
// a.Deps[1] is the build of the "fmt" package.
a.Failed = false // vet of dependency may have failed but we can still succeed
if a.Deps[0].Failed {
// The build of the package has failed. Skip vet check.
// Vet could return export data for non-typecheck errors,
// but we ignore it because the package cannot be compiled.
return nil
}
vcfg := a.Deps[0].vetCfg
if vcfg == nil {
// Vet config should only be missing if the build failed.
return fmt.Errorf("vet config not found")
}
sh := b.Shell(a)
vcfg.VetxOnly = a.VetxOnly
vcfg.VetxOutput = a.Objdir + "vet.out"
vcfg.PackageVetx = make(map[string]string)
h := cache.NewHash("vet " + a.Package.ImportPath)
fmt.Fprintf(h, "vet %q\n", b.toolID("vet"))
vetFlags := VetFlags
// In GOROOT, we enable all the vet tests during 'go test',
// not just the high-confidence subset. This gets us extra
// checking for the standard library (at some compliance cost)
// and helps us gain experience about how well the checks
// work, to help decide which should be turned on by default.
// The command-line still wins.
//
// Note that this flag change applies even when running vet as
// a dependency of vetting a package outside std.
// (Otherwise we'd have to introduce a whole separate
// space of "vet fmt as a dependency of a std top-level vet"
// versus "vet fmt as a dependency of a non-std top-level vet".)
// This is OK as long as the packages that are farther down the
// dependency tree turn on *more* analysis, as here.
// (The unsafeptr check does not write any facts for use by
// later vet runs, nor does unreachable.)
if a.Package.Goroot && !VetExplicit && VetTool == "" {
// Turn off -unsafeptr checks.
// There's too much unsafe.Pointer code
// that vet doesn't like in low-level packages
// like runtime, sync, and reflect.
// Note that $GOROOT/src/buildall.bash
// does the same
// and should be updated if these flags are
// changed here.
vetFlags = []string{"-unsafeptr=false"}
// Also turn off -unreachable checks during go test.
// During testing it is very common to make changes
// like hard-coded forced returns or panics that make
// code unreachable. It's unreasonable to insist on files
// not having any unreachable code during "go test".
// (buildall.bash still has -unreachable enabled
// for the overall whole-tree scan.)
if cfg.CmdName == "test" {
vetFlags = append(vetFlags, "-unreachable=false")
}
}
// Note: We could decide that vet should compute export data for
// all analyses, in which case we don't need to include the flags here.
// But that would mean that if an analysis causes problems like
// unexpected crashes there would be no way to turn it off.
// It seems better to let the flags disable export analysis too.
fmt.Fprintf(h, "vetflags %q\n", vetFlags)
fmt.Fprintf(h, "pkg %q\n", a.Deps[0].actionID)
for _, a1 := range a.Deps {
if a1.Mode == "vet" && a1.built != "" {
fmt.Fprintf(h, "vetout %q %s\n", a1.Package.ImportPath, b.fileHash(a1.built))
vcfg.PackageVetx[a1.Package.ImportPath] = a1.built
}
}
key := cache.ActionID(h.Sum())
if vcfg.VetxOnly && !cfg.BuildA {
c := cache.Default()
if file, _, err := cache.GetFile(c, key); err == nil {
a.built = file
return nil
}
}
js, err := json.MarshalIndent(vcfg, "", "\t")
if err != nil {
return fmt.Errorf("internal error marshaling vet config: %v", err)
}
js = append(js, '\n')
if err := sh.writeFile(a.Objdir+"vet.cfg", js); err != nil {
return err
}
// TODO(rsc): Why do we pass $GCCGO to go vet?
env := b.cCompilerEnv()
if cfg.BuildToolchainName == "gccgo" {
env = append(env, "GCCGO="+BuildToolchain.compiler())
}
p := a.Package
tool := VetTool
if tool == "" {
tool = base.Tool("vet")
}
runErr := sh.run(p.Dir, p.ImportPath, env, cfg.BuildToolexec, tool, vetFlags, a.Objdir+"vet.cfg")
// If vet wrote export data, save it for input to future vets.
if f, err := os.Open(vcfg.VetxOutput); err == nil {
a.built = vcfg.VetxOutput
cache.Default().Put(key, f)
f.Close()
}
return runErr
}
// linkActionID computes the action ID for a link action.
func (b *Builder) linkActionID(a *Action) cache.ActionID {
p := a.Package
h := cache.NewHash("link " + p.ImportPath)
// Toolchain-independent configuration.
fmt.Fprintf(h, "link\n")
fmt.Fprintf(h, "buildmode %s goos %s goarch %s\n", cfg.BuildBuildmode, cfg.Goos, cfg.Goarch)
fmt.Fprintf(h, "import %q\n", p.ImportPath)
fmt.Fprintf(h, "omitdebug %v standard %v local %v prefix %q\n", p.Internal.OmitDebug, p.Standard, p.Internal.Local, p.Internal.LocalPrefix)
if cfg.BuildTrimpath {
fmt.Fprintln(h, "trimpath")
}
// Toolchain-dependent configuration, shared with b.linkSharedActionID.
b.printLinkerConfig(h, p)
// Input files.
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 != nil {
if a1.built != "" || a1.buildID != "" {
buildID := a1.buildID
if buildID == "" {
buildID = b.buildID(a1.built)
}
fmt.Fprintf(h, "packagefile %s=%s\n", p1.ImportPath, contentID(buildID))
}
// Because we put package main's full action ID into the binary's build ID,
// we must also put the full action ID into the binary's action ID hash.
if p1.Name == "main" {
fmt.Fprintf(h, "packagemain %s\n", a1.buildID)
}
if p1.Shlib != "" {
fmt.Fprintf(h, "packageshlib %s=%s\n", p1.ImportPath, contentID(b.buildID(p1.Shlib)))
}
}
}
return h.Sum()
}
// printLinkerConfig prints the linker config into the hash h,
// as part of the computation of a linker-related action ID.
func (b *Builder) printLinkerConfig(h io.Writer, p *load.Package) {
switch cfg.BuildToolchainName {
default:
base.Fatalf("linkActionID: unknown toolchain %q", cfg.BuildToolchainName)
case "gc":
fmt.Fprintf(h, "link %s %q %s\n", b.toolID("link"), forcedLdflags, ldBuildmode)
if p != nil {
fmt.Fprintf(h, "linkflags %q\n", p.Internal.Ldflags)
}
// GOARM, GOMIPS, etc.
key, val := cfg.GetArchEnv()
fmt.Fprintf(h, "%s=%s\n", key, val)
if cfg.CleanGOEXPERIMENT != "" {
fmt.Fprintf(h, "GOEXPERIMENT=%q\n", cfg.CleanGOEXPERIMENT)
}
// The linker writes source file paths that refer to GOROOT,
// but only if -trimpath is not specified (see [gctoolchain.ld] in gc.go).
gorootFinal := cfg.GOROOT
if cfg.BuildTrimpath {
gorootFinal = ""
}
fmt.Fprintf(h, "GOROOT=%s\n", gorootFinal)
// GO_EXTLINK_ENABLED controls whether the external linker is used.
fmt.Fprintf(h, "GO_EXTLINK_ENABLED=%s\n", cfg.Getenv("GO_EXTLINK_ENABLED"))
// TODO(rsc): Do cgo settings and flags need to be included?
// Or external linker settings and flags?
case "gccgo":
id, _, err := b.gccToolID(BuildToolchain.linker(), "go")
if err != nil {
base.Fatalf("%v", err)
}
fmt.Fprintf(h, "link %s %s\n", id, ldBuildmode)
// TODO(iant): Should probably include cgo flags here.
}
}
// link is the action for linking a single command.
// Note that any new influence on this logic must be reported in b.linkActionID above as well.
func (b *Builder) link(ctx context.Context, a *Action) (err error) {
if b.useCache(a, b.linkActionID(a), a.Package.Target, !b.IsCmdList) || b.IsCmdList {
return nil
}
defer b.flushOutput(a)
sh := b.Shell(a)
if err := sh.Mkdir(a.Objdir); err != nil {
return err
}
importcfg := a.Objdir + "importcfg.link"
if err := b.writeLinkImportcfg(a, importcfg); err != nil {
return err
}
if err := AllowInstall(a); err != nil {
return err
}
// make target directory
dir, _ := filepath.Split(a.Target)
if dir != "" {
if err := sh.Mkdir(dir); err != nil {
return err
}
}
if err := BuildToolchain.ld(b, a, a.Target, importcfg, a.Deps[0].built); err != nil {
return err
}
// Update the binary with the final build ID.
// But if OmitDebug is set, don't rewrite the binary, because we set OmitDebug
// on binaries that we are going to run and then delete.
// There's no point in doing work on such a binary.
// Worse, opening the binary for write here makes it
// essentially impossible to safely fork+exec due to a fundamental
// incompatibility between ETXTBSY and threads on modern Unix systems.
// See golang.org/issue/22220.
// We still call updateBuildID to update a.buildID, which is important
// for test result caching, but passing rewrite=false (final arg)
// means we don't actually rewrite the binary, nor store the
// result into the cache. That's probably a net win:
// less cache space wasted on large binaries we are not likely to
// need again. (On the other hand it does make repeated go test slower.)
