| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package walk |
| |
| import ( |
| "unicode/utf8" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/reflectdata" |
| "cmd/compile/internal/ssagen" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| ) |
| |
| func cheapComputableIndex(width int64) bool { |
| switch ssagen.Arch.LinkArch.Family { |
| // MIPS does not have R+R addressing |
| // Arm64 may lack ability to generate this code in our assembler, |
| // but the architecture supports it. |
| case sys.PPC64, sys.S390X: |
| return width == 1 |
| case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: |
| switch width { |
| case 1, 2, 4, 8: |
| return true |
| } |
| } |
| return false |
| } |
| |
| // walkRange transforms various forms of ORANGE into |
| // simpler forms. The result must be assigned back to n. |
| // Node n may also be modified in place, and may also be |
| // the returned node. |
| func walkRange(nrange *ir.RangeStmt) ir.Node { |
| base.Assert(!nrange.DistinctVars) // Should all be rewritten before escape analysis |
| if isMapClear(nrange) { |
| return mapRangeClear(nrange) |
| } |
| |
| nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil, nrange.DistinctVars) |
| nfor.SetInit(nrange.Init()) |
| nfor.Label = nrange.Label |
| |
| // variable name conventions: |
| // ohv1, hv1, hv2: hidden (old) val 1, 2 |
| // ha, hit: hidden aggregate, iterator |
| // hn, hp: hidden len, pointer |
| // hb: hidden bool |
| // a, v1, v2: not hidden aggregate, val 1, 2 |
| |
| a := nrange.X |
| t := a.Type() |
| lno := ir.SetPos(a) |
| |
| v1, v2 := nrange.Key, nrange.Value |
| |
| if ir.IsBlank(v2) { |
| v2 = nil |
| } |
| |
| if ir.IsBlank(v1) && v2 == nil { |
| v1 = nil |
| } |
| |
| if v1 == nil && v2 != nil { |
| base.Fatalf("walkRange: v2 != nil while v1 == nil") |
| } |
| |
| var body []ir.Node |
| var init []ir.Node |
| switch k := t.Kind(); { |
| default: |
| base.Fatalf("walkRange") |
| |
| case types.IsInt[k]: |
| hv1 := typecheck.Temp(t) |
| hn := typecheck.Temp(t) |
| |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| init = append(init, ir.NewAssignStmt(base.Pos, hn, a)) |
| |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) |
| nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1))) |
| |
| if v1 != nil { |
| body = []ir.Node{rangeAssign(nrange, hv1)} |
| } |
| |
| case k == types.TARRAY, k == types.TSLICE, k == types.TPTR: // TPTR is pointer-to-array |
| if nn := arrayRangeClear(nrange, v1, v2, a); nn != nil { |
| base.Pos = lno |
| return nn |
| } |
| |
| // Element type of the iteration |
| var elem *types.Type |
| switch t.Kind() { |
| case types.TSLICE, types.TARRAY: |
| elem = t.Elem() |
| case types.TPTR: |
| elem = t.Elem().Elem() |
| } |
| |
| // order.stmt arranged for a copy of the array/slice variable if needed. |
| ha := a |
| |
| hv1 := typecheck.Temp(types.Types[types.TINT]) |
| hn := typecheck.Temp(types.Types[types.TINT]) |
| |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) |
| |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) |
| nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1))) |
| |
| // for range ha { body } |
| if v1 == nil { |
| break |
| } |
| |
| // for v1 := range ha { body } |
| if v2 == nil { |
| body = []ir.Node{rangeAssign(nrange, hv1)} |
| break |
| } |
| |
| // for v1, v2 := range ha { body } |
| if cheapComputableIndex(elem.Size()) { |
| // v1, v2 = hv1, ha[hv1] |
| tmp := ir.NewIndexExpr(base.Pos, ha, hv1) |
| tmp.SetBounded(true) |
| body = []ir.Node{rangeAssign2(nrange, hv1, tmp)} |
| break |
| } |
| |
| // Slice to iterate over |
| var hs ir.Node |
| if t.IsSlice() { |
| hs = ha |
| } else { |
| var arr ir.Node |
| if t.IsPtr() { |
| arr = ha |
| } else { |
| arr = typecheck.NodAddr(ha) |
| arr.SetType(t.PtrTo()) |
| arr.SetTypecheck(1) |
| } |
| hs = ir.NewSliceExpr(base.Pos, ir.OSLICEARR, arr, nil, nil, nil) |
| // old typechecker doesn't know OSLICEARR, so we set types explicitly |
| hs.SetType(types.NewSlice(elem)) |
| hs.SetTypecheck(1) |
| } |
| |
| // We use a "pointer" to keep track of where we are in the backing array |
| // of the slice hs. This pointer starts at hs.ptr and gets incremented |
| // by the element size each time through the loop. |
| // |
| // It's tricky, though, as on the last iteration this pointer gets |
| // incremented to point past the end of the backing array. We can't |
| // let the garbage collector see that final out-of-bounds pointer. |
| // |
| // To avoid this, we keep the "pointer" alternately in 2 variables, one |
| // pointer typed and one uintptr typed. Most of the time it lives in the |
| // regular pointer variable, but when it might be out of bounds (after it |
| // has been incremented, but before the loop condition has been checked) |
| // it lives briefly in the uintptr variable. |
| // |
| // hp contains the pointer version (of type *T, where T is the element type). |
| // It is guaranteed to always be in range, keeps the backing store alive, |
| // and is updated on stack copies. If a GC occurs when this function is |
| // suspended at any safepoint, this variable ensures correct operation. |
| // |
| // hu contains the equivalent uintptr version. It may point past the |
| // end, but doesn't keep the backing store alive and doesn't get updated |
| // on a stack copy. If a GC occurs while this function is on the top of |
| // the stack, then the last frame is scanned conservatively and hu will |
| // act as a reference to the backing array to ensure it is not collected. |
| // |
| // The "pointer" we're moving across the backing array lives in one |
| // or the other of hp and hu as the loop proceeds. |
| // |
| // hp is live during most of the body of the loop. But it isn't live |
| // at the very top of the loop, when we haven't checked i<n yet, and |
| // it could point off the end of the backing store. |
| // hu is live only at the very top and very bottom of the loop. |
| // In particular, only when it cannot possibly be live across a call. |
| // |
| // So we do |
| // hu = uintptr(unsafe.Pointer(hs.ptr)) |
| // for i := 0; i < hs.len; i++ { |
| // hp = (*T)(unsafe.Pointer(hu)) |
| // v1, v2 = i, *hp |
| // ... body of loop ... |
| // hu = uintptr(unsafe.Pointer(hp)) + elemsize |
| // } |
| // |
| // Between the assignments to hu and the assignment back to hp, there |
| // must not be any calls. |
| |
| // Pointer to current iteration position. Start on entry to the loop |
| // with the pointer in hu. |
| ptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, hs) |
| ptr.SetBounded(true) |
| huVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], ptr) |
| huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) |
| hu := typecheck.Temp(types.Types[types.TUINTPTR]) |
| init = append(init, ir.NewAssignStmt(base.Pos, hu, huVal)) |
| |
| // Convert hu to hp at the top of the loop (after the condition has been checked). |
| hpVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hu) |
| hpVal.SetCheckPtr(true) // disable checkptr on this conversion |
| hpVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, elem.PtrTo(), hpVal) |
| hp := typecheck.Temp(elem.PtrTo()) |
| body = append(body, ir.NewAssignStmt(base.Pos, hp, hpVal)) |
| |
| // Assign variables on the LHS of the range statement. Use *hp to get the element. |
| e := ir.NewStarExpr(base.Pos, hp) |
| e.SetBounded(true) |
| a := rangeAssign2(nrange, hv1, e) |
| body = append(body, a) |
| |
| // Advance pointer for next iteration of the loop. |
| // This reads from hp and writes to hu. |
| huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hp) |
| huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) |
| as := ir.NewAssignStmt(base.Pos, hu, ir.NewBinaryExpr(base.Pos, ir.OADD, huVal, ir.NewInt(base.Pos, elem.Size()))) |
| nfor.Post = ir.NewBlockStmt(base.Pos, []ir.Node{nfor.Post, as}) |
| |
| case k == types.TMAP: |
| // order.stmt allocated the iterator for us. |
| // we only use a once, so no copy needed. |
| ha := a |
| |
| hit := nrange.Prealloc |
| th := hit.Type() |
| // depends on layout of iterator struct. |
| // See cmd/compile/internal/reflectdata/reflect.go:MapIterType |
| keysym := th.Field(0).Sym |
| elemsym := th.Field(1).Sym // ditto |
| |
| fn := typecheck.LookupRuntime("mapiterinit") |
| |
| fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th) |
| init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit))) |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) |
| |
| fn = typecheck.LookupRuntime("mapiternext") |
| fn = typecheck.SubstArgTypes(fn, th) |
| nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) |
| |
| key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym)) |
| if v1 == nil { |
| body = nil |
| } else if v2 == nil { |
| body = []ir.Node{rangeAssign(nrange, key)} |
| } else { |
| elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym)) |
| body = []ir.Node{rangeAssign2(nrange, key, elem)} |
| } |
| |
| case k == types.TCHAN: |
| // order.stmt arranged for a copy of the channel variable. |
| ha := a |
| |
| hv1 := typecheck.Temp(t.Elem()) |
| hv1.SetTypecheck(1) |
| if t.Elem().HasPointers() { |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| } |
| hb := typecheck.Temp(types.Types[types.TBOOL]) |
| |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(base.Pos, false)) |
| lhs := []ir.Node{hv1, hb} |
| rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) |
| a.SetTypecheck(1) |
| nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) |
| if v1 == nil { |
| body = nil |
| } else { |
| body = []ir.Node{rangeAssign(nrange, hv1)} |
| } |
| // Zero hv1. This prevents hv1 from being the sole, inaccessible |
| // reference to an otherwise GC-able value during the next channel receive. |
| // See issue 15281. |
| body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| |
| case k == types.TSTRING: |
| // Transform string range statements like "for v1, v2 = range a" into |
| // |
| // ha := a |
| // for hv1 := 0; hv1 < len(ha); { |
| // hv1t := hv1 |
| // hv2 := rune(ha[hv1]) |
| // if hv2 < utf8.RuneSelf { |
| // hv1++ |
| // } else { |
| // hv2, hv1 = decoderune(ha, hv1) |
| // } |
| // v1, v2 = hv1t, hv2 |
| // // original body |
| // } |
| |
| // order.stmt arranged for a copy of the string variable. |
| ha := a |
| |
| hv1 := typecheck.Temp(types.Types[types.TINT]) |
| hv1t := typecheck.Temp(types.Types[types.TINT]) |
| hv2 := typecheck.Temp(types.RuneType) |
| |
| // hv1 := 0 |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| |
| // hv1 < len(ha) |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) |
| |
| if v1 != nil { |
| // hv1t = hv1 |
| body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) |
| } |
| |
| // hv2 := rune(ha[hv1]) |
| nind := ir.NewIndexExpr(base.Pos, ha, hv1) |
| nind.SetBounded(true) |
| body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) |
| |
| // if hv2 < utf8.RuneSelf |
| nif := ir.NewIfStmt(base.Pos, nil, nil, nil) |
| nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(base.Pos, utf8.RuneSelf)) |
| |
| // hv1++ |
| nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))} |
| |
| // } else { |
| // hv2, hv1 = decoderune(ha, hv1) |
| fn := typecheck.LookupRuntime("decoderune") |
| call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1) |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) |
| nif.Else.Append(a) |
| |
| body = append(body, nif) |
| |
| if v1 != nil { |
| if v2 != nil { |
| // v1, v2 = hv1t, hv2 |
| body = append(body, rangeAssign2(nrange, hv1t, hv2)) |
| } else { |
| // v1 = hv1t |
| body = append(body, rangeAssign(nrange, hv1t)) |
| } |
| } |
| } |
| |
| typecheck.Stmts(init) |
| |
| nfor.PtrInit().Append(init...) |
| |
| typecheck.Stmts(nfor.Cond.Init()) |
| |
| nfor.Cond = typecheck.Expr(nfor.Cond) |
| nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) |
| nfor.Post = typecheck.Stmt(nfor.Post) |
| typecheck.Stmts(body) |
| nfor.Body.Append(body...) |
| nfor.Body.Append(nrange.Body...) |
| |
| var n ir.Node = nfor |
| |
| n = walkStmt(n) |
| |
| base.Pos = lno |
| return n |
| } |
| |
| // rangeAssign returns "n.Key = key". |
| func rangeAssign(n *ir.RangeStmt, key ir.Node) ir.Node { |
| key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) |
| return ir.NewAssignStmt(n.Pos(), n.Key, key) |
| } |
| |
| // rangeAssign2 returns "n.Key, n.Value = key, value". |
| func rangeAssign2(n *ir.RangeStmt, key, value ir.Node) ir.Node { |
| // Use OAS2 to correctly handle assignments |
| // of the form "v1, a[v1] = range". |
| key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) |
| value = rangeConvert(n, n.Value.Type(), value, n.ValueTypeWord, n.ValueSrcRType) |
| return ir.NewAssignListStmt(n.Pos(), ir.OAS2, []ir.Node{n.Key, n.Value}, []ir.Node{key, value}) |
| } |
| |
| // rangeConvert returns src, converted to dst if necessary. If a |
| // conversion is necessary, then typeWord and srcRType are copied to |
| // their respective ConvExpr fields. |
| func rangeConvert(nrange *ir.RangeStmt, dst *types.Type, src, typeWord, srcRType ir.Node) ir.Node { |
| src = typecheck.Expr(src) |
| if dst.Kind() == types.TBLANK || types.Identical(dst, src.Type()) { |
| return src |
| } |
| |
| n := ir.NewConvExpr(nrange.Pos(), ir.OCONV, dst, src) |
| n.TypeWord = typeWord |
| n.SrcRType = srcRType |
| return typecheck.Expr(n) |
| } |
| |
| // isMapClear checks if n is of the form: |
| // |
| // for k := range m { |
| // delete(m, k) |
| // } |
| // |
| // where == for keys of map m is reflexive. |
| func isMapClear(n *ir.RangeStmt) bool { |
| if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { |
| return false |
| } |
| |
| t := n.X.Type() |
| if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { |
| return false |
| } |
| |
| k := n.Key |
| // Require k to be a new variable name. |
| if !ir.DeclaredBy(k, n) { |
| return false |
| } |
| |
| if len(n.Body) != 1 { |
| return false |
| } |
| |
| stmt := n.Body[0] // only stmt in body |
| if stmt == nil || stmt.Op() != ir.ODELETE { |
| return false |
| } |
| |
| m := n.X |
| if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { |
| return false |
| } |
| |
| // Keys where equality is not reflexive can not be deleted from maps. |
| if !types.IsReflexive(t.Key()) { |
| return false |
| } |
| |
| return true |
| } |
| |
| // mapRangeClear constructs a call to runtime.mapclear for the map range idiom. |
| func mapRangeClear(nrange *ir.RangeStmt) ir.Node { |
| m := nrange.X |
| origPos := ir.SetPos(m) |
| defer func() { base.Pos = origPos }() |
| |
| return mapClear(m, reflectdata.RangeMapRType(base.Pos, nrange)) |
| } |
| |
| // mapClear constructs a call to runtime.mapclear for the map m. |
| func mapClear(m, rtyp ir.Node) ir.Node { |
| t := m.Type() |
| |
| // instantiate mapclear(typ *type, hmap map[any]any) |
| fn := typecheck.LookupRuntime("mapclear") |
| fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem()) |
| n := mkcallstmt1(fn, rtyp, m) |
| return walkStmt(typecheck.Stmt(n)) |
| } |
| |
| // Lower n into runtime·memclr if possible, for |
| // fast zeroing of slices and arrays (issue 5373). |
| // Look for instances of |
| // |
| // for i := range a { |
| // a[i] = zero |
| // } |
| // |
| // in which the evaluation of a is side-effect-free. |
| // |
| // Parameters are as in walkRange: "for v1, v2 = range a". |
| func arrayRangeClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { |
| if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { |
| return nil |
| } |
| |
| if v1 == nil || v2 != nil { |
| return nil |
| } |
| |
| if len(loop.Body) != 1 || loop.Body[0] == nil { |
| return nil |
| } |
| |
| stmt1 := loop.Body[0] // only stmt in body |
| if stmt1.Op() != ir.OAS { |
| return nil |
| } |
| stmt := stmt1.(*ir.AssignStmt) |
| if stmt.X.Op() != ir.OINDEX { |
| return nil |
| } |
| lhs := stmt.X.(*ir.IndexExpr) |
| x := lhs.X |
| if a.Type().IsPtr() && a.Type().Elem().IsArray() { |
| if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF { |
| x = s.X |
| } |
| } |
| |
| if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) { |
| return nil |
| } |
| |
| if !ir.IsZero(stmt.Y) { |
| return nil |
| } |
| |
| return arrayClear(stmt.Pos(), a, loop) |
| } |
| |
| // arrayClear constructs a call to runtime.memclr for fast zeroing of slices and arrays. |
| func arrayClear(wbPos src.XPos, a ir.Node, nrange *ir.RangeStmt) ir.Node { |
| elemsize := typecheck.RangeExprType(a.Type()).Elem().Size() |
| if elemsize <= 0 { |
| return nil |
| } |
| |
| // Convert to |
| // if len(a) != 0 { |
| // hp = &a[0] |
| // hn = len(a)*sizeof(elem(a)) |
| // memclr{NoHeap,Has}Pointers(hp, hn) |
| // i = len(a) - 1 |
| // } |
| n := ir.NewIfStmt(base.Pos, nil, nil, nil) |
| n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 0)) |
| |
| // hp = &a[0] |
| hp := typecheck.Temp(types.Types[types.TUNSAFEPTR]) |
| |
| ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(base.Pos, 0)) |
| ix.SetBounded(true) |
| addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) |
| n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) |
| |
| // hn = len(a) * sizeof(elem(a)) |
| hn := typecheck.Temp(types.Types[types.TUINTPTR]) |
| mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, elemsize)), types.Types[types.TUINTPTR]) |
| n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) |
| |
| var fn ir.Node |
| if a.Type().Elem().HasPointers() { |
| // memclrHasPointers(hp, hn) |
| ir.CurFunc.SetWBPos(wbPos) |
| fn = mkcallstmt("memclrHasPointers", hp, hn) |
| } else { |
| // memclrNoHeapPointers(hp, hn) |
| fn = mkcallstmt("memclrNoHeapPointers", hp, hn) |
| } |
| |
| n.Body.Append(fn) |
| |
| // For array range clear, also set "i = len(a) - 1" |
| if nrange != nil { |
| idx := ir.NewAssignStmt(base.Pos, nrange.Key, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 1))) |
| n.Body.Append(idx) |
| } |
| |
| n.Cond = typecheck.Expr(n.Cond) |
| n.Cond = typecheck.DefaultLit(n.Cond, nil) |
| typecheck.Stmts(n.Body) |
| return walkStmt(n) |
| } |
| |
| // addptr returns (*T)(uintptr(p) + n). |
| func addptr(p ir.Node, n int64) ir.Node { |
| t := p.Type() |
| |
| p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) |
| p.SetType(types.Types[types.TUINTPTR]) |
| |
| p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(base.Pos, n)) |
| |
| p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) |
| p.SetType(t) |
| |
| return p |
| } |