blob: 02733eaf16f8d3a97ef327bdff0c1e6338092cd8 [file] [log] [blame] [edit]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/src"
"fmt"
)
// Block represents a basic block in the control flow graph of a function.
type Block struct {
// A unique identifier for the block. The system will attempt to allocate
// these IDs densely, but no guarantees.
ID ID
// Source position for block's control operation
Pos src.XPos
// The kind of block this is.
Kind BlockKind
// Likely direction for branches.
// If BranchLikely, Succs[0] is the most likely branch taken.
// If BranchUnlikely, Succs[1] is the most likely branch taken.
// Ignored if len(Succs) < 2.
// Fatal if not BranchUnknown and len(Succs) > 2.
Likely BranchPrediction
// After flagalloc, records whether flags are live at the end of the block.
FlagsLiveAtEnd bool
// A block that would be good to align (according to the optimizer's guesses)
Hotness Hotness
// Subsequent blocks, if any. The number and order depend on the block kind.
Succs []Edge
// Inverse of successors.
// The order is significant to Phi nodes in the block.
// TODO: predecessors is a pain to maintain. Can we somehow order phi
// arguments by block id and have this field computed explicitly when needed?
Preds []Edge
// A list of values that determine how the block is exited. The number
// and type of control values depends on the Kind of the block. For
// instance, a BlockIf has a single boolean control value and BlockExit
// has a single memory control value.
//
// The ControlValues() method may be used to get a slice with the non-nil
// control values that can be ranged over.
//
// Controls[1] must be nil if Controls[0] is nil.
Controls [2]*Value
// Auxiliary info for the block. Its value depends on the Kind.
Aux Aux
AuxInt int64
// The unordered set of Values that define the operation of this block.
// After the scheduling pass, this list is ordered.
Values []*Value
// The containing function
Func *Func
// Storage for Succs, Preds and Values.
succstorage [2]Edge
predstorage [4]Edge
valstorage [9]*Value
}
// Edge represents a CFG edge.
// Example edges for b branching to either c or d.
// (c and d have other predecessors.)
//
// b.Succs = [{c,3}, {d,1}]
// c.Preds = [?, ?, ?, {b,0}]
// d.Preds = [?, {b,1}, ?]
//
// These indexes allow us to edit the CFG in constant time.
// In addition, it informs phi ops in degenerate cases like:
//
// b:
// if k then c else c
// c:
// v = Phi(x, y)
//
// Then the indexes tell you whether x is chosen from
// the if or else branch from b.
//
// b.Succs = [{c,0},{c,1}]
// c.Preds = [{b,0},{b,1}]
//
// means x is chosen if k is true.
type Edge struct {
// block edge goes to (in a Succs list) or from (in a Preds list)
b *Block
// index of reverse edge. Invariant:
// e := x.Succs[idx]
// e.b.Preds[e.i] = Edge{x,idx}
// and similarly for predecessors.
i int
}
func (e Edge) Block() *Block {
return e.b
}
func (e Edge) Index() int {
return e.i
}
func (e Edge) String() string {
return fmt.Sprintf("{%v,%d}", e.b, e.i)
}
// BlockKind is the kind of SSA block.
type BlockKind uint8
// short form print
func (b *Block) String() string {
return fmt.Sprintf("b%d", b.ID)
}
// long form print
func (b *Block) LongString() string {
s := b.Kind.String()
if b.Aux != nil {
s += fmt.Sprintf(" {%s}", b.Aux)
}
if t := b.AuxIntString(); t != "" {
s += fmt.Sprintf(" [%s]", t)
}
for _, c := range b.ControlValues() {
s += fmt.Sprintf(" %s", c)
}
if len(b.Succs) > 0 {
s += " ->"
for _, c := range b.Succs {
s += " " + c.b.String()
}
}
switch b.Likely {
case BranchUnlikely:
s += " (unlikely)"
case BranchLikely:
s += " (likely)"
}
return s
}
// NumControls returns the number of non-nil control values the
// block has.
func (b *Block) NumControls() int {
if b.Controls[0] == nil {
return 0
}
if b.Controls[1] == nil {
return 1
}
return 2
}
// ControlValues returns a slice containing the non-nil control
// values of the block. The index of each control value will be
// the same as it is in the Controls property and can be used
// in ReplaceControl calls.