// It also makes repeated go run slower, which is a win in itself:
// we don't want people to treat go run like a scripting environment.
if err := b.updateBuildID(a, a.Target, !a.Package.Internal.OmitDebug); err != nil {
return err
}
a.built = a.Target
return nil
}
func (b *Builder) writeLinkImportcfg(a *Action, file string) error {
// Prepare Go import cfg.
var icfg bytes.Buffer
for _, a1 := range a.Deps {
p1 := a1.Package
if p1 == nil {
continue
}
fmt.Fprintf(&icfg, "packagefile %s=%s\n", p1.ImportPath, a1.built)
if p1.Shlib != "" {
fmt.Fprintf(&icfg, "packageshlib %s=%s\n", p1.ImportPath, p1.Shlib)
}
}
info := ""
if a.Package.Internal.BuildInfo != nil {
info = a.Package.Internal.BuildInfo.String()
}
fmt.Fprintf(&icfg, "modinfo %q\n", modload.ModInfoData(info))
return b.Shell(a).writeFile(file, icfg.Bytes())
}
// PkgconfigCmd returns a pkg-config binary name
// defaultPkgConfig is defined in zdefaultcc.go, written by cmd/dist.
func (b *Builder) PkgconfigCmd() string {
return envList("PKG_CONFIG", cfg.DefaultPkgConfig)[0]
}
// splitPkgConfigOutput parses the pkg-config output into a slice of flags.
// This implements the shell quoting semantics described in
// https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02,
// except that it does not support parameter or arithmetic expansion or command
// substitution and hard-codes the <blank> delimiters instead of reading them
// from LC_LOCALE.
func splitPkgConfigOutput(out []byte) ([]string, error) {
if len(out) == 0 {
return nil, nil
}
var flags []string
flag := make([]byte, 0, len(out))
didQuote := false // was the current flag parsed from a quoted string?
escaped := false // did we just read `\` in a non-single-quoted context?
quote := byte(0) // what is the quote character around the current string?
for _, c := range out {
if escaped {
if quote == '"' {
// “The <backslash> shall retain its special meaning as an escape
// character … only when followed by one of the following characters
// when considered special:”
switch c {
case '$', '`', '"', '\\', '\n':
// Handle the escaped character normally.
default:
// Not an escape character after all.
flag = append(flag, '\\', c)
escaped = false
continue
}
}
if c == '\n' {
// “If a <newline> follows the <backslash>, the shell shall interpret
// this as line continuation.”
} else {
flag = append(flag, c)
}
escaped = false
continue
}
if quote != 0 && c == quote {
quote = 0
continue
}
switch quote {
case '\'':
// “preserve the literal value of each character”
flag = append(flag, c)
continue
case '"':
// “preserve the literal value of all characters within the double-quotes,
// with the exception of …”
switch c {
case '`', '$', '\\':
default:
flag = append(flag, c)
continue
}
}
// “The application shall quote the following characters if they are to
// represent themselves:”
switch c {
case '|', '&', ';', '<', '>', '(', ')', '$', '`':
return nil, fmt.Errorf("unexpected shell character %q in pkgconf output", c)
case '\\':
// “A <backslash> that is not quoted shall preserve the literal value of
// the following character, with the exception of a <newline>.”
escaped = true
continue
case '"', '\'':
quote = c
didQuote = true
continue
case ' ', '\t', '\n':
if len(flag) > 0 || didQuote {
flags = append(flags, string(flag))
}
flag, didQuote = flag[:0], false
continue
}
flag = append(flag, c)
}
// Prefer to report a missing quote instead of a missing escape. If the string
// is something like `"foo\`, it's ambiguous as to whether the trailing
// backslash is really an escape at all.
if quote != 0 {
return nil, errors.New("unterminated quoted string in pkgconf output")
}
if escaped {
return nil, errors.New("broken character escaping in pkgconf output")
}
if len(flag) > 0 || didQuote {
flags = append(flags, string(flag))
}
return flags, nil
}
// Calls pkg-config if needed and returns the cflags/ldflags needed to build a's package.
func (b *Builder) getPkgConfigFlags(a *Action) (cflags, ldflags []string, err error) {
p := a.Package
sh := b.Shell(a)
if pcargs := p.CgoPkgConfig; len(pcargs) > 0 {
// pkg-config permits arguments to appear anywhere in
// the command line. Move them all to the front, before --.
var pcflags []string
var pkgs []string
for _, pcarg := range pcargs {
if pcarg == "--" {
// We're going to add our own "--" argument.
} else if strings.HasPrefix(pcarg, "--") {
pcflags = append(pcflags, pcarg)
} else {
pkgs = append(pkgs, pcarg)
}
}
for _, pkg := range pkgs {
if !load.SafeArg(pkg) {
return nil, nil, fmt.Errorf("invalid pkg-config package name: %s", pkg)
}
}
var out []byte
out, err = sh.runOut(p.Dir, nil, b.PkgconfigCmd(), "--cflags", pcflags, "--", pkgs)
if err != nil {
desc := b.PkgconfigCmd() + " --cflags " + strings.Join(pcflags, " ") + " -- " + strings.Join(pkgs, " ")
return nil, nil, sh.reportCmd(desc, "", out, err)
}
if len(out) > 0 {
cflags, err = splitPkgConfigOutput(bytes.TrimSpace(out))
if err != nil {
return nil, nil, err
}
if err := checkCompilerFlags("CFLAGS", "pkg-config --cflags", cflags); err != nil {
return nil, nil, err
}
}
out, err = sh.runOut(p.Dir, nil, b.PkgconfigCmd(), "--libs", pcflags, "--", pkgs)
if err != nil {
desc := b.PkgconfigCmd() + " --libs " + strings.Join(pcflags, " ") + " -- " + strings.Join(pkgs, " ")
return nil, nil, sh.reportCmd(desc, "", out, err)
}
if len(out) > 0 {
// We need to handle path with spaces so that C:/Program\ Files can pass
// checkLinkerFlags. Use splitPkgConfigOutput here just like we treat cflags.
ldflags, err = splitPkgConfigOutput(bytes.TrimSpace(out))
if err != nil {
return nil, nil, err
}
if err := checkLinkerFlags("LDFLAGS", "pkg-config --libs", ldflags); err != nil {
return nil, nil, err
}
}
}
return
}
func (b *Builder) installShlibname(ctx context.Context, a *Action) error {
if err := AllowInstall(a); err != nil {
return err
}
sh := b.Shell(a)
a1 := a.Deps[0]
if !cfg.BuildN {
if err := sh.Mkdir(filepath.Dir(a.Target)); err != nil {
return err
}
}
return sh.writeFile(a.Target, []byte(filepath.Base(a1.Target)+"\n"))
}
func (b *Builder) linkSharedActionID(a *Action) cache.ActionID {
h := cache.NewHash("linkShared")
// Toolchain-independent configuration.
fmt.Fprintf(h, "linkShared\n")
fmt.Fprintf(h, "goos %s goarch %s\n", cfg.Goos, cfg.Goarch)
// Toolchain-dependent configuration, shared with b.linkActionID.
b.printLinkerConfig(h, nil)
// Input files.
for _, a1 := range a.Deps {
p1 := a1.Package
if a1.built == "" {
continue
}
if p1 != nil {
fmt.Fprintf(h, "packagefile %s=%s\n", p1.ImportPath, contentID(b.buildID(a1.built)))
if p1.Shlib != "" {
fmt.Fprintf(h, "packageshlib %s=%s\n", p1.ImportPath, contentID(b.buildID(p1.Shlib)))
}
}
}
// Files named on command line are special.
for _, a1 := range a.Deps[0].Deps {
p1 := a1.Package
fmt.Fprintf(h, "top %s=%s\n", p1.ImportPath, contentID(b.buildID(a1.built)))
}
return h.Sum()
}
func (b *Builder) linkShared(ctx context.Context, a *Action) (err error) {
if b.useCache(a, b.linkSharedActionID(a), a.Target, !b.IsCmdList) || b.IsCmdList {
return nil
}
defer b.flushOutput(a)
if err := AllowInstall(a); err != nil {
return err
}
if err := b.Shell(a).Mkdir(a.Objdir); err != nil {
return err
}
importcfg := a.Objdir + "importcfg.link"
if err := b.writeLinkImportcfg(a, importcfg); err != nil {
return err
}
// TODO(rsc): There is a missing updateBuildID here,
// but we have to decide where to store the build ID in these files.
a.built = a.Target
return BuildToolchain.ldShared(b, a, a.Deps[0].Deps, a.Target, importcfg, a.Deps)
}
// BuildInstallFunc is the action for installing a single package or executable.
func BuildInstallFunc(b *Builder, ctx context.Context, a *Action) (err error) {
defer func() {
if err != nil {
// a.Package == nil is possible for the go install -buildmode=shared
// action that installs libmangledname.so, which corresponds to
// a list of packages, not just one.
sep, path := "", ""
if a.Package != nil {
sep, path = " ", a.Package.ImportPath
}
err = fmt.Errorf("go %s%s%s: %v", cfg.CmdName, sep, path, err)
}
}()
sh := b.Shell(a)
a1 := a.Deps[0]
a.buildID = a1.buildID
if a.json != nil {
a.json.BuildID = a.buildID
}
// If we are using the eventual install target as an up-to-date
// cached copy of the thing we built, then there's no need to
// copy it into itself (and that would probably fail anyway).
// In this case a1.built == a.Target because a1.built == p.Target,
// so the built target is not in the a1.Objdir tree that b.cleanup(a1) removes.
if a1.built == a.Target {
a.built = a.Target
if !a.buggyInstall {
b.cleanup(a1)
}
// Whether we're smart enough to avoid a complete rebuild
// depends on exactly what the staleness and rebuild algorithms
// are, as well as potentially the state of the Go build cache.
// We don't really want users to be able to infer (or worse start depending on)
// those details from whether the modification time changes during
// "go install", so do a best-effort update of the file times to make it
// look like we rewrote a.Target even if we did not. Updating the mtime
// may also help other mtime-based systems that depend on our
// previous mtime updates that happened more often.
