blob: a97c1569c11806ea37ec8bc70c7d444938e38676 [file] [log] [blame] [edit]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package s390x
import (
"math"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/s390x"
)
// ssaMarkMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
flive := b.FlagsLiveAtEnd
for _, c := range b.ControlValues() {
flive = c.Type.IsFlags() || flive
}
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
if flive && v.Op == ssa.OpS390XMOVDconst {
// The "mark" is any non-nil Aux value.
v.Aux = ssa.AuxMark
}
if v.Type.IsFlags() {
flive = false
}
for _, a := range v.Args {
if a.Type.IsFlags() {
flive = true
}
}
}
}
// loadByType returns the load instruction of the given type.
func loadByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return s390x.AFMOVS
case 8:
return s390x.AFMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return s390x.AMOVB
} else {
return s390x.AMOVBZ
}
case 2:
if t.IsSigned() {
return s390x.AMOVH
} else {
return s390x.AMOVHZ
}
case 4:
if t.IsSigned() {
return s390x.AMOVW
} else {
return s390x.AMOVWZ
}
case 8:
return s390x.AMOVD
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t *types.Type) obj.As {
width := t.Size()
if t.IsFloat() {
switch width {
case 4:
return s390x.AFMOVS
case 8:
return s390x.AFMOVD
}
} else {
switch width {
case 1:
return s390x.AMOVB
case 2:
return s390x.AMOVH
case 4:
return s390x.AMOVW
case 8:
return s390x.AMOVD
}
}
panic("bad store type")
}
// moveByType returns the reg->reg move instruction of the given type.
func moveByType(t *types.Type) obj.As {
if t.IsFloat() {
return s390x.AFMOVD
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return s390x.AMOVB
} else {
return s390x.AMOVBZ
}
case 2:
if t.IsSigned() {
return s390x.AMOVH
} else {
return s390x.AMOVHZ
}
case 4:
if t.IsSigned() {
return s390x.AMOVW
} else {
return s390x.AMOVWZ
}
case 8:
return s390x.AMOVD
}
}
panic("bad load type")
}
// opregreg emits instructions for
//
// dest := dest(To) op src(From)
//
// and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc).
func opregreg(s *ssagen.State, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = dest
p.From.Reg = src
return p
}
// opregregimm emits instructions for
//
// dest := src(From) op off
//
// and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc).
func opregregimm(s *ssagen.State, op obj.As, dest, src int16, off int64) *obj.Prog {
p := s.Prog(op)
p.From.Type = obj.TYPE_CONST
p.From.Offset = off
p.Reg = src
p.To.Reg = dest
p.To.Type = obj.TYPE_REG
return p
}
func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op {
case ssa.OpS390XSLD, ssa.OpS390XSLW,
ssa.OpS390XSRD, ssa.OpS390XSRW,
ssa.OpS390XSRAD, ssa.OpS390XSRAW,
ssa.OpS390XRLLG, ssa.OpS390XRLL:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
if r2 == s390x.REG_R0 {
v.Fatalf("cannot use R0 as shift value %s", v.LongString())
}
p := opregreg(s, v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
case ssa.OpS390XRXSBG:
r2 := v.Args[1].Reg()
i := v.Aux.(s390x.RotateParams)
p := s.Prog(v.Op.Asm())
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(i.Start)}
p.AddRestSourceArgs([]obj.Addr{
{Type: obj.TYPE_CONST, Offset: int64(i.End)},
{Type: obj.TYPE_CONST, Offset: int64(i.Amount)},
{Type: obj.TYPE_REG, Reg: r2},
})
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: v.Reg()}
case ssa.OpS390XRISBGZ:
r1 := v.Reg()
r2 := v.Args[0].Reg()
i := v.Aux.(s390x.RotateParams)
p := s.Prog(v.Op.Asm())
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(i.Start)}
p.AddRestSourceArgs([]obj.Addr{
{Type: obj.TYPE_CONST, Offset: int64(i.End)},
{Type: obj.TYPE_CONST, Offset: int64(i.Amount)},
{Type: obj.TYPE_REG, Reg: r2},
})
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: r1}
case ssa.OpS390XADD, ssa.OpS390XADDW,
ssa.OpS390XSUB, ssa.OpS390XSUBW,
ssa.OpS390XAND, ssa.OpS390XANDW,
ssa.OpS390XOR, ssa.OpS390XORW,
ssa.OpS390XXOR, ssa.OpS390XXORW:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := opregreg(s, v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
case ssa.OpS390XADDC:
r1 := v.Reg0()
r2 := v.Args[0].Reg()
r3 := v.Args[1].Reg()
if r1 == r2 {
r2, r3 = r3, r2
}
p := opregreg(s, v.Op.Asm(), r1, r2)
if r3 != r1 {
p.Reg = r3
}
case ssa.OpS390XSUBC:
r1 := v.Reg0()
r2 := v.Args[0].Reg()
r3 := v.Args[1].Reg()
p := opregreg(s, v.Op.Asm(), r1, r3)
if r1 != r2 {
p.Reg = r2
}
case ssa.OpS390XADDE, ssa.OpS390XSUBE:
r2 := v.Args[1].Reg()
opregreg(s, v.Op.Asm(), v.Reg0(), r2)
case ssa.OpS390XADDCconst:
r1 := v.Reg0()
r3 := v.Args[0].Reg()
i2 := int64(int16(v.AuxInt))
opregregimm(s, v.Op.Asm(), r1, r3, i2)
// 2-address opcode arithmetic
case ssa.OpS390XMULLD, ssa.OpS390XMULLW,
ssa.OpS390XMULHD, ssa.OpS390XMULHDU,
ssa.OpS390XFMULS, ssa.OpS390XFMUL, ssa.OpS390XFDIVS, ssa.OpS390XFDIV:
opregreg(s, v.Op.Asm(), v.Reg(), v.Args[1].Reg())
case ssa.OpS390XFSUBS, ssa.OpS390XFSUB,
ssa.OpS390XFADDS, ssa.OpS390XFADD:
opregreg(s, v.Op.Asm(), v.Reg0(), v.Args[1].Reg())
case ssa.OpS390XMLGR:
// MLGR Rx R3 -> R2:R3
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
if r1 != s390x.REG_R3 {
v.Fatalf("We require the multiplcand to be stored in R3 for MLGR %s", v.LongString())
}
p := s.Prog(s390x.AMLGR)
p.From.Type = obj.TYPE_REG
p.From.Reg = r0
p.To.Reg = s390x.REG_R2
p.To.Type = obj.TYPE_REG
case ssa.OpS390XFMADD, ssa.OpS390XFMADDS,
ssa.OpS390XFMSUB, ssa.OpS390XFMSUBS:
r1 := v.Args[1].Reg()
r2 := v.Args[2].Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XFIDBR:
switch v.AuxInt {
case 0, 1, 3, 4, 5, 6, 7:
opregregimm(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg(), v.AuxInt)
default:
v.Fatalf("invalid FIDBR mask: %v", v.AuxInt)
}
case ssa.OpS390XCPSDR:
p := opregreg(s, v.Op.Asm(), v.Reg(), v.Args[1].Reg())
p.Reg = v.Args[0].Reg()
case ssa.OpS390XDIVD, ssa.OpS390XDIVW,
ssa.OpS390XDIVDU, ssa.OpS390XDIVWU,
ssa.OpS390XMODD, ssa.OpS390XMODW,
ssa.OpS390XMODDU, ssa.OpS390XMODWU:
// TODO(mundaym): use the temp registers every time like x86 does with AX?
dividend := v.Args[0].Reg()
divisor := v.Args[1].Reg()
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW ||
v.Op == ssa.OpS390XMODD || v.Op == ssa.OpS390XMODW {
var c *obj.Prog
c = s.Prog(s390x.ACMP)
j = s.Prog(s390x.ABEQ)
c.From.Type = obj.TYPE_REG
c.From.Reg = divisor
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j.To.Type = obj.TYPE_BRANCH
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = divisor
p.Reg = 0
p.To.Type = obj.TYPE_REG
p.To.Reg = dividend
// signed division, rest of the check for -1 case
if j != nil {
j2 := s.Prog(s390x.ABR)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW {
// n * -1 = -n
n = s.Prog(s390x.ANEG)
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
} else {
// n % -1 == 0
n = s.Prog(s390x.AXOR)
n.From.Type = obj.TYPE_REG
n.From.Reg = dividend
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
}
j.To.SetTarget(n)
j2.To.SetTarget(s.Pc())
}
case ssa.OpS390XADDconst, ssa.OpS390XADDWconst:
opregregimm(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg(), v.AuxInt)
case ssa.OpS390XMULLDconst, ssa.OpS390XMULLWconst,
ssa.OpS390XSUBconst, ssa.OpS390XSUBWconst,
ssa.OpS390XANDconst, ssa.OpS390XANDWconst,
ssa.OpS390XORconst, ssa.OpS390XORWconst,
ssa.OpS390XXORconst, ssa.OpS390XXORWconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XSLDconst, ssa.OpS390XSLWconst,
ssa.OpS390XSRDconst, ssa.OpS390XSRWconst,
ssa.OpS390XSRADconst, ssa.OpS390XSRAWconst,
ssa.OpS390XRLLconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
r := v.Reg()
r1 := v.Args[0].Reg()
if r != r1 {
p.Reg = r1
}
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpS390XMOVDaddridx:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
p := s.Prog(s390x.AMOVD)
p.From.Scale = 1
if i == s390x.REGSP {
r, i = i, r
}
p.From.Type = obj.TYPE_ADDR
p.From.Reg = r
p.From.Index = i
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XMOVDaddr:
p := s.Prog(s390x.AMOVD)
p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XCMP, ssa.OpS390XCMPW, ssa.OpS390XCMPU, ssa.OpS390XCMPWU:
opregreg(s, v.Op.Asm(), v.Args[1].Reg(), v.Args[0].Reg())
case ssa.OpS390XFCMPS, ssa.OpS390XFCMP:
opregreg(s, v.Op.Asm(), v.Args[1].Reg(), v.Args[0].Reg())
case ssa.OpS390XCMPconst, ssa.OpS390XCMPWconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_CONST
p.To.Offset = v.AuxInt
case ssa.OpS390XCMPUconst, ssa.OpS390XCMPWUconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_CONST
p.To.Offset = int64(uint32(v.AuxInt))
case ssa.OpS390XMOVDconst:
x := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.OpS390XFMOVSconst, ssa.OpS390XFMOVDconst:
x := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.OpS390XADDWload, ssa.OpS390XADDload,
ssa.OpS390XMULLWload, ssa.OpS390XMULLDload,
ssa.OpS390XSUBWload, ssa.OpS390XSUBload,
ssa.OpS390XANDWload, ssa.OpS390XANDload,
ssa.OpS390XORWload, ssa.OpS390XORload,
ssa.OpS390XXORWload, ssa.OpS390XXORload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XMOVDload,
ssa.OpS390XMOVWZload, ssa.OpS390XMOVHZload, ssa.OpS390XMOVBZload,
ssa.OpS390XMOVDBRload, ssa.OpS390XMOVWBRload, ssa.OpS390XMOVHBRload,
ssa.OpS390XMOVBload, ssa.OpS390XMOVHload, ssa.OpS390XMOVWload,
ssa.OpS390XFMOVSload, ssa.OpS390XFMOVDload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XMOVBZloadidx, ssa.OpS390XMOVHZloadidx, ssa.OpS390XMOVWZloadidx,
ssa.OpS390XMOVBloadidx, ssa.OpS390XMOVHloadidx, ssa.OpS390XMOVWloadidx, ssa.OpS390XMOVDloadidx,
ssa.OpS390XMOVHBRloadidx, ssa.OpS390XMOVWBRloadidx, ssa.OpS390XMOVDBRloadidx,
ssa.OpS390XFMOVSloadidx, ssa.OpS390XFMOVDloadidx:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
if i == s390x.REGSP {
r, i = i, r
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = r
p.From.Scale = 1
p.From.Index = i
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XMOVBstore, ssa.OpS390XMOVHstore, ssa.OpS390XMOVWstore, ssa.OpS390XMOVDstore,
ssa.OpS390XMOVHBRstore, ssa.OpS390XMOVWBRstore, ssa.OpS390XMOVDBRstore,
ssa.OpS390XFMOVSstore, ssa.OpS390XFMOVDstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpS390XMOVBstoreidx, ssa.OpS390XMOVHstoreidx, ssa.OpS390XMOVWstoreidx, ssa.OpS390XMOVDstoreidx,
ssa.OpS390XMOVHBRstoreidx, ssa.OpS390XMOVWBRstoreidx, ssa.OpS390XMOVDBRstoreidx,
ssa.OpS390XFMOVSstoreidx, ssa.OpS390XFMOVDstoreidx:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
if i == s390x.REGSP {
r, i = i, r
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = r
p.To.Scale = 1
p.To.Index = i
ssagen.AddAux(&p.To, v)
case ssa.OpS390XMOVDstoreconst, ssa.OpS390XMOVWstoreconst, ssa.OpS390XMOVHstoreconst, ssa.OpS390XMOVBstoreconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val64()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux2(&p.To, v, sc.Off64())
case ssa.OpS390XMOVBreg, ssa.OpS390XMOVHreg, ssa.OpS390XMOVWreg,
ssa.OpS390XMOVBZreg, ssa.OpS390XMOVHZreg, ssa.OpS390XMOVWZreg,
ssa.OpS390XLDGR, ssa.OpS390XLGDR,
ssa.OpS390XCEFBRA, ssa.OpS390XCDFBRA, ssa.OpS390XCEGBRA, ssa.OpS390XCDGBRA,
ssa.OpS390XCFEBRA, ssa.OpS390XCFDBRA, ssa.OpS390XCGEBRA, ssa.OpS390XCGDBRA,
ssa.OpS390XCELFBR, ssa.OpS390XCDLFBR, ssa.OpS390XCELGBR, ssa.OpS390XCDLGBR,
ssa.OpS390XCLFEBR, ssa.OpS390XCLFDBR, ssa.OpS390XCLGEBR, ssa.OpS390XCLGDBR,
ssa.OpS390XLDEBR, ssa.OpS390XLEDBR,
ssa.OpS390XFNEG, ssa.OpS390XFNEGS,
ssa.OpS390XLPDFR, ssa.OpS390XLNDFR:
opregreg(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg())
case ssa.OpS390XCLEAR:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val64()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux2(&p.To, v, sc.Off64())
case ssa.OpCopy:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x != y {
opregreg(s, moveByType(v.Type), y, x)
}
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := s.Prog(loadByType(v.Type))
ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
ssagen.AddrAuto(&p.To, v)
case ssa.OpS390XLoweredGetClosurePtr:
// Closure pointer is R12 (already)
ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpS390XLoweredRound32F, ssa.OpS390XLoweredRound64F:
// input is already rounded
case ssa.OpS390XLoweredGetG:
r := v.Reg()
p := s.Prog(s390x.AMOVD)
p.From.Type = obj.TYPE_REG
p.From.Reg = s390x.REGG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpS390XLoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(s390x.AMOVD)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = -base.Ctxt.Arch.FixedFrameSize
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XLoweredGetCallerPC:
p := s.Prog(obj.AGETCALLERPC)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XCALLstatic, ssa.OpS390XCALLclosure, ssa.OpS390XCALLinter:
s.Call(v)
case ssa.OpS390XCALLtail:
s.TailCall(v)
case ssa.OpS390XLoweredWB:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
// AuxInt encodes how many buffer entries we need.
p.To.Sym = ir.Syms.GCWriteBarrier[v.AuxInt-1]
case ssa.OpS390XLoweredPanicBoundsA, ssa.OpS390XLoweredPanicBoundsB, ssa.OpS390XLoweredPanicBoundsC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpS390XFLOGR, ssa.OpS390XPOPCNT,
ssa.OpS390XNEG, ssa.OpS390XNEGW,
ssa.OpS390XMOVWBR, ssa.OpS390XMOVDBR:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XNOT, ssa.OpS390XNOTW:
v.Fatalf("NOT/NOTW generated %s", v.LongString())
case ssa.OpS390XSumBytes2, ssa.OpS390XSumBytes4, ssa.OpS390XSumBytes8:
v.Fatalf("SumBytes generated %s", v.LongString())
case ssa.OpS390XLOCGR:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(v.Aux.(s390x.CCMask))
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XFSQRTS, ssa.OpS390XFSQRT:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpS390XLTDBR, ssa.OpS390XLTEBR:
opregreg(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[0].Reg())
case ssa.OpS390XInvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
case ssa.OpS390XFlagEQ, ssa.OpS390XFlagLT, ssa.OpS390XFlagGT, ssa.OpS390XFlagOV:
v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
case ssa.OpS390XAddTupleFirst32, ssa.OpS390XAddTupleFirst64:
v.Fatalf("AddTupleFirst* should never make it to codegen %v", v.LongString())
case ssa.OpS390XLoweredNilCheck:
// Issue a load which will fault if the input is nil.
