blob: 542fd43b63117ccf0868bfe7b6fdbbeb57ba394f [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
"fmt"
"math"
"math/rand"
"sort"
"sync"
"time"
)
// "Portable" code generation.
var (
nBackendWorkers int // number of concurrent backend workers, set by a compiler flag
compilequeue []*Node // functions waiting to be compiled
)
func emitptrargsmap() {
if Curfn.funcname() == "_" {
return
}
sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.funcname()))
lsym := sym.Linksym()
nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr))
bv := bvalloc(int32(nptr) * 2)
nbitmap := 1
if Curfn.Type.Results().NumFields() > 0 {
nbitmap = 2
}
off := duint32(lsym, 0, uint32(nbitmap))
off = duint32(lsym, off, uint32(bv.n))
var xoffset int64
if Curfn.IsMethod() {
xoffset = 0
onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv)
}
if Curfn.Type.Params().NumFields() > 0 {
xoffset = 0
onebitwalktype1(Curfn.Type.Params(), &xoffset, bv)
}
off = dbvec(lsym, off, bv)
if Curfn.Type.Results().NumFields() > 0 {
xoffset = 0
onebitwalktype1(Curfn.Type.Results(), &xoffset, bv)
off = dbvec(lsym, off, bv)
}
ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL)
}
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
if (a.Class() == PAUTO) != (b.Class() == PAUTO) {
return b.Class() == PAUTO
}
if a.Class() != PAUTO {
return a.Xoffset < b.Xoffset
}
if a.Name.Used() != b.Name.Used() {
return a.Name.Used()
}
ap := types.Haspointers(a.Type)
bp := types.Haspointers(b.Type)
if ap != bp {
return ap
}
ap = a.Name.Needzero()
bp = b.Name.Needzero()
if ap != bp {
return ap
}
if a.Type.Width != b.Type.Width {
return a.Type.Width > b.Type.Width
}
return a.Sym.Name < b.Sym.Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *ssafn) AllocFrame(f *ssa.Func) {
s.stksize = 0
s.stkptrsize = 0
fn := s.curfn.Func
// Mark the PAUTO's unused.
for _, ln := range fn.Dcl {
if ln.Class() == PAUTO {
ln.Name.SetUsed(false)
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.(*Node).Name.SetUsed(true)
}
}
scratchUsed := false
for _, b := range f.Blocks {
for _, v := range b.Values {
switch a := v.Aux.(type) {
case *ssa.ArgSymbol:
n := a.Node.(*Node)
// Don't modify nodfp; it is a global.
if n != nodfp {
n.Name.SetUsed(true)
}
case *ssa.AutoSymbol:
a.Node.(*Node).Name.SetUsed(true)
}
if !scratchUsed {
scratchUsed = v.Op.UsesScratch()
}
}
}
if f.Config.NeedsFpScratch && scratchUsed {
s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64])
}
sort.Sort(byStackVar(fn.Dcl))
// Reassign stack offsets of the locals that are used.
for i, n := range fn.Dcl {
if n.Op != ONAME || n.Class() != PAUTO {
continue
}
if !n.Name.Used() {
fn.Dcl = fn.Dcl[:i]
break
}
dowidth(n.Type)
w := n.Type.Width
if w >= thearch.MAXWIDTH || w < 0 {
Fatalf("bad width")
}
s.stksize += w
s.stksize = Rnd(s.stksize, int64(n.Type.Align))
if types.Haspointers(n.Type) {
s.stkptrsize = s.stksize
}
if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
s.stksize = Rnd(s.stksize, int64(Widthptr))
}
n.Xoffset = -s.stksize
}
s.stksize = Rnd(s.stksize, int64(Widthreg))
s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg))
}
func compile(fn *Node) {
Curfn = fn
dowidth(fn.Type)
if fn.Nbody.Len() == 0 {
emitptrargsmap()
return
}
saveerrors()
order(fn)
if nerrors != 0 {
return
}
walk(fn)
if nerrors != 0 {
return
}
if instrumenting {
instrument(fn)
}
// From this point, there should be no uses of Curfn. Enforce that.