// This is still not perfect - we ignore the error result, and if the file was
// unwritable for some reason then pretending to have written it is also
// confusing - but it's probably better than not doing the mtime update.
//
// But don't do that for the special case where building an executable
// with -linkshared implicitly installs all its dependent libraries.
// We want to hide that awful detail as much as possible, so don't
// advertise it by touching the mtimes (usually the libraries are up
// to date).
if !a.buggyInstall && !b.IsCmdList {
if cfg.BuildN {
sh.ShowCmd("", "touch %s", a.Target)
} else if err := AllowInstall(a); err == nil {
now := time.Now()
os.Chtimes(a.Target, now, now)
}
}
return nil
}
// If we're building for go list -export,
// never install anything; just keep the cache reference.
if b.IsCmdList {
a.built = a1.built
return nil
}
if err := AllowInstall(a); err != nil {
return err
}
if err := sh.Mkdir(a.Objdir); err != nil {
return err
}
perm := fs.FileMode(0666)
if a1.Mode == "link" {
switch cfg.BuildBuildmode {
case "c-archive", "c-shared", "plugin":
default:
perm = 0777
}
}
// make target directory
dir, _ := filepath.Split(a.Target)
if dir != "" {
if err := sh.Mkdir(dir); err != nil {
return err
}
}
if !a.buggyInstall {
defer b.cleanup(a1)
}
return sh.moveOrCopyFile(a.Target, a1.built, perm, false)
}
// AllowInstall returns a non-nil error if this invocation of the go command is
// allowed to install a.Target.
//
// The build of cmd/go running under its own test is forbidden from installing
// to its original GOROOT. The var is exported so it can be set by TestMain.
var AllowInstall = func(*Action) error { return nil }
// cleanup removes a's object dir to keep the amount of
// on-disk garbage down in a large build. On an operating system
// with aggressive buffering, cleaning incrementally like
// this keeps the intermediate objects from hitting the disk.
func (b *Builder) cleanup(a *Action) {
if !cfg.BuildWork {
b.Shell(a).RemoveAll(a.Objdir)
}
}
// Install the cgo export header file, if there is one.
func (b *Builder) installHeader(ctx context.Context, a *Action) error {
sh := b.Shell(a)
src := a.Objdir + "_cgo_install.h"
if _, err := os.Stat(src); os.IsNotExist(err) {
// If the file does not exist, there are no exported
// functions, and we do not install anything.
// TODO(rsc): Once we know that caching is rebuilding
// at the right times (not missing rebuilds), here we should
// probably delete the installed header, if any.
if cfg.BuildX {
sh.ShowCmd("", "# %s not created", src)
}
return nil
}
if err := AllowInstall(a); err != nil {
return err
}
dir, _ := filepath.Split(a.Target)
if dir != "" {
if err := sh.Mkdir(dir); err != nil {
return err
}
}
return sh.moveOrCopyFile(a.Target, src, 0666, true)
}
// cover runs, in effect,
//
// go tool cover -mode=b.coverMode -var="varName" -o dst.go src.go
func (b *Builder) cover(a *Action, dst, src string, varName string) error {
return b.Shell(a).run(a.Objdir, "", nil,
cfg.BuildToolexec,
base.Tool("cover"),
"-mode", a.Package.Internal.Cover.Mode,
"-var", varName,
"-o", dst,
src)
}
// cover2 runs, in effect,
//
// go tool cover -pkgcfg=<config file> -mode=b.coverMode -var="varName" -o <outfiles> <infiles>
//
// Return value is an updated output files list; in addition to the
// regular outputs (instrumented source files) the cover tool also
// writes a separate file (appearing first in the list of outputs)
// that will contain coverage counters and meta-data.
func (b *Builder) cover2(a *Action, infiles, outfiles []string, varName string, mode string) ([]string, error) {
pkgcfg := a.Objdir + "pkgcfg.txt"
covoutputs := a.Objdir + "coveroutfiles.txt"
odir := filepath.Dir(outfiles[0])
cv := filepath.Join(odir, "covervars.go")
outfiles = append([]string{cv}, outfiles...)
if err := b.writeCoverPkgInputs(a, pkgcfg, covoutputs, outfiles); err != nil {
return nil, err
}
args := []string{base.Tool("cover"),
"-pkgcfg", pkgcfg,
"-mode", mode,
"-var", varName,
"-outfilelist", covoutputs,
}
args = append(args, infiles...)
if err := b.Shell(a).run(a.Objdir, "", nil,
cfg.BuildToolexec, args); err != nil {
return nil, err
}
return outfiles, nil
}
func (b *Builder) writeCoverPkgInputs(a *Action, pconfigfile string, covoutputsfile string, outfiles []string) error {
sh := b.Shell(a)
p := a.Package
p.Internal.Cover.Cfg = a.Objdir + "coveragecfg"
pcfg := covcmd.CoverPkgConfig{
PkgPath: p.ImportPath,
PkgName: p.Name,
// Note: coverage granularity is currently hard-wired to
// 'perblock'; there isn't a way using "go build -cover" or "go
// test -cover" to select it. This may change in the future
// depending on user demand.
Granularity: "perblock",
OutConfig: p.Internal.Cover.Cfg,
Local: p.Internal.Local,
}
if ba, ok := a.Actor.(*buildActor); ok && ba.covMetaFileName != "" {
pcfg.EmitMetaFile = a.Objdir + ba.covMetaFileName
}
if a.Package.Module != nil {
pcfg.ModulePath = a.Package.Module.Path
}
data, err := json.Marshal(pcfg)
if err != nil {
return err
}
data = append(data, '\n')
if err := sh.writeFile(pconfigfile, data); err != nil {
return err
}
var sb strings.Builder
for i := range outfiles {
fmt.Fprintf(&sb, "%s\n", outfiles[i])
}
return sh.writeFile(covoutputsfile, []byte(sb.String()))
}
var objectMagic = [][]byte{
{'!', '<', 'a', 'r', 'c', 'h', '>', '\n'}, // Package archive
{'<', 'b', 'i', 'g', 'a', 'f', '>', '\n'}, // Package AIX big archive
{'\x7F', 'E', 'L', 'F'}, // ELF
{0xFE, 0xED, 0xFA, 0xCE}, // Mach-O big-endian 32-bit
{0xFE, 0xED, 0xFA, 0xCF}, // Mach-O big-endian 64-bit
{0xCE, 0xFA, 0xED, 0xFE}, // Mach-O little-endian 32-bit
{0xCF, 0xFA, 0xED, 0xFE}, // Mach-O little-endian 64-bit
{0x4d, 0x5a, 0x90, 0x00, 0x03, 0x00}, // PE (Windows) as generated by 6l/8l and gcc
{0x4d, 0x5a, 0x78, 0x00, 0x01, 0x00}, // PE (Windows) as generated by llvm for dll
{0x00, 0x00, 0x01, 0xEB}, // Plan 9 i386
{0x00, 0x00, 0x8a, 0x97}, // Plan 9 amd64
{0x00, 0x00, 0x06, 0x47}, // Plan 9 arm
{0x00, 0x61, 0x73, 0x6D}, // WASM
{0x01, 0xDF}, // XCOFF 32bit
{0x01, 0xF7}, // XCOFF 64bit
}
func isObject(s string) bool {
f, err := os.Open(s)
if err != nil {
return false
}
defer f.Close()
buf := make([]byte, 64)
io.ReadFull(f, buf)
for _, magic := range objectMagic {
if bytes.HasPrefix(buf, magic) {
return true
}
}
return false
}
// cCompilerEnv returns environment variables to set when running the
// C compiler. This is needed to disable escape codes in clang error
// messages that confuse tools like cgo.
func (b *Builder) cCompilerEnv() []string {
return []string{"TERM=dumb"}
}
// mkAbs returns an absolute path corresponding to
// evaluating f in the directory dir.
// We always pass absolute paths of source files so that
// the error messages will include the full path to a file
// in need of attention.
func mkAbs(dir, f string) string {
// Leave absolute paths alone.
// Also, during -n mode we use the pseudo-directory $WORK
// instead of creating an actual work directory that won't be used.
// Leave paths beginning with $WORK alone too.
if filepath.IsAbs(f) || strings.HasPrefix(f, "$WORK") {
return f
}
return filepath.Join(dir, f)
}
type toolchain interface {
// gc runs the compiler in a specific directory on a set of files
// and returns the name of the generated output file.
gc(b *Builder, a *Action, archive string, importcfg, embedcfg []byte, symabis string, asmhdr bool, pgoProfile string, gofiles []string) (ofile string, out []byte, err error)
// cc runs the toolchain's C compiler in a directory on a C file
// to produce an output file.
cc(b *Builder, a *Action, ofile, cfile string) error
// asm runs the assembler in a specific directory on specific files
// and returns a list of named output files.
asm(b *Builder, a *Action, sfiles []string) ([]string, error)
// symabis scans the symbol ABIs from sfiles and returns the
// path to the output symbol ABIs file, or "" if none.
symabis(b *Builder, a *Action, sfiles []string) (string, error)
// pack runs the archive packer in a specific directory to create
// an archive from a set of object files.
