| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| import "math/bits" |
| |
| func zero(x uint64) uint64 { |
| if x == 0 { |
| return 1 |
| } |
| return 0 |
| // branchless: |
| // return ((x>>1 | x&1) - 1) >> 63 |
| } |
| |
| func nonzero(x uint64) uint64 { |
| if x != 0 { |
| return 1 |
| } |
| return 0 |
| // branchless: |
| // return 1 - ((x>>1|x&1)-1)>>63 |
| } |
| |
| func shl(u1, u2 uint64, n uint) (r1, r2 uint64) { |
| r1 = u1<<n | u2>>(64-n) | u2<<(n-64) |
| r2 = u2 << n |
| return |
| } |
| |
| func shr(u1, u2 uint64, n uint) (r1, r2 uint64) { |
| r2 = u2>>n | u1<<(64-n) | u1>>(n-64) |
| r1 = u1 >> n |
| return |
| } |
| |
| // shrcompress compresses the bottom n+1 bits of the two-word |
| // value into a single bit. the result is equal to the value |
| // shifted to the right by n, except the result's 0th bit is |
| // set to the bitwise OR of the bottom n+1 bits. |
| func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) { |
| // TODO: Performance here is really sensitive to the |
| // order/placement of these branches. n == 0 is common |
| // enough to be in the fast path. Perhaps more measurement |
| // needs to be done to find the optimal order/placement? |
| switch { |
| case n == 0: |
| return u1, u2 |
| case n == 64: |
| return 0, u1 | nonzero(u2) |
| case n >= 128: |
| return 0, nonzero(u1 | u2) |
| case n < 64: |
| r1, r2 = shr(u1, u2, n) |
| r2 |= nonzero(u2 & (1<<n - 1)) |
| case n < 128: |
| r1, r2 = shr(u1, u2, n) |
| r2 |= nonzero(u1&(1<<(n-64)-1) | u2) |
| } |
| return |
| } |
| |
| func lz(u1, u2 uint64) (l int32) { |
| l = int32(bits.LeadingZeros64(u1)) |
| if l == 64 { |
| l += int32(bits.LeadingZeros64(u2)) |
| } |
| return l |
| } |
| |
| // split splits b into sign, biased exponent, and mantissa. |
| // It adds the implicit 1 bit to the mantissa for normal values, |
| // and normalizes subnormal values. |
| func split(b uint64) (sign uint32, exp int32, mantissa uint64) { |
| sign = uint32(b >> 63) |
| exp = int32(b>>52) & mask |
| mantissa = b & fracMask |
| |
| if exp == 0 { |
| // Normalize value if subnormal. |
| shift := uint(bits.LeadingZeros64(mantissa) - 11) |
| mantissa <<= shift |
| exp = 1 - int32(shift) |
| } else { |
| // Add implicit 1 bit |
| mantissa |= 1 << 52 |
| } |
| return |
| } |
| |
| // FMA returns x * y + z, computed with only one rounding. |
| // (That is, FMA returns the fused multiply-add of x, y, and z.) |
| func FMA(x, y, z float64) float64 { |
| bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z) |
| |
| // Inf or NaN or zero involved. At most one rounding will occur. |
| if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf { |
| return x*y + z |
| } |
| // Handle non-finite z separately. Evaluating x*y+z where |
| // x and y are finite, but z is infinite, should always result in z. |
| if bz&uvinf == uvinf { |
| return z |
| } |
| |
| // Inputs are (sub)normal. |
| // Split x, y, z into sign, exponent, mantissa. |
| xs, xe, xm := split(bx) |
| ys, ye, ym := split(by) |
| zs, ze, zm := split(bz) |
| |
| // Compute product p = x*y as sign, exponent, two-word mantissa. |
| // Start with exponent. "is normal" bit isn't subtracted yet. |
| pe := xe + ye - bias + 1 |
| |
| // pm1:pm2 is the double-word mantissa for the product p. |
| // Shift left to leave top bit in product. Effectively |
| // shifts the 106-bit product to the left by 21. |
| pm1, pm2 := bits.Mul64(xm<<10, ym<<11) |
| zm1, zm2 := zm<<10, uint64(0) |
| ps := xs ^ ys // product sign |
| |
| // normalize to 62nd bit |
| is62zero := uint((^pm1 >> 62) & 1) |
| pm1, pm2 = shl(pm1, pm2, is62zero) |
| pe -= int32(is62zero) |
| |
| // Swap addition operands so |p| >= |z| |
| if pe < ze || pe == ze && pm1 < zm1 { |
| ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2 |
| } |
| |
| // Special case: if p == -z the result is always +0 since neither operand is zero. |
| if ps != zs && pe == ze && pm1 == zm1 && pm2 == zm2 { |
| return 0 |
| } |
| |
| // Align significands |
| zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze)) |
| |
| // Compute resulting significands, normalizing if necessary. |
| var m, c uint64 |
| if ps == zs { |
| // Adding (pm1:pm2) + (zm1:zm2) |
| pm2, c = bits.Add64(pm2, zm2, 0) |
| pm1, _ = bits.Add64(pm1, zm1, c) |
| pe -= int32(^pm1 >> 63) |
| pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63)) |
| } else { |
| // Subtracting (pm1:pm2) - (zm1:zm2) |
| // TODO: should we special-case cancellation? |
| pm2, c = bits.Sub64(pm2, zm2, 0) |
| pm1, _ = bits.Sub64(pm1, zm1, c) |
| nz := lz(pm1, pm2) |
| pe -= nz |
| m, pm2 = shl(pm1, pm2, uint(nz-1)) |
| m |= nonzero(pm2) |
| } |
| |
| // Round and break ties to even |
| if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 { |
| // rounded value overflows exponent range |
| return Float64frombits(uint64(ps)<<63 | uvinf) |
| } |
| if pe < 0 { |
| n := uint(-pe) |
| m = m>>n | nonzero(m&(1<<n-1)) |
| pe = 0 |
| } |
| m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9) |
| pe &= -int32(nonzero(m)) |
| return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m) |
| } |