func (b *Block) ControlValues() []*Value {
if b.Controls[0] == nil {
return b.Controls[:0]
}
if b.Controls[1] == nil {
return b.Controls[:1]
}
return b.Controls[:2]
}
// SetControl removes all existing control values and then adds
// the control value provided. The number of control values after
// a call to SetControl will always be 1.
func (b *Block) SetControl(v *Value) {
b.ResetControls()
b.Controls[0] = v
v.Uses++
}
// ResetControls sets the number of controls for the block to 0.
func (b *Block) ResetControls() {
if b.Controls[0] != nil {
b.Controls[0].Uses--
}
if b.Controls[1] != nil {
b.Controls[1].Uses--
}
b.Controls = [2]*Value{} // reset both controls to nil
}
// AddControl appends a control value to the existing list of control values.
func (b *Block) AddControl(v *Value) {
i := b.NumControls()
b.Controls[i] = v // panics if array is full
v.Uses++
}
// ReplaceControl exchanges the existing control value at the index provided
// for the new value. The index must refer to a valid control value.
func (b *Block) ReplaceControl(i int, v *Value) {
b.Controls[i].Uses--
b.Controls[i] = v
v.Uses++
}
// CopyControls replaces the controls for this block with those from the
// provided block. The provided block is not modified.
func (b *Block) CopyControls(from *Block) {
if b == from {
return
}
b.ResetControls()
for _, c := range from.ControlValues() {
b.AddControl(c)
}
}
// Reset sets the block to the provided kind and clears all the blocks control
// and auxiliary values. Other properties of the block, such as its successors,
// predecessors and values are left unmodified.
func (b *Block) Reset(kind BlockKind) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
}
// resetWithControl resets b and adds control v.
// It is equivalent to b.Reset(kind); b.AddControl(v),
// except that it is one call instead of two and avoids a bounds check.
// It is intended for use by rewrite rules, where this matters.
func (b *Block) resetWithControl(kind BlockKind, v *Value) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
b.Controls[0] = v
v.Uses++
}
// resetWithControl2 resets b and adds controls v and w.
// It is equivalent to b.Reset(kind); b.AddControl(v); b.AddControl(w),
// except that it is one call instead of three and avoids two bounds checks.
// It is intended for use by rewrite rules, where this matters.
func (b *Block) resetWithControl2(kind BlockKind, v, w *Value) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
b.Controls[0] = v
b.Controls[1] = w
v.Uses++
w.Uses++
}
// truncateValues truncates b.Values at the ith element, zeroing subsequent elements.
// The values in b.Values after i must already have had their args reset,
// to maintain correct value uses counts.
func (b *Block) truncateValues(i int) {
tail := b.Values[i:]
for j := range tail {
tail[j] = nil
}
b.Values = b.Values[:i]
}
// AddEdgeTo adds an edge from block b to block c.
func (b *Block) AddEdgeTo(c *Block) {
i := len(b.Succs)
j := len(c.Preds)
b.Succs = append(b.Succs, Edge{c, j})
c.Preds = append(c.Preds, Edge{b, i})
b.Func.invalidateCFG()
}
// removePred removes the ith input edge from b.
// It is the responsibility of the caller to remove
// the corresponding successor edge, and adjust any
// phi values by calling b.removePhiArg(v, i).
func (b *Block) removePred(i int) {
n := len(b.Preds) - 1
if i != n {
e := b.Preds[n]
b.Preds[i] = e
// Update the other end of the edge we moved.
e.b.Succs[e.i].i = i
}
b.Preds[n] = Edge{}
b.Preds = b.Preds[:n]
b.Func.invalidateCFG()
}
// removeSucc removes the ith output edge from b.
// It is the responsibility of the caller to remove
// the corresponding predecessor edge.
// Note that this potentially reorders successors of b, so it
// must be used very carefully.
func (b *Block) removeSucc(i int) {
n := len(b.Succs) - 1
if i != n {
e := b.Succs[n]
b.Succs[i] = e
// Update the other end of the edge we moved.
e.b.Preds[e.i].i = i
}
b.Succs[n] = Edge{}
b.Succs = b.Succs[:n]
b.Func.invalidateCFG()
}
func (b *Block) swapSuccessors() {
if len(b.Succs) != 2 {
b.Fatalf("swapSuccessors with len(Succs)=%d", len(b.Succs))
}
e0 := b.Succs[0]
e1 := b.Succs[1]
b.Succs[0] = e1
b.Succs[1] = e0
e0.b.Preds[e0.i].i = 1
e1.b.Preds[e1.i].i = 0
b.Likely *= -1
}
// Swaps b.Succs[x] and b.Succs[y].
func (b *Block) swapSuccessorsByIdx(x, y int) {
if x == y {
return
}
ex := b.Succs[x]
ey := b.Succs[y]
b.Succs[x] = ey
b.Succs[y] = ex
ex.b.Preds[ex.i].i = y
ey.b.Preds[ey.i].i = x
}
// removePhiArg removes the ith arg from phi.
// It must be called after calling b.removePred(i) to
// adjust the corresponding phi value of the block:
//
// b.removePred(i)
// for _, v := range b.Values {
//
// if v.Op != OpPhi {
// continue
// }
// b.removePhiArg(v, i)
//
// }
func (b *Block) removePhiArg(phi *Value, i int) {
n := len(b.Preds)
if numPhiArgs := len(phi.Args); numPhiArgs-1 != n {
b.Fatalf("inconsistent state for %v, num predecessors: %d, num phi args: %d", phi, n, numPhiArgs)
}
phi.Args[i].Uses--
phi.Args[i] = phi.Args[n]
phi.Args[n] = nil
phi.Args = phi.Args[:n]
phielimValue(phi)
}
// LackingPos indicates whether b is a block whose position should be inherited
// from its successors. This is true if all the values within it have unreliable positions
// and if it is "plain", meaning that there is no control flow that is also very likely
// to correspond to a well-understood source position.
func (b *Block) LackingPos() bool {
// Non-plain predecessors are If or Defer, which both (1) have two successors,
// which might have different line numbers and (2) correspond to statements
// in the source code that have positions, so this case ought not occur anyway.
if b.Kind != BlockPlain {
return false
}
if b.Pos != src.NoXPos {
return false
}
for _, v := range b.Values {
if v.LackingPos() {
continue
}
return false
}
return true
}
func (b *Block) AuxIntString() string {
switch b.Kind.AuxIntType() {
case "int8":
return fmt.Sprintf("%v", int8(b.AuxInt))
case "uint8":
return fmt.Sprintf("%v", uint8(b.AuxInt))
case "": // no aux int type
return ""
default: // type specified but not implemented - print as int64
return fmt.Sprintf("%v", b.AuxInt)
}
}
// likelyBranch reports whether block b is the likely branch of all of its predecessors.
func (b *Block) likelyBranch() bool {
if len(b.Preds) == 0 {
return false
}
for _, e := range b.Preds {
p := e.b
if len(p.Succs) == 1 || len(p.Succs) == 2 && (p.Likely == BranchLikely && p.Succs[0].b == b ||
p.Likely == BranchUnlikely && p.Succs[1].b == b) {
continue
}
return false
}
return true
}
func (b *Block) Logf(msg string, args ...interface{}) { b.Func.Logf(msg, args...) }
func (b *Block) Log() bool { return b.Func.Log() }
func (b *Block) Fatalf(msg string, args ...interface{}) { b.Func.Fatalf(msg, args...) }
type BranchPrediction int8
const (
BranchUnlikely = BranchPrediction(-1)
BranchUnknown = BranchPrediction(0)
BranchLikely = BranchPrediction(+1)
)
type Hotness int8 // Could use negative numbers for specifically non-hot blocks, but don't, yet.
const (
// These values are arranged in what seems to be order of increasing alignment importance.
// Currently only a few are relevant. Implicitly, they are all in a loop.
HotNotFlowIn Hotness = 1 << iota // This block is only reached by branches
HotInitial // In the block order, the first one for a given loop. Not necessarily topological header.
HotPgo // By PGO-based heuristics, this block occurs in a hot loop
HotNot = 0
HotInitialNotFlowIn = HotInitial | HotNotFlowIn // typically first block of a rotated loop, loop is entered with a branch (not to this block). No PGO
HotPgoInitial = HotPgo | HotInitial // special case; single block loop, initial block is header block has a flow-in entry, but PGO says it is hot
HotPgoInitialNotFLowIn = HotPgo | HotInitial | HotNotFlowIn // PGO says it is hot, and the loop is rotated so flow enters loop with a branch
)