// typically it is run in the object directory.
pack(b *Builder, a *Action, afile string, ofiles []string) error
// ld runs the linker to create an executable starting at mainpkg.
ld(b *Builder, root *Action, targetPath, importcfg, mainpkg string) error
// ldShared runs the linker to create a shared library containing the pkgs built by toplevelactions
ldShared(b *Builder, root *Action, toplevelactions []*Action, targetPath, importcfg string, allactions []*Action) error
compiler() string
linker() string
}
type noToolchain struct{}
func noCompiler() error {
log.Fatalf("unknown compiler %q", cfg.BuildContext.Compiler)
return nil
}
func (noToolchain) compiler() string {
noCompiler()
return ""
}
func (noToolchain) linker() string {
noCompiler()
return ""
}
func (noToolchain) gc(b *Builder, a *Action, archive string, importcfg, embedcfg []byte, symabis string, asmhdr bool, pgoProfile string, gofiles []string) (ofile string, out []byte, err error) {
return "", nil, noCompiler()
}
func (noToolchain) asm(b *Builder, a *Action, sfiles []string) ([]string, error) {
return nil, noCompiler()
}
func (noToolchain) symabis(b *Builder, a *Action, sfiles []string) (string, error) {
return "", noCompiler()
}
func (noToolchain) pack(b *Builder, a *Action, afile string, ofiles []string) error {
return noCompiler()
}
func (noToolchain) ld(b *Builder, root *Action, targetPath, importcfg, mainpkg string) error {
return noCompiler()
}
func (noToolchain) ldShared(b *Builder, root *Action, toplevelactions []*Action, targetPath, importcfg string, allactions []*Action) error {
return noCompiler()
}
func (noToolchain) cc(b *Builder, a *Action, ofile, cfile string) error {
return noCompiler()
}
// gcc runs the gcc C compiler to create an object from a single C file.
func (b *Builder) gcc(a *Action, workdir, out string, flags []string, cfile string) error {
p := a.Package
return b.ccompile(a, out, flags, cfile, b.GccCmd(p.Dir, workdir))
}
// gxx runs the g++ C++ compiler to create an object from a single C++ file.
func (b *Builder) gxx(a *Action, workdir, out string, flags []string, cxxfile string) error {
p := a.Package
return b.ccompile(a, out, flags, cxxfile, b.GxxCmd(p.Dir, workdir))
}
// gfortran runs the gfortran Fortran compiler to create an object from a single Fortran file.
func (b *Builder) gfortran(a *Action, workdir, out string, flags []string, ffile string) error {
p := a.Package
return b.ccompile(a, out, flags, ffile, b.gfortranCmd(p.Dir, workdir))
}
// ccompile runs the given C or C++ compiler and creates an object from a single source file.
func (b *Builder) ccompile(a *Action, outfile string, flags []string, file string, compiler []string) error {
p := a.Package
sh := b.Shell(a)
file = mkAbs(p.Dir, file)
outfile = mkAbs(p.Dir, outfile)
// Elide source directory paths if -trimpath is set.
// This is needed for source files (e.g., a .c file in a package directory).
// TODO(golang.org/issue/36072): cgo also generates files with #line
// directives pointing to the source directory. It should not generate those
// when -trimpath is enabled.
if b.gccSupportsFlag(compiler, "-fdebug-prefix-map=a=b") {
if cfg.BuildTrimpath || p.Goroot {
prefixMapFlag := "-fdebug-prefix-map"
if b.gccSupportsFlag(compiler, "-ffile-prefix-map=a=b") {
prefixMapFlag = "-ffile-prefix-map"
}
// Keep in sync with Action.trimpath.
// The trimmed paths are a little different, but we need to trim in mostly the
// same situations.
var from, toPath string
if m := p.Module; m == nil {
if p.Root == "" { // command-line-arguments in GOPATH mode, maybe?
from = p.Dir
toPath = p.ImportPath
} else if p.Goroot {
from = p.Root
toPath = "GOROOT"
} else {
from = p.Root
toPath = "GOPATH"
}
} else if m.Dir == "" {
// The module is in the vendor directory. Replace the entire vendor
// directory path, because the module's Dir is not filled in.
from = modload.VendorDir()
toPath = "vendor"
} else {
from = m.Dir
toPath = m.Path
if m.Version != "" {
toPath += "@" + m.Version
}
}
// -fdebug-prefix-map (or -ffile-prefix-map) requires an absolute "to"
// path (or it joins the path with the working directory). Pick something
// that makes sense for the target platform.
var to string
if cfg.BuildContext.GOOS == "windows" {
to = filepath.Join(`\\_\_`, toPath)
} else {
to = filepath.Join("/_", toPath)
}
flags = append(slices.Clip(flags), prefixMapFlag+"="+from+"="+to)
}
}
// Tell gcc to not insert truly random numbers into the build process
// this ensures LTO won't create random numbers for symbols.
if b.gccSupportsFlag(compiler, "-frandom-seed=1") {
flags = append(flags, "-frandom-seed="+buildid.HashToString(a.actionID))
}
overlayPath := file
if p, ok := a.nonGoOverlay[overlayPath]; ok {
overlayPath = p
}
output, err := sh.runOut(filepath.Dir(overlayPath), b.cCompilerEnv(), compiler, flags, "-o", outfile, "-c", filepath.Base(overlayPath))
// On FreeBSD 11, when we pass -g to clang 3.8 it
// invokes its internal assembler with -dwarf-version=2.
// When it sees .section .note.GNU-stack, it warns
// "DWARF2 only supports one section per compilation unit".
// This warning makes no sense, since the section is empty,
// but it confuses people.
// We work around the problem by detecting the warning
// and dropping -g and trying again.
if bytes.Contains(output, []byte("DWARF2 only supports one section per compilation unit")) {
newFlags := make([]string, 0, len(flags))
for _, f := range flags {
if !strings.HasPrefix(f, "-g") {
newFlags = append(newFlags, f)
}
}
if len(newFlags) < len(flags) {
return b.ccompile(a, outfile, newFlags, file, compiler)
}
}
if len(output) > 0 && err == nil && os.Getenv("GO_BUILDER_NAME") != "" {
output = append(output, "C compiler warning promoted to error on Go builders\n"...)
err = errors.New("warning promoted to error")
}
return sh.reportCmd("", "", output, err)
}
// gccld runs the gcc linker to create an executable from a set of object files.
// Any error output is only displayed for BuildN or BuildX.
func (b *Builder) gccld(a *Action, objdir, outfile string, flags []string, objs []string) error {
p := a.Package
sh := b.Shell(a)
var cmd []string
if len(p.CXXFiles) > 0 || len(p.SwigCXXFiles) > 0 {
cmd = b.GxxCmd(p.Dir, objdir)
} else {
cmd = b.GccCmd(p.Dir, objdir)
}
cmdargs := []any{cmd, "-o", outfile, objs, flags}
out, err := sh.runOut(base.Cwd(), b.cCompilerEnv(), cmdargs...)
if len(out) > 0 {
// Filter out useless linker warnings caused by bugs outside Go.
// See also cmd/link/internal/ld's hostlink method.
var save [][]byte
var skipLines int
for _, line := range bytes.SplitAfter(out, []byte("\n")) {
// golang.org/issue/26073 - Apple Xcode bug
if bytes.Contains(line, []byte("ld: warning: text-based stub file")) {
continue
}
if skipLines > 0 {
skipLines--
continue
}
// Remove duplicate main symbol with runtime/cgo on AIX.
// With runtime/cgo, two main are available:
// One is generated by cgo tool with {return 0;}.
// The other one is the main calling runtime.rt0_go
// in runtime/cgo.
// The second can't be used by cgo programs because
// runtime.rt0_go is unknown to them.
// Therefore, we let ld remove this main version
// and used the cgo generated one.
if p.ImportPath == "runtime/cgo" && bytes.Contains(line, []byte("ld: 0711-224 WARNING: Duplicate symbol: .main")) {
skipLines = 1
continue
}
save = append(save, line)
}
out = bytes.Join(save, nil)
}
// Note that failure is an expected outcome here, so we report output only
// in debug mode and don't report the error.
if cfg.BuildN || cfg.BuildX {
sh.reportCmd("", "", out, nil)
}
return err
}
// GccCmd returns a gcc command line prefix
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
func (b *Builder) GccCmd(incdir, workdir string) []string {
return b.compilerCmd(b.ccExe(), incdir, workdir)
}
// GxxCmd returns a g++ command line prefix
// defaultCXX is defined in zdefaultcc.go, written by cmd/dist.
func (b *Builder) GxxCmd(incdir, workdir string) []string {
return b.compilerCmd(b.cxxExe(), incdir, workdir)
}
// gfortranCmd returns a gfortran command line prefix.
func (b *Builder) gfortranCmd(incdir, workdir string) []string {
return b.compilerCmd(b.fcExe(), incdir, workdir)
}
// ccExe returns the CC compiler setting without all the extra flags we add implicitly.
func (b *Builder) ccExe() []string {
return envList("CC", cfg.DefaultCC(cfg.Goos, cfg.Goarch))
}
// cxxExe returns the CXX compiler setting without all the extra flags we add implicitly.
func (b *Builder) cxxExe() []string {
return envList("CXX", cfg.DefaultCXX(cfg.Goos, cfg.Goarch))
}
// fcExe returns the FC compiler setting without all the extra flags we add implicitly.
func (b *Builder) fcExe() []string {
return envList("FC", "gfortran")
}
// compilerCmd returns a command line prefix for the given environment
// variable and using the default command when the variable is empty.
func (b *Builder) compilerCmd(compiler []string, incdir, workdir string) []string {
a := append(compiler, "-I", incdir)
// Definitely want -fPIC but on Windows gcc complains
// "-fPIC ignored for target (all code is position independent)"
if cfg.Goos != "windows" {
a = append(a, "-fPIC")
}
a = append(a, b.gccArchArgs()...)
// gcc-4.5 and beyond require explicit "-pthread" flag
// for multithreading with pthread library.
if cfg.BuildContext.CgoEnabled {
switch cfg.Goos {
case "windows":
a = append(a, "-mthreads")
default:
a = append(a, "-pthread")
}
}
if cfg.Goos == "aix" {
// mcmodel=large must always be enabled to allow large TOC.
a = append(a, "-mcmodel=large")
}
// disable ASCII art in clang errors, if possible
if b.gccSupportsFlag(compiler, "-fno-caret-diagnostics") {
a = append(a, "-fno-caret-diagnostics")
}
// clang is too smart about command-line arguments
if b.gccSupportsFlag(compiler, "-Qunused-arguments") {
a = append(a, "-Qunused-arguments")
}
// zig cc passes --gc-sections to the underlying linker, which then causes
// undefined symbol errors when compiling with cgo but without C code.
// https://github.com/golang/go/issues/52690
if b.gccSupportsFlag(compiler, "-Wl,--no-gc-sections") {
a = append(a, "-Wl,--no-gc-sections")
}
// disable word wrapping in error messages
a = append(a, "-fmessage-length=0")
// Tell gcc not to include the work directory in object files.
if b.gccSupportsFlag(compiler, "-fdebug-prefix-map=a=b") {
if workdir == "" {
workdir = b.WorkDir
}
workdir = strings.TrimSuffix(workdir, string(filepath.Separator))
if b.gccSupportsFlag(compiler, "-ffile-prefix-map=a=b") {
a = append(a, "-ffile-prefix-map="+workdir+"=/tmp/go-build")
} else {
a = append(a, "-fdebug-prefix-map="+workdir+"=/tmp/go-build")
}
}
// Tell gcc not to include flags in object files, which defeats the
// point of -fdebug-prefix-map above.
if b.gccSupportsFlag(compiler, "-gno-record-gcc-switches") {
a = append(a, "-gno-record-gcc-switches")
}
// On OS X, some of the compilers behave as if -fno-common
// is always set, and the Mach-O linker in 6l/8l assumes this.
// See https://golang.org/issue/3253.
if cfg.Goos == "darwin" || cfg.Goos == "ios" {
a = append(a, "-fno-common")
}
return a
}
// gccNoPie returns the flag to use to request non-PIE. On systems
// with PIE (position independent executables) enabled by default,
// -no-pie must be passed when doing a partial link with -Wl,-r.
// But -no-pie is not supported by all compilers, and clang spells it -nopie.
func (b *Builder) gccNoPie(linker []string) string {
if b.gccSupportsFlag(linker, "-no-pie") {
return "-no-pie"
}
if b.gccSupportsFlag(linker, "-nopie") {
return "-nopie"
}
return ""
}
// gccSupportsFlag checks to see if the compiler supports a flag.
func (b *Builder) gccSupportsFlag(compiler []string, flag string) bool {
// We use the background shell for operations here because, while this is
// triggered by some Action, it's not really about that Action, and often we
// just get the results from the global cache.
sh := b.BackgroundShell()
key := [2]string{compiler[0], flag}
// We used to write an empty C file, but that gets complicated with go
// build -n. We tried using a file that does not exist, but that fails on
// systems with GCC version 4.2.1; that is the last GPLv2 version of GCC,
// so some systems have frozen on it. Now we pass an empty file on stdin,
// which should work at least for GCC and clang.
//
// If the argument is "-Wl,", then it is testing the linker. In that case,
// skip "-c". If it's not "-Wl,", then we are testing the compiler and can
// omit the linking step with "-c".
//
// Using the same CFLAGS/LDFLAGS here and for building the program.
// On the iOS builder the command
// $CC -Wl,--no-gc-sections -x c - -o /dev/null < /dev/null
// is failing with:
// Unable to remove existing file: Invalid argument
tmp := os.DevNull
if runtime.GOOS == "windows" || runtime.GOOS == "ios" {
f, err := os.CreateTemp(b.WorkDir, "")
if err != nil {
return false
}
f.Close()
tmp = f.Name()
defer os.Remove(tmp)
}
cmdArgs := str.StringList(compiler, flag)
if strings.HasPrefix(flag, "-Wl,") /* linker flag */ {
ldflags, err := buildFlags("LDFLAGS", defaultCFlags, nil, checkLinkerFlags)
if err != nil {
return false
}
cmdArgs = append(cmdArgs, ldflags...)
} else { /* compiler flag, add "-c" */
cflags, err := buildFlags("CFLAGS", defaultCFlags, nil, checkCompilerFlags)
if err != nil {
return false
}
cmdArgs = append(cmdArgs, cflags...)
cmdArgs = append(cmdArgs, "-c")
}
cmdArgs = append(cmdArgs, "-x", "c", "-", "-o", tmp)
if cfg.BuildN {
sh.ShowCmd(b.WorkDir, "%s || true", joinUnambiguously(cmdArgs))
return false
}
// gccCompilerID acquires b.exec, so do before acquiring lock.
compilerID, cacheOK := b.gccCompilerID(compiler[0])
b.exec.Lock()
defer b.exec.Unlock()
if b, ok := b.flagCache[key]; ok {
return b
}
if b.flagCache == nil {
b.flagCache = make(map[[2]string]bool)
}
// Look in build cache.
var flagID cache.ActionID
if cacheOK {
flagID = cache.Subkey(compilerID, "gccSupportsFlag "+flag)
if data, _, err := cache.GetBytes(cache.Default(), flagID); err == nil {
supported := string(data) == "true"
b.flagCache[key] = supported
return supported
}
}
if cfg.BuildX {
sh.ShowCmd(b.WorkDir, "%s || true", joinUnambiguously(cmdArgs))
}
cmd := exec.Command(cmdArgs[0], cmdArgs[1:]...)
cmd.Dir = b.WorkDir
cmd.Env = append(cmd.Environ(), "LC_ALL=C")
out, _ := cmd.CombinedOutput()
// GCC says "unrecognized command line option".
// clang says "unknown argument".
// tcc says "unsupported"
// AIX says "not recognized"
// Older versions of GCC say "unrecognised debug output level".
// For -fsplit-stack GCC says "'-fsplit-stack' is not supported".
supported := !bytes.Contains(out, []byte("unrecognized")) &&
!bytes.Contains(out, []byte("unknown")) &&
!bytes.Contains(out, []byte("unrecognised")) &&
!bytes.Contains(out, []byte("is not supported")) &&
!bytes.Contains(out, []byte("not recognized")) &&
!bytes.Contains(out, []byte("unsupported"))
if cacheOK {
s := "false"
if supported {
s = "true"
}
cache.PutBytes(cache.Default(), flagID, []byte(s))
}
b.flagCache[key] = supported
return supported
}
// statString returns a string form of an os.FileInfo, for serializing and comparison.
func statString(info os.FileInfo) string {
return fmt.Sprintf("stat %d %x %v %v\n", info.Size(), uint64(info.Mode()), info.ModTime(), info.IsDir())
}
// gccCompilerID returns a build cache key for the current gcc,
// as identified by running 'compiler'.
// The caller can use subkeys of the key.
// Other parts of cmd/go can use the id as a hash
// of the installed compiler version.
func (b *Builder) gccCompilerID(compiler string) (id cache.ActionID, ok bool) {
// We use the background shell for operations here because, while this is
// triggered by some Action, it's not really about that Action, and often we
// just get the results from the global cache.
sh := b.BackgroundShell()
if cfg.BuildN {
sh.ShowCmd(b.WorkDir, "%s || true", joinUnambiguously([]string{compiler, "--version"}))
return cache.ActionID{}, false
}
b.exec.Lock()
defer b.exec.Unlock()
if id, ok := b.gccCompilerIDCache[compiler]; ok {
return id, ok
}
// We hash the compiler's full path to get a cache entry key.
// That cache entry holds a validation description,
// which is of the form:
//
// filename \x00 statinfo \x00
// ...
// compiler id
//
// If os.Stat of each filename matches statinfo,
// then the entry is still valid, and we can use the
// compiler id without any further expense.
//
// Otherwise, we compute a new validation description
// and compiler id (below).
exe, err := cfg.LookPath(compiler)
if err != nil {
return cache.ActionID{}, false
}
h := cache.NewHash("gccCompilerID")
fmt.Fprintf(h, "gccCompilerID %q", exe)
key := h.Sum()
data, _, err := cache.GetBytes(cache.Default(), key)
if err == nil && len(data) > len(id) {
stats := strings.Split(string(data[:len(data)-len(id)]), "\x00")
if len(stats)%2 != 0 {
goto Miss
}
for i := 0; i+2 <= len(stats); i++ {
info, err := os.Stat(stats[i])
if err != nil || statString(info) != stats[i+1] {
goto Miss
}
}
copy(id[:], data[len(data)-len(id):])
return id, true
Miss:
}
// Validation failed. Compute a new description (in buf) and compiler ID (in h).
// For now, there are only at most two filenames in the stat information.
// The first one is the compiler executable we invoke.