p := s.Prog(s390x.AMOVBZ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = s390x.REGTMP
if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
}
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
base.WarnfAt(v.Pos, "generated nil check")
}
case ssa.OpS390XMVC:
vo := v.AuxValAndOff()
p := s.Prog(s390x.AMVC)
p.From.Type = obj.TYPE_CONST
p.From.Offset = vo.Val64()
p.AddRestSource(obj.Addr{
Type: obj.TYPE_MEM,
Reg: v.Args[1].Reg(),
Offset: vo.Off64(),
})
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
p.To.Offset = vo.Off64()
case ssa.OpS390XSTMG2, ssa.OpS390XSTMG3, ssa.OpS390XSTMG4,
ssa.OpS390XSTM2, ssa.OpS390XSTM3, ssa.OpS390XSTM4:
for i := 2; i < len(v.Args)-1; i++ {
if v.Args[i].Reg() != v.Args[i-1].Reg()+1 {
v.Fatalf("invalid store multiple %s", v.LongString())
}
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[len(v.Args)-2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpS390XLoweredMove:
// Inputs must be valid pointers to memory,
// so adjust arg0 and arg1 as part of the expansion.
// arg2 should be src+size,
//
// mvc: MVC $256, 0(R2), 0(R1)
// MOVD $256(R1), R1
// MOVD $256(R2), R2
// CMP R2, Rarg2
// BNE mvc
// MVC $rem, 0(R2), 0(R1) // if rem > 0
// arg2 is the last address to move in the loop + 256
mvc := s.Prog(s390x.AMVC)
mvc.From.Type = obj.TYPE_CONST
mvc.From.Offset = 256
mvc.AddRestSource(obj.Addr{Type: obj.TYPE_MEM, Reg: v.Args[1].Reg()})
mvc.To.Type = obj.TYPE_MEM
mvc.To.Reg = v.Args[0].Reg()
for i := 0; i < 2; i++ {
movd := s.Prog(s390x.AMOVD)
movd.From.Type = obj.TYPE_ADDR
movd.From.Reg = v.Args[i].Reg()
movd.From.Offset = 256
movd.To.Type = obj.TYPE_REG
movd.To.Reg = v.Args[i].Reg()
}
cmpu := s.Prog(s390x.ACMPU)
cmpu.From.Reg = v.Args[1].Reg()
cmpu.From.Type = obj.TYPE_REG
cmpu.To.Reg = v.Args[2].Reg()
cmpu.To.Type = obj.TYPE_REG
bne := s.Prog(s390x.ABLT)
bne.To.Type = obj.TYPE_BRANCH
bne.To.SetTarget(mvc)
if v.AuxInt > 0 {
mvc := s.Prog(s390x.AMVC)
mvc.From.Type = obj.TYPE_CONST
mvc.From.Offset = v.AuxInt
mvc.AddRestSource(obj.Addr{Type: obj.TYPE_MEM, Reg: v.Args[1].Reg()})
mvc.To.Type = obj.TYPE_MEM
mvc.To.Reg = v.Args[0].Reg()
}
case ssa.OpS390XLoweredZero:
// Input must be valid pointers to memory,
// so adjust arg0 as part of the expansion.
// arg1 should be src+size,
//
// clear: CLEAR $256, 0(R1)
// MOVD $256(R1), R1
// CMP R1, Rarg1
// BNE clear
// CLEAR $rem, 0(R1) // if rem > 0
// arg1 is the last address to zero in the loop + 256
clear := s.Prog(s390x.ACLEAR)
clear.From.Type = obj.TYPE_CONST
clear.From.Offset = 256
clear.To.Type = obj.TYPE_MEM
clear.To.Reg = v.Args[0].Reg()
movd := s.Prog(s390x.AMOVD)
movd.From.Type = obj.TYPE_ADDR
movd.From.Reg = v.Args[0].Reg()
movd.From.Offset = 256
movd.To.Type = obj.TYPE_REG
movd.To.Reg = v.Args[0].Reg()
cmpu := s.Prog(s390x.ACMPU)
cmpu.From.Reg = v.Args[0].Reg()
cmpu.From.Type = obj.TYPE_REG
cmpu.To.Reg = v.Args[1].Reg()
cmpu.To.Type = obj.TYPE_REG
bne := s.Prog(s390x.ABLT)
bne.To.Type = obj.TYPE_BRANCH
bne.To.SetTarget(clear)
if v.AuxInt > 0 {
clear := s.Prog(s390x.ACLEAR)
clear.From.Type = obj.TYPE_CONST
clear.From.Offset = v.AuxInt
clear.To.Type = obj.TYPE_MEM
clear.To.Reg = v.Args[0].Reg()
}
case ssa.OpS390XMOVBZatomicload, ssa.OpS390XMOVWZatomicload, ssa.OpS390XMOVDatomicload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
case ssa.OpS390XMOVBatomicstore, ssa.OpS390XMOVWatomicstore, ssa.OpS390XMOVDatomicstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpS390XLAN, ssa.OpS390XLAO:
// LA(N|O) Ry, TMP, 0(Rx)
op := s.Prog(v.Op.Asm())
op.From.Type = obj.TYPE_REG
op.From.Reg = v.Args[1].Reg()
op.Reg = s390x.REGTMP
op.To.Type = obj.TYPE_MEM
op.To.Reg = v.Args[0].Reg()
case ssa.OpS390XLANfloor, ssa.OpS390XLAOfloor:
r := v.Args[0].Reg() // clobbered, assumed R1 in comments
// Round ptr down to nearest multiple of 4.
// ANDW $~3, R1
ptr := s.Prog(s390x.AANDW)
ptr.From.Type = obj.TYPE_CONST
ptr.From.Offset = 0xfffffffc
ptr.To.Type = obj.TYPE_REG
ptr.To.Reg = r
// Redirect output of LA(N|O) into R1 since it is clobbered anyway.
// LA(N|O) Rx, R1, 0(R1)
op := s.Prog(v.Op.Asm())
op.From.Type = obj.TYPE_REG
op.From.Reg = v.Args[1].Reg()
op.Reg = r
op.To.Type = obj.TYPE_MEM
op.To.Reg = r
case ssa.OpS390XLAA, ssa.OpS390XLAAG:
p := s.Prog(v.Op.Asm())
p.Reg = v.Reg0()
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpS390XLoweredAtomicCas32, ssa.OpS390XLoweredAtomicCas64:
// Convert the flags output of CS{,G} into a bool.
// CS{,G} arg1, arg2, arg0
// MOVD $0, ret
// BNE 2(PC)
// MOVD $1, ret
// NOP (so the BNE has somewhere to land)
// CS{,G} arg1, arg2, arg0
cs := s.Prog(v.Op.Asm())
cs.From.Type = obj.TYPE_REG
cs.From.Reg = v.Args[1].Reg() // old
cs.Reg = v.Args[2].Reg() // new
cs.To.Type = obj.TYPE_MEM
cs.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&cs.To, v)
// MOVD $0, ret
movd := s.Prog(s390x.AMOVD)
movd.From.Type = obj.TYPE_CONST
movd.From.Offset = 0
movd.To.Type = obj.TYPE_REG
movd.To.Reg = v.Reg0()
// BNE 2(PC)
bne := s.Prog(s390x.ABNE)
bne.To.Type = obj.TYPE_BRANCH
// MOVD $1, ret
movd = s.Prog(s390x.AMOVD)
movd.From.Type = obj.TYPE_CONST
movd.From.Offset = 1
movd.To.Type = obj.TYPE_REG
movd.To.Reg = v.Reg0()
// NOP (so the BNE has somewhere to land)
nop := s.Prog(obj.ANOP)
bne.To.SetTarget(nop)
case ssa.OpS390XLoweredAtomicExchange32, ssa.OpS390XLoweredAtomicExchange64:
// Loop until the CS{,G} succeeds.
// MOV{WZ,D} arg0, ret
// cs: CS{,G} ret, arg1, arg0
// BNE cs
// MOV{WZ,D} arg0, ret
load := s.Prog(loadByType(v.Type.FieldType(0)))
load.From.Type = obj.TYPE_MEM
load.From.Reg = v.Args[0].Reg()
load.To.Type = obj.TYPE_REG
load.To.Reg = v.Reg0()
ssagen.AddAux(&load.From, v)
// CS{,G} ret, arg1, arg0
cs := s.Prog(v.Op.Asm())
cs.From.Type = obj.TYPE_REG
cs.From.Reg = v.Reg0() // old
cs.Reg = v.Args[1].Reg() // new
cs.To.Type = obj.TYPE_MEM
cs.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&cs.To, v)
// BNE cs
bne := s.Prog(s390x.ABNE)
bne.To.Type = obj.TYPE_BRANCH
bne.To.SetTarget(cs)
case ssa.OpS390XSYNC:
s.Prog(s390x.ASYNC)
case ssa.OpClobber, ssa.OpClobberReg:
// TODO: implement for clobberdead experiment. Nop is ok for now.
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
func blockAsm(b *ssa.Block) obj.As {
switch b.Kind {
case ssa.BlockS390XBRC:
return s390x.ABRC
case ssa.BlockS390XCRJ:
return s390x.ACRJ
case ssa.BlockS390XCGRJ:
return s390x.ACGRJ
case ssa.BlockS390XCLRJ:
return s390x.ACLRJ
case ssa.BlockS390XCLGRJ:
return s390x.ACLGRJ
case ssa.BlockS390XCIJ:
return s390x.ACIJ
case ssa.BlockS390XCGIJ:
return s390x.ACGIJ
case ssa.BlockS390XCLIJ:
return s390x.ACLIJ
case ssa.BlockS390XCLGIJ:
return s390x.ACLGIJ
}
b.Fatalf("blockAsm not implemented: %s", b.LongString())
panic("unreachable")
}
func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
// Handle generic blocks first.
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := s.Prog(s390x.ABR)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
}
return
case ssa.BlockDefer:
// defer returns in R3:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := s.Br(s390x.ACIJ, b.Succs[1].Block())
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(s390x.NotEqual & s390x.NotUnordered) // unordered is not possible
p.Reg = s390x.REG_R3
p.AddRestSourceConst(0)
if b.Succs[0].Block() != next {
s.Br(s390x.ABR, b.Succs[0].Block())
}
return
case ssa.BlockExit, ssa.BlockRetJmp:
return
case ssa.BlockRet:
s.Prog(obj.ARET)
return
}
// Handle s390x-specific blocks. These blocks all have a
// condition code mask in the Aux value and 2 successors.
succs := [...]*ssa.Block{b.Succs[0].Block(), b.Succs[1].Block()}
mask := b.Aux.(s390x.CCMask)
// TODO: take into account Likely property for forward/backward
// branches. We currently can't do this because we don't know
// whether a block has already been emitted. In general forward
// branches are assumed 'not taken' and backward branches are
// assumed 'taken'.
if next == succs[0] {
succs[0], succs[1] = succs[1], succs[0]
mask = mask.Inverse()
}
p := s.Br(blockAsm(b), succs[0])
switch b.Kind {
case ssa.BlockS390XBRC:
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(mask)
case ssa.BlockS390XCGRJ, ssa.BlockS390XCRJ,
ssa.BlockS390XCLGRJ, ssa.BlockS390XCLRJ:
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(mask & s390x.NotUnordered) // unordered is not possible
p.Reg = b.Controls[0].Reg()
p.AddRestSourceReg(b.Controls[1].Reg())
case ssa.BlockS390XCGIJ, ssa.BlockS390XCIJ:
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(mask & s390x.NotUnordered) // unordered is not possible
p.Reg = b.Controls[0].Reg()
p.AddRestSourceConst(int64(int8(b.AuxInt)))
case ssa.BlockS390XCLGIJ, ssa.BlockS390XCLIJ:
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(mask & s390x.NotUnordered) // unordered is not possible
p.Reg = b.Controls[0].Reg()
p.AddRestSourceConst(int64(uint8(b.AuxInt)))
default:
b.Fatalf("branch not implemented: %s", b.LongString())
}
if next != succs[1] {
s.Br(s390x.ABR, succs[1])
}
}