Curfn = nil
// Set up the function's LSym early to avoid data races with the assemblers.
fn.Func.initLSym()
if compilenow() {
compileSSA(fn, 0)
} else {
compilequeue = append(compilequeue, fn)
}
}
// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow() bool {
return nBackendWorkers == 1 && Debug_compilelater == 0
}
const maxStackSize = 1 << 31
// compileSSA builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func compileSSA(fn *Node, worker int) {
ssafn := buildssa(fn, worker)
pp := newProgs(fn, worker)
genssa(ssafn, pp)
if pp.Text.To.Offset < maxStackSize {
pp.Flush()
} else {
largeStackFramesMu.Lock()
largeStackFrames = append(largeStackFrames, fn.Pos)
largeStackFramesMu.Unlock()
}
// fieldtrack must be called after pp.Flush. See issue 20014.
fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack)
pp.Free()
}
func init() {
if raceEnabled {
rand.Seed(time.Now().UnixNano())
}
}
// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
if len(compilequeue) != 0 {
sizeCalculationDisabled = true // not safe to calculate sizes concurrently
if raceEnabled {
// Randomize compilation order to try to shake out races.
tmp := make([]*Node, len(compilequeue))
perm := rand.Perm(len(compilequeue))
for i, v := range perm {
tmp[v] = compilequeue[i]
}
copy(compilequeue, tmp)
} else {
// Compile the longest functions first,
// since they're most likely to be the slowest.
// This helps avoid stragglers.
obj.SortSlice(compilequeue, func(i, j int) bool {
return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len()
})
}
var wg sync.WaitGroup
c := make(chan *Node, nBackendWorkers)
for i := 0; i < nBackendWorkers; i++ {
wg.Add(1)
go func(worker int) {
for fn := range c {
compileSSA(fn, worker)
}
wg.Done()
}(i)
}
for _, fn := range compilequeue {
c <- fn
}
close(c)
compilequeue = nil
wg.Wait()
sizeCalculationDisabled = false
}
}
func debuginfo(fnsym *obj.LSym, curfn interface{}) []dwarf.Scope {
fn := curfn.(*Node)
debugInfo := fn.Func.DebugInfo
fn.Func.DebugInfo = nil
if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect {
Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
}
var automDecls []*Node
// Populate Automs for fn.
for _, n := range fn.Func.Dcl {
if n.Op != ONAME { // might be OTYPE or OLITERAL
continue
}
var name obj.AddrName
switch n.Class() {
case PAUTO:
if !n.Name.Used() {
Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
}
name = obj.NAME_AUTO
case PPARAM, PPARAMOUT:
name = obj.NAME_PARAM
default:
continue
}
automDecls = append(automDecls, n)
gotype := ngotype(n).Linksym()
fnsym.Func.Autom = append(fnsym.Func.Autom, &obj.Auto{
Asym: Ctxt.Lookup(n.Sym.Name),
Aoffset: int32(n.Xoffset),
Name: name,
Gotype: gotype,
})
}
var dwarfVars []*dwarf.Var
var decls []*Node
if Ctxt.Flag_locationlists && Ctxt.Flag_optimize {
decls, dwarfVars = createComplexVars(fn, debugInfo)
} else {
decls, dwarfVars = createSimpleVars(automDecls)
}
var varScopes []ScopeID
for _, decl := range decls {
var scope ScopeID
if !decl.Name.Captured() && !decl.Name.Byval() {
// n.Pos of captured variables is their first
// use in the closure but they should always
// be assigned to scope 0 instead.
// TODO(mdempsky): Verify this.
scope = findScope(fn.Func.Marks, decl.Pos)
}
varScopes = append(varScopes, scope)
}
return assembleScopes(fnsym, fn, dwarfVars, varScopes)
}
// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(automDecls []*Node) ([]*Node, []*dwarf.Var) {
var vars []*dwarf.Var
var decls []*Node
for _, n := range automDecls {
if n.IsAutoTmp() {
continue
}
var abbrev int
offs := n.Xoffset
switch n.Class() {
case PAUTO:
abbrev = dwarf.DW_ABRV_AUTO
if Ctxt.FixedFrameSize() == 0 {
offs -= int64(Widthptr)
}
if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) {
offs -= int64(Widthptr)
}
case PPARAM, PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM
offs += Ctxt.FixedFrameSize()
default:
Fatalf("createSimpleVars unexpected type %v for node %v", n.Class(), n)
}
typename := dwarf.InfoPrefix + typesymname(n.Type)
decls = append(decls, n)
vars = append(vars, &dwarf.Var{
Name: n.Sym.Name,
Abbrev: abbrev,
StackOffset: int32(offs),
Type: Ctxt.Lookup(typename),
})
}
return decls, vars
}
type varPart struct {
varOffset int64
slot ssa.SlotID
locs ssa.VarLocList
}
func createComplexVars(fn *Node, debugInfo *ssa.FuncDebug) ([]*Node, []*dwarf.Var) {
for _, locList := range debugInfo.Variables {
for _, loc := range locList.Locations {
if loc.StartProg != nil {
loc.StartPC = loc.StartProg.Pc
}
if loc.EndProg != nil {
loc.EndPC = loc.EndProg.Pc
}
if Debug_locationlist == 0 {
loc.EndProg = nil
loc.StartProg = nil
}
}
}
// Group SSA variables by the user variable they were decomposed from.