// The second is the underlying compiler as reported by -v -###
// (see b.gccToolID implementation in buildid.go).
toolID, exe2, err := b.gccToolID(compiler, "c")
if err != nil {
return cache.ActionID{}, false
}
exes := []string{exe, exe2}
str.Uniq(&exes)
fmt.Fprintf(h, "gccCompilerID %q %q\n", exes, toolID)
id = h.Sum()
var buf bytes.Buffer
for _, exe := range exes {
if exe == "" {
continue
}
info, err := os.Stat(exe)
if err != nil {
return cache.ActionID{}, false
}
buf.WriteString(exe)
buf.WriteString("\x00")
buf.WriteString(statString(info))
buf.WriteString("\x00")
}
buf.Write(id[:])
cache.PutBytes(cache.Default(), key, buf.Bytes())
if b.gccCompilerIDCache == nil {
b.gccCompilerIDCache = make(map[string]cache.ActionID)
}
b.gccCompilerIDCache[compiler] = id
return id, true
}
// gccArchArgs returns arguments to pass to gcc based on the architecture.
func (b *Builder) gccArchArgs() []string {
switch cfg.Goarch {
case "386":
return []string{"-m32"}
case "amd64":
if cfg.Goos == "darwin" {
return []string{"-arch", "x86_64", "-m64"}
}
return []string{"-m64"}
case "arm64":
if cfg.Goos == "darwin" {
return []string{"-arch", "arm64"}
}
case "arm":
return []string{"-marm"} // not thumb
case "s390x":
return []string{"-m64", "-march=z196"}
case "mips64", "mips64le":
args := []string{"-mabi=64"}
if cfg.GOMIPS64 == "hardfloat" {
return append(args, "-mhard-float")
} else if cfg.GOMIPS64 == "softfloat" {
return append(args, "-msoft-float")
}
case "mips", "mipsle":
args := []string{"-mabi=32", "-march=mips32"}
if cfg.GOMIPS == "hardfloat" {
return append(args, "-mhard-float", "-mfp32", "-mno-odd-spreg")
} else if cfg.GOMIPS == "softfloat" {
return append(args, "-msoft-float")
}
case "loong64":
return []string{"-mabi=lp64d"}
case "ppc64":
if cfg.Goos == "aix" {
return []string{"-maix64"}
}
}
return nil
}
// envList returns the value of the given environment variable broken
// into fields, using the default value when the variable is empty.
//
// The environment variable must be quoted correctly for
// quoted.Split. This should be done before building
// anything, for example, in BuildInit.
func envList(key, def string) []string {
v := cfg.Getenv(key)
if v == "" {
v = def
}
args, err := quoted.Split(v)
if err != nil {
panic(fmt.Sprintf("could not parse environment variable %s with value %q: %v", key, v, err))
}
return args
}
// CFlags returns the flags to use when invoking the C, C++ or Fortran compilers, or cgo.
func (b *Builder) CFlags(p *load.Package) (cppflags, cflags, cxxflags, fflags, ldflags []string, err error) {
if cppflags, err = buildFlags("CPPFLAGS", "", p.CgoCPPFLAGS, checkCompilerFlags); err != nil {
return
}
if cflags, err = buildFlags("CFLAGS", defaultCFlags, p.CgoCFLAGS, checkCompilerFlags); err != nil {
return
}
if cxxflags, err = buildFlags("CXXFLAGS", defaultCFlags, p.CgoCXXFLAGS, checkCompilerFlags); err != nil {
return
}
if fflags, err = buildFlags("FFLAGS", defaultCFlags, p.CgoFFLAGS, checkCompilerFlags); err != nil {
return
}
if ldflags, err = buildFlags("LDFLAGS", defaultCFlags, p.CgoLDFLAGS, checkLinkerFlags); err != nil {
return
}
return
}
func buildFlags(name, defaults string, fromPackage []string, check func(string, string, []string) error) ([]string, error) {
if err := check(name, "#cgo "+name, fromPackage); err != nil {
return nil, err
}
return str.StringList(envList("CGO_"+name, defaults), fromPackage), nil
}
var cgoRe = lazyregexp.New(`[/\\:]`)
func (b *Builder) cgo(a *Action, cgoExe, objdir string, pcCFLAGS, pcLDFLAGS, cgofiles, gccfiles, gxxfiles, mfiles, ffiles []string) (outGo, outObj []string, err error) {
p := a.Package
sh := b.Shell(a)
cgoCPPFLAGS, cgoCFLAGS, cgoCXXFLAGS, cgoFFLAGS, cgoLDFLAGS, err := b.CFlags(p)
if err != nil {
return nil, nil, err
}
cgoCPPFLAGS = append(cgoCPPFLAGS, pcCFLAGS...)
cgoLDFLAGS = append(cgoLDFLAGS, pcLDFLAGS...)
// If we are compiling Objective-C code, then we need to link against libobjc
if len(mfiles) > 0 {
cgoLDFLAGS = append(cgoLDFLAGS, "-lobjc")
}
// Likewise for Fortran, except there are many Fortran compilers.
// Support gfortran out of the box and let others pass the correct link options
// via CGO_LDFLAGS
if len(ffiles) > 0 {
fc := cfg.Getenv("FC")
if fc == "" {
fc = "gfortran"
}
if strings.Contains(fc, "gfortran") {
cgoLDFLAGS = append(cgoLDFLAGS, "-lgfortran")
}
}
// Scrutinize CFLAGS and related for flags that might cause
// problems if we are using internal linking (for example, use of
// plugins, LTO, etc) by calling a helper routine that builds on
// the existing CGO flags allow-lists. If we see anything
// suspicious, emit a special token file "preferlinkext" (known to
// the linker) in the object file to signal the that it should not
// try to link internally and should revert to external linking.
// The token we pass is a suggestion, not a mandate; if a user is
// explicitly asking for a specific linkmode via the "-linkmode"
// flag, the token will be ignored. NB: in theory we could ditch
// the token approach and just pass a flag to the linker when we
// eventually invoke it, and the linker flag could then be
// documented (although coming up with a simple explanation of the
// flag might be challenging). For more context see issues #58619,
// #58620, and #58848.
flagSources := []string{"CGO_CFLAGS", "CGO_CXXFLAGS", "CGO_FFLAGS"}
flagLists := [][]string{cgoCFLAGS, cgoCXXFLAGS, cgoFFLAGS}
if flagsNotCompatibleWithInternalLinking(flagSources, flagLists) {
tokenFile := objdir + "preferlinkext"
if err := sh.writeFile(tokenFile, nil); err != nil {
return nil, nil, err
}
outObj = append(outObj, tokenFile)
}
if cfg.BuildMSan {
cgoCFLAGS = append([]string{"-fsanitize=memory"}, cgoCFLAGS...)
cgoLDFLAGS = append([]string{"-fsanitize=memory"}, cgoLDFLAGS...)
}
if cfg.BuildASan {
cgoCFLAGS = append([]string{"-fsanitize=address"}, cgoCFLAGS...)
cgoLDFLAGS = append([]string{"-fsanitize=address"}, cgoLDFLAGS...)
}
// Allows including _cgo_export.h, as well as the user's .h files,
// from .[ch] files in the package.
cgoCPPFLAGS = append(cgoCPPFLAGS, "-I", objdir)
// cgo
// TODO: CGO_FLAGS?
gofiles := []string{objdir + "_cgo_gotypes.go"}
cfiles := []string{"_cgo_export.c"}
for _, fn := range cgofiles {
f := strings.TrimSuffix(filepath.Base(fn), ".go")
gofiles = append(gofiles, objdir+f+".cgo1.go")
cfiles = append(cfiles, f+".cgo2.c")
}
// TODO: make cgo not depend on $GOARCH?
cgoflags := []string{}
if p.Standard && p.ImportPath == "runtime/cgo" {
cgoflags = append(cgoflags, "-import_runtime_cgo=false")
}
if p.Standard && (p.ImportPath == "runtime/race" || p.ImportPath == "runtime/msan" || p.ImportPath == "runtime/cgo" || p.ImportPath == "runtime/asan") {
cgoflags = append(cgoflags, "-import_syscall=false")
}
// Update $CGO_LDFLAGS with p.CgoLDFLAGS.
// These flags are recorded in the generated _cgo_gotypes.go file
// using //go:cgo_ldflag directives, the compiler records them in the
// object file for the package, and then the Go linker passes them
// along to the host linker. At this point in the code, cgoLDFLAGS
// consists of the original $CGO_LDFLAGS (unchecked) and all the
// flags put together from source code (checked).
cgoenv := b.cCompilerEnv()
if len(cgoLDFLAGS) > 0 {
flags := make([]string, len(cgoLDFLAGS))
for i, f := range cgoLDFLAGS {
flags[i] = strconv.Quote(f)
}
cgoenv = append(cgoenv, "CGO_LDFLAGS="+strings.Join(flags, " "))
}
if cfg.BuildToolchainName == "gccgo" {
if b.gccSupportsFlag([]string{BuildToolchain.compiler()}, "-fsplit-stack") {
cgoCFLAGS = append(cgoCFLAGS, "-fsplit-stack")
}
cgoflags = append(cgoflags, "-gccgo")
if pkgpath := gccgoPkgpath(p); pkgpath != "" {
cgoflags = append(cgoflags, "-gccgopkgpath="+pkgpath)
}
if !BuildToolchain.(gccgoToolchain).supportsCgoIncomplete(b, a) {
cgoflags = append(cgoflags, "-gccgo_define_cgoincomplete")
}
}
switch cfg.BuildBuildmode {
case "c-archive", "c-shared":
// Tell cgo that if there are any exported functions
// it should generate a header file that C code can
// #include.
cgoflags = append(cgoflags, "-exportheader="+objdir+"_cgo_install.h")
}
// Rewrite overlaid paths in cgo files.
// cgo adds //line and #line pragmas in generated files with these paths.
var trimpath []string
for i := range cgofiles {
path := mkAbs(p.Dir, cgofiles[i])
if opath, ok := fsys.OverlayPath(path); ok {
cgofiles[i] = opath
trimpath = append(trimpath, opath+"=>"+path)
}
}
if len(trimpath) > 0 {
cgoflags = append(cgoflags, "-trimpath", strings.Join(trimpath, ";"))
}
if err := sh.run(p.Dir, p.ImportPath, cgoenv, cfg.BuildToolexec, cgoExe, "-objdir", objdir, "-importpath", p.ImportPath, cgoflags, "--", cgoCPPFLAGS, cgoCFLAGS, cgofiles); err != nil {
return nil, nil, err
}
outGo = append(outGo, gofiles...)
// Use sequential object file names to keep them distinct
// and short enough to fit in the .a header file name slots.
// We no longer collect them all into _all.o, and we'd like
// tools to see both the .o suffix and unique names, so
// we need to make them short enough not to be truncated
// in the final archive.
oseq := 0
nextOfile := func() string {
oseq++
return objdir + fmt.Sprintf("_x%03d.o", oseq)
}
// gcc
cflags := str.StringList(cgoCPPFLAGS, cgoCFLAGS)
for _, cfile := range cfiles {
ofile := nextOfile()
if err := b.gcc(a, a.Objdir, ofile, cflags, objdir+cfile); err != nil {
return nil, nil, err
}
outObj = append(outObj, ofile)
}
for _, file := range gccfiles {
ofile := nextOfile()
if err := b.gcc(a, a.Objdir, ofile, cflags, file); err != nil {
return nil, nil, err
}
outObj = append(outObj, ofile)
}
cxxflags := str.StringList(cgoCPPFLAGS, cgoCXXFLAGS)
for _, file := range gxxfiles {
ofile := nextOfile()
if err := b.gxx(a, a.Objdir, ofile, cxxflags, file); err != nil {
return nil, nil, err
}
outObj = append(outObj, ofile)
}
for _, file := range mfiles {
ofile := nextOfile()
if err := b.gcc(a, a.Objdir, ofile, cflags, file); err != nil {
return nil, nil, err
}
outObj = append(outObj, ofile)
}
fflags := str.StringList(cgoCPPFLAGS, cgoFFLAGS)
for _, file := range ffiles {
ofile := nextOfile()
if err := b.gfortran(a, a.Objdir, ofile, fflags, file); err != nil {
return nil, nil, err
}
outObj = append(outObj, ofile)
}
switch cfg.BuildToolchainName {
case "gc":
importGo := objdir + "_cgo_import.go"
dynOutGo, dynOutObj, err := b.dynimport(a, objdir, importGo, cgoExe, cflags, cgoLDFLAGS, outObj)
if err != nil {
return nil, nil, err
}
if dynOutGo != "" {
outGo = append(outGo, dynOutGo)
}
if dynOutObj != "" {
outObj = append(outObj, dynOutObj)
}
case "gccgo":
defunC := objdir + "_cgo_defun.c"
defunObj := objdir + "_cgo_defun.o"
if err := BuildToolchain.cc(b, a, defunObj, defunC); err != nil {
return nil, nil, err
}
outObj = append(outObj, defunObj)
default:
noCompiler()
}
// Double check the //go:cgo_ldflag comments in the generated files.
// The compiler only permits such comments in files whose base name
// starts with "_cgo_". Make sure that the comments in those files
// are safe. This is a backstop against people somehow smuggling
// such a comment into a file generated by cgo.
if cfg.BuildToolchainName == "gc" && !cfg.BuildN {
var flags []string
for _, f := range outGo {
if !strings.HasPrefix(filepath.Base(f), "_cgo_") {
continue
}
src, err := os.ReadFile(f)
if err != nil {
return nil, nil, err
}
const cgoLdflag = "//go:cgo_ldflag"
idx := bytes.Index(src, []byte(cgoLdflag))
for idx >= 0 {
// We are looking at //go:cgo_ldflag.
// Find start of line.
start := bytes.LastIndex(src[:idx], []byte("\n"))
if start == -1 {
start = 0
}
// Find end of line.
end := bytes.Index(src[idx:], []byte("\n"))
if end == -1 {
end = len(src)
} else {
end += idx
}
// Check for first line comment in line.
// We don't worry about /* */ comments,
// which normally won't appear in files
// generated by cgo.
commentStart := bytes.Index(src[start:], []byte("//"))
commentStart += start
// If that line comment is //go:cgo_ldflag,
// it's a match.
if bytes.HasPrefix(src[commentStart:], []byte(cgoLdflag)) {
// Pull out the flag, and unquote it.
// This is what the compiler does.
flag := string(src[idx+len(cgoLdflag) : end])
flag = strings.TrimSpace(flag)
flag = strings.Trim(flag, `"`)
flags = append(flags, flag)
}
src = src[end:]
idx = bytes.Index(src, []byte(cgoLdflag))
}
}
// We expect to find the contents of cgoLDFLAGS in flags.
if len(cgoLDFLAGS) > 0 {
outer:
for i := range flags {
for j, f := range cgoLDFLAGS {
if f != flags[i+j] {
continue outer
}
}
flags = append(flags[:i], flags[i+len(cgoLDFLAGS):]...)
break
}
}
if err := checkLinkerFlags("LDFLAGS", "go:cgo_ldflag", flags); err != nil {
return nil, nil, err
}
}
return outGo, outObj, nil
}
// flagsNotCompatibleWithInternalLinking scans the list of cgo
// compiler flags (C/C++/Fortran) looking for flags that might cause
// problems if the build in question uses internal linking. The
// primary culprits are use of plugins or use of LTO, but we err on
// the side of caution, supporting only those flags that are on the
// allow-list for safe flags from security perspective. Return is TRUE
// if a sensitive flag is found, FALSE otherwise.
func flagsNotCompatibleWithInternalLinking(sourceList []string, flagListList [][]string) bool {
for i := range sourceList {
sn := sourceList[i]
fll := flagListList[i]
if err := checkCompilerFlagsForInternalLink(sn, sn, fll); err != nil {
return true
}
}
return false
}
// dynimport creates a Go source file named importGo containing
// //go:cgo_import_dynamic directives for each symbol or library
// dynamically imported by the object files outObj.
// dynOutGo, if not empty, is a new Go file to build as part of the package.
// dynOutObj, if not empty, is a new file to add to the generated archive.
func (b *Builder) dynimport(a *Action, objdir, importGo, cgoExe string, cflags, cgoLDFLAGS, outObj []string) (dynOutGo, dynOutObj string, err error) {
p := a.Package
sh := b.Shell(a)
cfile := objdir + "_cgo_main.c"
ofile := objdir + "_cgo_main.o"
if err := b.gcc(a, objdir, ofile, cflags, cfile); err != nil {
return "", "", err
}
// Gather .syso files from this package and all (transitive) dependencies.
var syso []string
seen := make(map[*Action]bool)
var gatherSyso func(*Action)
gatherSyso = func(a1 *Action) {
if seen[a1] {
return
}
seen[a1] = true
if p1 := a1.Package; p1 != nil {
syso = append(syso, mkAbsFiles(p1.Dir, p1.SysoFiles)...)
}
for _, a2 := range a1.Deps {
gatherSyso(a2)
}
}
gatherSyso(a)
sort.Strings(syso)
str.Uniq(&syso)
linkobj := str.StringList(ofile, outObj, syso)
dynobj := objdir + "_cgo_.o"
ldflags := cgoLDFLAGS
if (cfg.Goarch == "arm" && cfg.Goos == "linux") || cfg.Goos == "android" {
if !slices.Contains(ldflags, "-no-pie") {
// we need to use -pie for Linux/ARM to get accurate imported sym (added in https://golang.org/cl/5989058)
// this seems to be outdated, but we don't want to break existing builds depending on this (Issue 45940)
ldflags = append(ldflags, "-pie")
}
if slices.Contains(ldflags, "-pie") && slices.Contains(ldflags, "-static") {
// -static -pie doesn't make sense, and causes link errors.
// Issue 26197.
n := make([]string, 0, len(ldflags)-1)
for _, flag := range ldflags {
if flag != "-static" {
n = append(n, flag)
}
}
ldflags = n
}
}
if err := b.gccld(a, objdir, dynobj, ldflags, linkobj); err != nil {
// We only need this information for internal linking.
// If this link fails, mark the object as requiring
// external linking. This link can fail for things like
// syso files that have unexpected dependencies.
// cmd/link explicitly looks for the name "dynimportfail".
// See issue #52863.
fail := objdir + "dynimportfail"
if err := sh.writeFile(fail, nil); err != nil {
return "", "", err
}
return "", fail, nil
}
// cgo -dynimport
var cgoflags []string
if p.Standard && p.ImportPath == "runtime/cgo" {
cgoflags = []string{"-dynlinker"} // record path to dynamic linker
}
err = sh.run(base.Cwd(), p.ImportPath, b.cCompilerEnv(), cfg.BuildToolexec, cgoExe, "-dynpackage", p.Name, "-dynimport", dynobj, "-dynout", importGo, cgoflags)
if err != nil {
return "", "", err
}
return importGo, "", nil
}
// Run SWIG on all SWIG input files.
// TODO: Don't build a shared library, once SWIG emits the necessary
// pragmas for external linking.
func (b *Builder) swig(a *Action, objdir string, pcCFLAGS []string) (outGo, outC, outCXX []string, err error) {
p := a.Package
if err := b.swigVersionCheck(); err != nil {
return nil, nil, nil, err
}
intgosize, err := b.swigIntSize(objdir)
if err != nil {
return nil, nil, nil, err
}
for _, f := range p.SwigFiles {
goFile, cFile, err := b.swigOne(a, f, objdir, pcCFLAGS, false, intgosize)
if err != nil {
return nil, nil, nil, err
}
if goFile != "" {
outGo = append(outGo, goFile)
}
if cFile != "" {
outC = append(outC, cFile)
}
}
for _, f := range p.SwigCXXFiles {
goFile, cxxFile, err := b.swigOne(a, f, objdir, pcCFLAGS, true, intgosize)
if err != nil {
return nil, nil, nil, err
}
if goFile != "" {
outGo = append(outGo, goFile)
}
if cxxFile != "" {
outCXX = append(outCXX, cxxFile)
}
}
return outGo, outC, outCXX, nil
}
// Make sure SWIG is new enough.
var (
swigCheckOnce sync.Once
swigCheck error
)
func (b *Builder) swigDoVersionCheck() error {
sh := b.BackgroundShell()
out, err := sh.runOut(".", nil, "swig", "-version")
if err != nil {
return err
}
re := regexp.MustCompile(`[vV]ersion +(\d+)([.]\d+)?([.]\d+)?`)
matches := re.FindSubmatch(out)
if matches == nil {
// Can't find version number; hope for the best.
return nil
}
major, err := strconv.Atoi(string(matches[1]))
if err != nil {
// Can't find version number; hope for the best.
return nil
}
const errmsg = "must have SWIG version >= 3.0.6"
if major < 3 {
return errors.New(errmsg)
}
if major > 3 {
// 4.0 or later
return nil
}
// We have SWIG version 3.x.
if len(matches[2]) > 0 {
minor, err := strconv.Atoi(string(matches[2][1:]))
if err != nil {
return nil
}
if minor > 0 {
// 3.1 or later
return nil
}
}
// We have SWIG version 3.0.x.
if len(matches[3]) > 0 {
patch, err := strconv.Atoi(string(matches[3][1:]))
if err != nil {
return nil
}
if patch < 6 {
// Before 3.0.6.
return errors.New(errmsg)
}
}
return nil
}
func (b *Builder) swigVersionCheck() error {
swigCheckOnce.Do(func() {
swigCheck = b.swigDoVersionCheck()
})
return swigCheck
}
// Find the value to pass for the -intgosize option to swig.
var (
swigIntSizeOnce sync.Once
swigIntSize string
swigIntSizeError error
)
// This code fails to build if sizeof(int) <= 32
const swigIntSizeCode = `
package main
const i int = 1 << 32
`
// Determine the size of int on the target system for the -intgosize option
// of swig >= 2.0.9. Run only once.
func (b *Builder) swigDoIntSize(objdir string) (intsize string, err error) {
if cfg.BuildN {
return "$INTBITS", nil
}
src := filepath.Join(b.WorkDir, "swig_intsize.go")
if err = os.WriteFile(src, []byte(swigIntSizeCode), 0666); err != nil {
return
}
srcs := []string{src}
p := load.GoFilesPackage(context.TODO(), load.PackageOpts{}, srcs)
if _, _, e := BuildToolchain.gc(b, &Action{Mode: "swigDoIntSize", Package: p, Objdir: objdir}, "", nil, nil, "", false, "", srcs); e != nil {
return "32", nil
}
return "64", nil
}
// Determine the size of int on the target system for the -intgosize option
// of swig >= 2.0.9.
func (b *Builder) swigIntSize(objdir string) (intsize string, err error) {
swigIntSizeOnce.Do(func() {
swigIntSize, swigIntSizeError = b.swigDoIntSize(objdir)
})
return swigIntSize, swigIntSizeError
}
// Run SWIG on one SWIG input file.
func (b *Builder) swigOne(a *Action, file, objdir string, pcCFLAGS []string, cxx bool, intgosize string) (outGo, outC string, err error) {
p := a.Package
sh := b.Shell(a)
cgoCPPFLAGS, cgoCFLAGS, cgoCXXFLAGS, _, _, err := b.CFlags(p)
if err != nil {
return "", "", err
}
var cflags []string
if cxx {
cflags = str.StringList(cgoCPPFLAGS, pcCFLAGS, cgoCXXFLAGS)
} else {
cflags = str.StringList(cgoCPPFLAGS, pcCFLAGS, cgoCFLAGS)
}
n := 5 // length of ".swig"
if cxx {
n = 8 // length of ".swigcxx"
}
base := file[:len(file)-n]
goFile := base + ".go"
gccBase := base + "_wrap."
gccExt := "c"
if cxx {
gccExt = "cxx"
}
gccgo := cfg.BuildToolchainName == "gccgo"
// swig
args := []string{
"-go",
"-cgo",
"-intgosize", intgosize,
"-module", base,
"-o", objdir + gccBase + gccExt,
"-outdir", objdir,
}
for _, f := range cflags {
if len(f) > 3 && f[:2] == "-I" {
args = append(args, f)
}
}
if gccgo {
args = append(args, "-gccgo")
if pkgpath := gccgoPkgpath(p); pkgpath != "" {
args = append(args, "-go-pkgpath", pkgpath)
}
}
if cxx {
args = append(args, "-c++")
}
out, err := sh.runOut(p.Dir, nil, "swig", args, file)
if err != nil && (bytes.Contains(out, []byte("-intgosize")) || bytes.Contains(out, []byte("-cgo"))) {
return "", "", errors.New("must have SWIG version >= 3.0.6")
}
if err := sh.reportCmd("", "", out, err); err != nil {
return "", "", err
}
// If the input was x.swig, the output is x.go in the objdir.
// But there might be an x.go in the original dir too, and if it
// uses cgo as well, cgo will be processing both and will
// translate both into x.cgo1.go in the objdir, overwriting one.
// Rename x.go to _x_swig.go to avoid this problem.
// We ignore files in the original dir that begin with underscore
// so _x_swig.go cannot conflict with an original file we were
// going to compile.
goFile = objdir + goFile
newGoFile := objdir + "_" + base + "_swig.go"
if cfg.BuildX || cfg.BuildN {
sh.ShowCmd("", "mv %s %s", goFile, newGoFile)
}
if !cfg.BuildN {
if err := os.Rename(goFile, newGoFile); err != nil {
return "", "", err
}
}
return newGoFile, objdir + gccBase + gccExt, nil
}
// disableBuildID adjusts a linker command line to avoid creating a
// build ID when creating an object file rather than an executable or
// shared library. Some systems, such as Ubuntu, always add
// --build-id to every link, but we don't want a build ID when we are
// producing an object file. On some of those system a plain -r (not
// -Wl,-r) will turn off --build-id, but clang 3.0 doesn't support a
// plain -r. I don't know how to turn off --build-id when using clang
// other than passing a trailing --build-id=none. So that is what we
// do, but only on systems likely to support it, which is to say,
// systems that normally use gold or the GNU linker.
func (b *Builder) disableBuildID(ldflags []string) []string {
switch cfg.Goos {
case "android", "dragonfly", "linux", "netbsd":
ldflags = append(ldflags, "-Wl,--build-id=none")
}
return ldflags
}
// mkAbsFiles converts files into a list of absolute files,
// assuming they were originally relative to dir,
// and returns that new list.
func mkAbsFiles(dir string, files []string) []string {
abs := make([]string, len(files))
for i, f := range files {
if !filepath.IsAbs(f) {
f = filepath.Join(dir, f)
}
abs[i] = f
}
return abs
}
// passLongArgsInResponseFiles modifies cmd such that, for
// certain programs, long arguments are passed in "response files", a
// file on disk with the arguments, with one arg per line. An actual
// argument starting with '@' means that the rest of the argument is
// a filename of arguments to expand.
//
// See issues 18468 (Windows) and 37768 (Darwin).
func passLongArgsInResponseFiles(cmd *exec.Cmd) (cleanup func()) {
cleanup = func() {} // no cleanup by default
var argLen int
for _, arg := range cmd.Args {
argLen += len(arg)
}
// If we're not approaching 32KB of args, just pass args normally.
// (use 30KB instead to be conservative; not sure how accounting is done)
if !useResponseFile(cmd.Path, argLen) {
return
}
tf, err := os.CreateTemp("", "args")
if err != nil {
log.Fatalf("error writing long arguments to response file: %v", err)
}
cleanup = func() { os.Remove(tf.Name()) }
var buf bytes.Buffer
for _, arg := range cmd.Args[1:] {
fmt.Fprintf(&buf, "%s\n", encodeArg(arg))
}
if _, err := tf.Write(buf.Bytes()); err != nil {
tf.Close()
cleanup()
log.Fatalf("error writing long arguments to response file: %v", err)
}
if err := tf.Close(); err != nil {
cleanup()
log.Fatalf("error writing long arguments to response file: %v", err)
}
cmd.Args = []string{cmd.Args[0], "@" + tf.Name()}
return cleanup
}
func useResponseFile(path string, argLen int) bool {
// Unless the program uses objabi.Flagparse, which understands
// response files, don't use response files.
// TODO: Note that other toolchains like CC are missing here for now.
prog := strings.TrimSuffix(filepath.Base(path), ".exe")
switch prog {
case "compile", "link", "cgo", "asm", "cover":
default:
return false
}
if argLen > sys.ExecArgLengthLimit {
return true
}
// On the Go build system, use response files about 10% of the
// time, just to exercise this codepath.
isBuilder := os.Getenv("GO_BUILDER_NAME") != ""
if isBuilder && rand.Intn(10) == 0 {
return true
}
return false
}
// encodeArg encodes an argument for response file writing.
func encodeArg(arg string) string {
// If there aren't any characters we need to reencode, fastpath out.
if !strings.ContainsAny(arg, "\\\n") {
return arg
}
var b strings.Builder
for _, r := range arg {
switch r {
case '\\':
b.WriteByte('\\')
b.WriteByte('\\')
case '\n':
b.WriteByte('\\')
b.WriteByte('n')
default:
b.WriteRune(r)
}
}
return b.String()
}