varParts := map[*Node][]varPart{}
for slotID, locList := range debugInfo.Variables {
if len(locList.Locations) == 0 {
continue
}
slot := debugInfo.Slots[slotID]
for slot.SplitOf != nil {
slot = slot.SplitOf
}
n := slot.N.(*Node)
varParts[n] = append(varParts[n], varPart{varOffset(slot), ssa.SlotID(slotID), locList})
}
// Produce a DWARF variable entry for each user variable.
// Don't iterate over the map -- that's nondeterministic, and
// createComplexVar has side effects. Instead, go by slot.
var decls []*Node
var vars []*dwarf.Var
for _, slot := range debugInfo.Slots {
for slot.SplitOf != nil {
slot = slot.SplitOf
}
n := slot.N.(*Node)
parts := varParts[n]
if parts == nil {
continue
}
// Get the order the parts need to be in to represent the memory
// of the decomposed user variable.
sort.Sort(partsByVarOffset(parts))
if dvar := createComplexVar(debugInfo, n, parts); dvar != nil {
decls = append(decls, n)
vars = append(vars, dvar)
}
}
return decls, vars
}
// varOffset returns the offset of slot within the user variable it was
// decomposed from. This has nothing to do with its stack offset.
func varOffset(slot *ssa.LocalSlot) int64 {
offset := slot.Off
for ; slot.SplitOf != nil; slot = slot.SplitOf {
offset += slot.SplitOffset
}
return offset
}
type partsByVarOffset []varPart
func (a partsByVarOffset) Len() int { return len(a) }
func (a partsByVarOffset) Less(i, j int) bool { return a[i].varOffset < a[j].varOffset }
func (a partsByVarOffset) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// createComplexVar builds a DWARF variable entry and location list representing n.
func createComplexVar(debugInfo *ssa.FuncDebug, n *Node, parts []varPart) *dwarf.Var {
slots := debugInfo.Slots
var offs int64 // base stack offset for this kind of variable
var abbrev int
switch n.Class() {
case PAUTO:
abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
if Ctxt.FixedFrameSize() == 0 {
offs -= int64(Widthptr)
}
if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) {
offs -= int64(Widthptr)
}
case PPARAM, PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
offs += Ctxt.FixedFrameSize()
default:
return nil
}
gotype := ngotype(n).Linksym()
typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
// The stack offset is used as a sorting key, so for decomposed
// variables just give it the lowest one. It's not used otherwise.
stackOffset := debugInfo.Slots[parts[0].slot].N.(*Node).Xoffset + offs
dvar := &dwarf.Var{
Name: n.Sym.Name,
Abbrev: abbrev,
Type: Ctxt.Lookup(typename),
StackOffset: int32(stackOffset),
}
if Debug_locationlist != 0 {
Ctxt.Logf("Building location list for %+v. Parts:\n", n)
for _, part := range parts {
Ctxt.Logf("\t%v => %v\n", debugInfo.Slots[part.slot], part.locs)
}
}
// Given a variable that's been decomposed into multiple parts,
// its location list may need a new entry after the beginning or
// end of every location entry for each of its parts. For example:
//
// [variable] [pc range]
// string.ptr |----|-----| |----|
// string.len |------------| |--|
// ... needs a location list like:
// string |----|-----|-| |--|-|
//
// Note that location entries may or may not line up with each other,
// and some of the result will only have one or the other part.
//
// To build the resulting list:
// - keep a "current" pointer for each part
// - find the next transition point
// - advance the current pointer for each part up to that transition point
// - build the piece for the range between that transition point and the next
// - repeat
curLoc := make([]int, len(slots))
// findBoundaryAfter finds the next beginning or end of a piece after currentPC.
findBoundaryAfter := func(currentPC int64) int64 {
min := int64(math.MaxInt64)
for slot, part := range parts {
// For each part, find the first PC greater than current. Doesn't
// matter if it's a start or an end, since we're looking for any boundary.
// If it's the new winner, save it.
onePart:
for i := curLoc[slot]; i < len(part.locs.Locations); i++ {
for _, pc := range [2]int64{part.locs.Locations[i].StartPC, part.locs.Locations[i].EndPC} {
if pc > currentPC {
if pc < min {
min = pc
}
break onePart
}
}
}
}
return min
}
var start int64
end := findBoundaryAfter(0)
for {
// Advance to the next chunk.
start = end
end = findBoundaryAfter(start)
if end == math.MaxInt64 {
break
}
dloc := dwarf.Location{StartPC: start, EndPC: end}
if Debug_locationlist != 0 {
Ctxt.Logf("Processing range %x -> %x\n", start, end)
}
// Advance curLoc to the last location that starts before/at start.
// After this loop, if there's a location that covers [start, end), it will be current.
// Otherwise the current piece will be too early.
for _, part := range parts {
choice := -1
for i := curLoc[part.slot]; i < len(part.locs.Locations); i++ {
if part.locs.Locations[i].StartPC > start {
break //overshot
}
choice = i // best yet
}
if choice != -1 {
curLoc[part.slot] = choice
}
if Debug_locationlist != 0 {
Ctxt.Logf("\t %v => %v", slots[part.slot], curLoc[part.slot])
}
}
if Debug_locationlist != 0 {
Ctxt.Logf("\n")
}
// Assemble the location list entry for this chunk.
present := 0
for _, part := range parts {
dpiece := dwarf.Piece{
Length: slots[part.slot].Type.Size(),
}
locIdx := curLoc[part.slot]
if locIdx >= len(part.locs.Locations) ||
start >= part.locs.Locations[locIdx].EndPC ||
end <= part.locs.Locations[locIdx].StartPC {
if Debug_locationlist != 0 {
Ctxt.Logf("\t%v: missing", slots[part.slot])
}
dpiece.Missing = true
dloc.Pieces = append(dloc.Pieces, dpiece)
continue
}
present++
loc := part.locs.Locations[locIdx]
if Debug_locationlist != 0 {
Ctxt.Logf("\t%v: %v", slots[part.slot], loc)
}
if loc.OnStack {
dpiece.OnStack = true
dpiece.StackOffset = int32(offs + slots[part.slot].Off + slots[part.slot].N.(*Node).Xoffset)
} else {
for reg := 0; reg < len(debugInfo.Registers); reg++ {
if loc.Registers&(1<<uint8(reg)) != 0 {
dpiece.RegNum = Ctxt.Arch.DWARFRegisters[debugInfo.Registers[reg].ObjNum()]
}
}
}
dloc.Pieces = append(dloc.Pieces, dpiece)
}
if present == 0 {
if Debug_locationlist != 0 {
Ctxt.Logf(" -> totally missing\n")
}
continue
}
// Extend the previous entry if possible.
if len(dvar.LocationList) > 0 {
prev := &dvar.LocationList[len(dvar.LocationList)-1]
if prev.EndPC == dloc.StartPC && len(prev.Pieces) == len(dloc.Pieces) {
equal := true
for i := range prev.Pieces {
if prev.Pieces[i] != dloc.Pieces[i] {
equal = false
}
}
if equal {
prev.EndPC = end
if Debug_locationlist != 0 {
Ctxt.Logf("-> merged with previous, now %#v\n", prev)
}
continue
}
}
}
dvar.LocationList = append(dvar.LocationList, dloc)
if Debug_locationlist != 0 {
Ctxt.Logf("-> added: %#v\n", dloc)
}
}
return dvar
}
// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
if fnsym == nil {
return
}
if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
return
}
trackSyms := make([]*types.Sym, 0, len(tracked))
for sym := range tracked {
trackSyms = append(trackSyms, sym)
}
sort.Sort(symByName(trackSyms))
for _, sym := range trackSyms {
r := obj.Addrel(fnsym)
r.Sym = sym.Linksym()
r.Type = objabi.R_USEFIELD
}
}
type symByName []*types.Sym
func (a symByName) Len() int { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }