| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package typecheck |
| |
| import ( |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/types" |
| "cmd/internal/src" |
| |
| "fmt" |
| "go/constant" |
| "go/token" |
| ) |
| |
| // MakeDotArgs package all the arguments that match a ... T parameter into a []T. |
| func MakeDotArgs(pos src.XPos, typ *types.Type, args []ir.Node) ir.Node { |
| var n ir.Node |
| if len(args) == 0 { |
| n = ir.NewNilExpr(pos) |
| n.SetType(typ) |
| } else { |
| args = append([]ir.Node(nil), args...) |
| lit := ir.NewCompLitExpr(pos, ir.OCOMPLIT, typ, args) |
| lit.SetImplicit(true) |
| n = lit |
| } |
| |
| n = Expr(n) |
| if n.Type() == nil { |
| base.FatalfAt(pos, "mkdotargslice: typecheck failed") |
| } |
| return n |
| } |
| |
| // FixVariadicCall rewrites calls to variadic functions to use an |
| // explicit ... argument if one is not already present. |
| func FixVariadicCall(call *ir.CallExpr) { |
| fntype := call.X.Type() |
| if !fntype.IsVariadic() || call.IsDDD { |
| return |
| } |
| |
| vi := fntype.NumParams() - 1 |
| vt := fntype.Params().Field(vi).Type |
| |
| args := call.Args |
| extra := args[vi:] |
| slice := MakeDotArgs(call.Pos(), vt, extra) |
| for i := range extra { |
| extra[i] = nil // allow GC |
| } |
| |
| call.Args = append(args[:vi], slice) |
| call.IsDDD = true |
| } |
| |
| // FixMethodCall rewrites a method call t.M(...) into a function call T.M(t, ...). |
| func FixMethodCall(call *ir.CallExpr) { |
| if call.X.Op() != ir.ODOTMETH { |
| return |
| } |
| |
| dot := call.X.(*ir.SelectorExpr) |
| |
| fn := Expr(ir.NewSelectorExpr(dot.Pos(), ir.OXDOT, ir.TypeNode(dot.X.Type()), dot.Selection.Sym)) |
| |
| args := make([]ir.Node, 1+len(call.Args)) |
| args[0] = dot.X |
| copy(args[1:], call.Args) |
| |
| call.SetOp(ir.OCALLFUNC) |
| call.X = fn |
| call.Args = args |
| } |
| |
| func AssertFixedCall(call *ir.CallExpr) { |
| if call.X.Type().IsVariadic() && !call.IsDDD { |
| base.FatalfAt(call.Pos(), "missed FixVariadicCall") |
| } |
| if call.Op() == ir.OCALLMETH { |
| base.FatalfAt(call.Pos(), "missed FixMethodCall") |
| } |
| } |
| |
| // ClosureType returns the struct type used to hold all the information |
| // needed in the closure for clo (clo must be a OCLOSURE node). |
| // The address of a variable of the returned type can be cast to a func. |
| func ClosureType(clo *ir.ClosureExpr) *types.Type { |
| // Create closure in the form of a composite literal. |
| // supposing the closure captures an int i and a string s |
| // and has one float64 argument and no results, |
| // the generated code looks like: |
| // |
| // clos = &struct{.F uintptr; i *int; s *string}{func.1, &i, &s} |
| // |
| // The use of the struct provides type information to the garbage |
| // collector so that it can walk the closure. We could use (in this case) |
| // [3]unsafe.Pointer instead, but that would leave the gc in the dark. |
| // The information appears in the binary in the form of type descriptors; |
| // the struct is unnamed so that closures in multiple packages with the |
| // same struct type can share the descriptor. |
| |
| // Make sure the .F field is in the same package as the rest of the |
| // fields. This deals with closures in instantiated functions, which are |
| // compiled as if from the source package of the generic function. |
| var pkg *types.Pkg |
| if len(clo.Func.ClosureVars) == 0 { |
| pkg = types.LocalPkg |
| } else { |
| for _, v := range clo.Func.ClosureVars { |
| if pkg == nil { |
| pkg = v.Sym().Pkg |
| } else if pkg != v.Sym().Pkg { |
| base.Fatalf("Closure variables from multiple packages: %+v", clo) |
| } |
| } |
| } |
| |
| fields := []*types.Field{ |
| types.NewField(base.Pos, pkg.Lookup(".F"), types.Types[types.TUINTPTR]), |
| } |
| for _, v := range clo.Func.ClosureVars { |
| typ := v.Type() |
| if !v.Byval() { |
| typ = types.NewPtr(typ) |
| } |
| fields = append(fields, types.NewField(base.Pos, v.Sym(), typ)) |
| } |
| typ := types.NewStruct(fields) |
| typ.SetNoalg(true) |
| return typ |
| } |
| |
| // MethodValueType returns the struct type used to hold all the information |
| // needed in the closure for a OMETHVALUE node. The address of a variable of |
| // the returned type can be cast to a func. |
| func MethodValueType(n *ir.SelectorExpr) *types.Type { |
| t := types.NewStruct([]*types.Field{ |
| types.NewField(base.Pos, Lookup("F"), types.Types[types.TUINTPTR]), |
| types.NewField(base.Pos, Lookup("R"), n.X.Type()), |
| }) |
| t.SetNoalg(true) |
| return t |
| } |
| |
| // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods |
| // the ->sym can be re-used in the local package, so peel it off the receiver's type. |
| func fnpkg(fn *ir.Name) *types.Pkg { |
| if ir.IsMethod(fn) { |
| // method |
| rcvr := fn.Type().Recv().Type |
| |
| if rcvr.IsPtr() { |
| rcvr = rcvr.Elem() |
| } |
| if rcvr.Sym() == nil { |
| base.Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym(), fn, rcvr) |
| } |
| return rcvr.Sym().Pkg |
| } |
| |
| // non-method |
| return fn.Sym().Pkg |
| } |
| |
| // tcClosure typechecks an OCLOSURE node. It also creates the named |
| // function associated with the closure. |
| // TODO: This creation of the named function should probably really be done in a |
| // separate pass from type-checking. |
| func tcClosure(clo *ir.ClosureExpr, top int) ir.Node { |
| fn := clo.Func |
| |
| // We used to allow IR builders to typecheck the underlying Func |
| // themselves, but that led to too much variety and inconsistency |
| // around who's responsible for naming the function, typechecking |
| // it, or adding it to Target.Decls. |
| // |
| // It's now all or nothing. Callers are still allowed to do these |
| // themselves, but then they assume responsibility for all of them. |
| if fn.Typecheck() == 1 { |
| base.FatalfAt(fn.Pos(), "underlying closure func already typechecked: %v", fn) |
| } |
| |
| ir.NameClosure(clo, ir.CurFunc) |
| Func(fn) |
| |
| // Type check the body now, but only if we're inside a function. |
| // At top level (in a variable initialization: curfn==nil) we're not |
| // ready to type check code yet; we'll check it later, because the |
| // underlying closure function we create is added to Target.Decls. |
| if ir.CurFunc != nil { |
| oldfn := ir.CurFunc |
| ir.CurFunc = fn |
| Stmts(fn.Body) |
| ir.CurFunc = oldfn |
| } |
| |
| out := 0 |
| for _, v := range fn.ClosureVars { |
| if v.Type() == nil { |
| // If v.Type is nil, it means v looked like it was going to be |
| // used in the closure, but isn't. This happens in struct |
| // literals like s{f: x} where we can't distinguish whether f is |
| // a field identifier or expression until resolving s. |
| continue |
| } |
| |
| // type check closed variables outside the closure, so that the |
| // outer frame also captures them. |
| Expr(v.Outer) |
| |
| fn.ClosureVars[out] = v |
| out++ |
| } |
| fn.ClosureVars = fn.ClosureVars[:out] |
| |
| clo.SetType(fn.Type()) |
| |
| return ir.UseClosure(clo, Target) |
| } |
| |
| // type check function definition |
| // To be called by typecheck, not directly. |
| // (Call typecheck.Func instead.) |
| func tcFunc(n *ir.Func) { |
| if base.EnableTrace && base.Flag.LowerT { |
| defer tracePrint("tcFunc", n)(nil) |
| } |
| |
| if name := n.Nname; name.Typecheck() == 0 { |
| base.AssertfAt(name.Type() != nil, n.Pos(), "missing type: %v", name) |
| name.SetTypecheck(1) |
| } |
| } |
| |
| // tcCall typechecks an OCALL node. |
| func tcCall(n *ir.CallExpr, top int) ir.Node { |
| Stmts(n.Init()) // imported rewritten f(g()) calls (#30907) |
| n.X = typecheck(n.X, ctxExpr|ctxType|ctxCallee) |
| |
| l := n.X |
| |
| if l.Op() == ir.ONAME && l.(*ir.Name).BuiltinOp != 0 { |
| l := l.(*ir.Name) |
| if n.IsDDD && l.BuiltinOp != ir.OAPPEND { |
| base.Errorf("invalid use of ... with builtin %v", l) |
| } |
| |
| // builtin: OLEN, OCAP, etc. |
| switch l.BuiltinOp { |
| default: |
| base.Fatalf("unknown builtin %v", l) |
| |
| case ir.OAPPEND, ir.ODELETE, ir.OMAKE, ir.OMAX, ir.OMIN, ir.OPRINT, ir.OPRINTN, ir.ORECOVER: |
| n.SetOp(l.BuiltinOp) |
| n.X = nil |
| n.SetTypecheck(0) // re-typechecking new op is OK, not a loop |
| return typecheck(n, top) |
| |
| case ir.OCAP, ir.OCLEAR, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.OPANIC, ir.OREAL, ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA: |
| typecheckargs(n) |
| fallthrough |
| case ir.ONEW, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF: |
| arg, ok := needOneArg(n, "%v", n.Op()) |
| if !ok { |
| n.SetType(nil) |
| return n |
| } |
| u := ir.NewUnaryExpr(n.Pos(), l.BuiltinOp, arg) |
| return typecheck(ir.InitExpr(n.Init(), u), top) // typecheckargs can add to old.Init |
| |
| case ir.OCOMPLEX, ir.OCOPY, ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING: |
| typecheckargs(n) |
| arg1, arg2, ok := needTwoArgs(n) |
| if !ok { |
| n.SetType(nil) |
| return n |
| } |
| b := ir.NewBinaryExpr(n.Pos(), l.BuiltinOp, arg1, arg2) |
| return typecheck(ir.InitExpr(n.Init(), b), top) // typecheckargs can add to old.Init |
| } |
| panic("unreachable") |
| } |
| |
| n.X = DefaultLit(n.X, nil) |
| l = n.X |
| if l.Op() == ir.OTYPE { |
| if n.IsDDD { |
| base.Fatalf("invalid use of ... in type conversion to %v", l.Type()) |
| } |
| |
| // pick off before type-checking arguments |
| arg, ok := needOneArg(n, "conversion to %v", l.Type()) |
| if !ok { |
| n.SetType(nil) |
| return n |
| } |
| |
| n := ir.NewConvExpr(n.Pos(), ir.OCONV, nil, arg) |
| n.SetType(l.Type()) |
| return tcConv(n) |
| } |
| |
| RewriteNonNameCall(n) |
| typecheckargs(n) |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| types.CheckSize(t) |
| |
| switch l.Op() { |
| case ir.ODOTINTER: |
| n.SetOp(ir.OCALLINTER) |
| |
| case ir.ODOTMETH: |
| l := l.(*ir.SelectorExpr) |
| n.SetOp(ir.OCALLMETH) |
| |
| // typecheckaste was used here but there wasn't enough |
| // information further down the call chain to know if we |
| // were testing a method receiver for unexported fields. |
| // It isn't necessary, so just do a sanity check. |
| tp := t.Recv().Type |
| |
| if l.X == nil || !types.Identical(l.X.Type(), tp) { |
| base.Fatalf("method receiver") |
| } |
| |
| default: |
| n.SetOp(ir.OCALLFUNC) |
| if t.Kind() != types.TFUNC { |
| if o := ir.Orig(l); o.Name() != nil && types.BuiltinPkg.Lookup(o.Sym().Name).Def != nil { |
| // be more specific when the non-function |
| // name matches a predeclared function |
| base.Errorf("cannot call non-function %L, declared at %s", |
| l, base.FmtPos(o.Name().Pos())) |
| } else { |
| base.Errorf("cannot call non-function %L", l) |
| } |
| n.SetType(nil) |
| return n |
| } |
| } |
| |
| typecheckaste(ir.OCALL, n.X, n.IsDDD, t.Params(), n.Args, func() string { return fmt.Sprintf("argument to %v", n.X) }) |
| FixVariadicCall(n) |
| FixMethodCall(n) |
| if t.NumResults() == 0 { |
| return n |
| } |
| if t.NumResults() == 1 { |
| n.SetType(l.Type().Results().Field(0).Type) |
| |
| if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME { |
| if sym := n.X.(*ir.Name).Sym(); types.IsRuntimePkg(sym.Pkg) && sym.Name == "getg" { |
| // Emit code for runtime.getg() directly instead of calling function. |
| // Most such rewrites (for example the similar one for math.Sqrt) should be done in walk, |
| // so that the ordering pass can make sure to preserve the semantics of the original code |
| // (in particular, the exact time of the function call) by introducing temporaries. |
| // In this case, we know getg() always returns the same result within a given function |
| // and we want to avoid the temporaries, so we do the rewrite earlier than is typical. |
| n.SetOp(ir.OGETG) |
| } |
| } |
| return n |
| } |
| |
| // multiple return |
| if top&(ctxMultiOK|ctxStmt) == 0 { |
| base.Errorf("multiple-value %v() in single-value context", l) |
| return n |
| } |
| |
| n.SetType(l.Type().Results()) |
| return n |
| } |
| |
| // tcAppend typechecks an OAPPEND node. |
| func tcAppend(n *ir.CallExpr) ir.Node { |
| typecheckargs(n) |
| args := n.Args |
| if len(args) == 0 { |
| base.Errorf("missing arguments to append") |
| n.SetType(nil) |
| return n |
| } |
| |
| t := args[0].Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| |
| n.SetType(t) |
| if !t.IsSlice() { |
| if ir.IsNil(args[0]) { |
| base.Errorf("first argument to append must be typed slice; have untyped nil") |
| n.SetType(nil) |
| return n |
| } |
| |
| base.Errorf("first argument to append must be slice; have %L", t) |
| n.SetType(nil) |
| return n |
| } |
| |
| if n.IsDDD { |
| if len(args) == 1 { |
| base.Errorf("cannot use ... on first argument to append") |
| n.SetType(nil) |
| return n |
| } |
| |
| if len(args) != 2 { |
| base.Errorf("too many arguments to append") |
| n.SetType(nil) |
| return n |
| } |
| |
| // AssignConv is of args[1] not required here, as the |
| // types of args[0] and args[1] don't need to match |
| // (They will both have an underlying type which are |
| // slices of identical base types, or be []byte and string.) |
| // See issue 53888. |
| return n |
| } |
| |
| as := args[1:] |
| for i, n := range as { |
| if n.Type() == nil { |
| continue |
| } |
| as[i] = AssignConv(n, t.Elem(), "append") |
| types.CheckSize(as[i].Type()) // ensure width is calculated for backend |
| } |
| return n |
| } |
| |
| // tcClear typechecks an OCLEAR node. |
| func tcClear(n *ir.UnaryExpr) ir.Node { |
| n.X = Expr(n.X) |
| n.X = DefaultLit(n.X, nil) |
| l := n.X |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| |
| switch { |
| case t.IsMap(), t.IsSlice(): |
| default: |
| base.Errorf("invalid operation: %v (argument must be a map or slice)", n) |
| n.SetType(nil) |
| return n |
| } |
| |
| return n |
| } |
| |
| // tcClose typechecks an OCLOSE node. |
| func tcClose(n *ir.UnaryExpr) ir.Node { |
| n.X = Expr(n.X) |
| n.X = DefaultLit(n.X, nil) |
| l := n.X |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| if !t.IsChan() { |
| base.Errorf("invalid operation: %v (non-chan type %v)", n, t) |
| n.SetType(nil) |
| return n |
| } |
| |
| if !t.ChanDir().CanSend() { |
| base.Errorf("invalid operation: %v (cannot close receive-only channel)", n) |
| n.SetType(nil) |
| return n |
| } |
| return n |
| } |
| |
| // tcComplex typechecks an OCOMPLEX node. |
| func tcComplex(n *ir.BinaryExpr) ir.Node { |
| l := Expr(n.X) |
| r := Expr(n.Y) |
| if l.Type() == nil || r.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| l, r = defaultlit2(l, r, false) |
| if l.Type() == nil || r.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| n.X = l |
| n.Y = r |
| |
| if !types.Identical(l.Type(), r.Type()) { |
| base.Errorf("invalid operation: %v (mismatched types %v and %v)", n, l.Type(), r.Type()) |
| n.SetType(nil) |
| return n |
| } |
| |
| var t *types.Type |
| switch l.Type().Kind() { |
| default: |
| base.Errorf("invalid operation: %v (arguments have type %v, expected floating-point)", n, l.Type()) |
| n.SetType(nil) |
| return n |
| |
| case types.TIDEAL: |
| t = types.UntypedComplex |
| |
| case types.TFLOAT32: |
| t = types.Types[types.TCOMPLEX64] |
| |
| case types.TFLOAT64: |
| t = types.Types[types.TCOMPLEX128] |
| } |
| n.SetType(t) |
| return n |
| } |
| |
| // tcCopy typechecks an OCOPY node. |
| func tcCopy(n *ir.BinaryExpr) ir.Node { |
| n.SetType(types.Types[types.TINT]) |
| n.X = Expr(n.X) |
| n.X = DefaultLit(n.X, nil) |
| n.Y = Expr(n.Y) |
| n.Y = DefaultLit(n.Y, nil) |
| if n.X.Type() == nil || n.Y.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| |
| // copy([]byte, string) |
| if n.X.Type().IsSlice() && n.Y.Type().IsString() { |
| if types.Identical(n.X.Type().Elem(), types.ByteType) { |
| return n |
| } |
| base.Errorf("arguments to copy have different element types: %L and string", n.X.Type()) |
| n.SetType(nil) |
| return n |
| } |
| |
| if !n.X.Type().IsSlice() || !n.Y.Type().IsSlice() { |
| if !n.X.Type().IsSlice() && !n.Y.Type().IsSlice() { |
| base.Errorf("arguments to copy must be slices; have %L, %L", n.X.Type(), n.Y.Type()) |
| } else if !n.X.Type().IsSlice() { |
| base.Errorf("first argument to copy should be slice; have %L", n.X.Type()) |
| } else { |
| base.Errorf("second argument to copy should be slice or string; have %L", n.Y.Type()) |
| } |
| n.SetType(nil) |
| return n |
| } |
| |
| if !types.Identical(n.X.Type().Elem(), n.Y.Type().Elem()) { |
| base.Errorf("arguments to copy have different element types: %L and %L", n.X.Type(), n.Y.Type()) |
| n.SetType(nil) |
| return n |
| } |
| return n |
| } |
| |
| // tcDelete typechecks an ODELETE node. |
| func tcDelete(n *ir.CallExpr) ir.Node { |
| typecheckargs(n) |
| args := n.Args |
| if len(args) == 0 { |
| base.Errorf("missing arguments to delete") |
| n.SetType(nil) |
| return n |
| } |
| |
| if len(args) == 1 { |
| base.Errorf("missing second (key) argument to delete") |
| n.SetType(nil) |
| return n |
| } |
| |
| if len(args) != 2 { |
| base.Errorf("too many arguments to delete") |
| n.SetType(nil) |
| return n |
| } |
| |
| l := args[0] |
| r := args[1] |
| if l.Type() != nil && !l.Type().IsMap() { |
| base.Errorf("first argument to delete must be map; have %L", l.Type()) |
| n.SetType(nil) |
| return n |
| } |
| |
| args[1] = AssignConv(r, l.Type().Key(), "delete") |
| return n |
| } |
| |
| // tcMake typechecks an OMAKE node. |
| func tcMake(n *ir.CallExpr) ir.Node { |
| args := n.Args |
| if len(args) == 0 { |
| base.Errorf("missing argument to make") |
| n.SetType(nil) |
| return n |
| } |
| |
| n.Args = nil |
| l := args[0] |
| l = typecheck(l, ctxType) |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| |
| i := 1 |
| var nn ir.Node |
| switch t.Kind() { |
| default: |
| base.Errorf("cannot make type %v", t) |
| n.SetType(nil) |
| return n |
| |
| case types.TSLICE: |
| if i >= len(args) { |
| base.Errorf("missing len argument to make(%v)", t) |
| n.SetType(nil) |
| return n |
| } |
| |
| l = args[i] |
| i++ |
| l = Expr(l) |
| var r ir.Node |
| if i < len(args) { |
| r = args[i] |
| i++ |
| r = Expr(r) |
| } |
| |
| if l.Type() == nil || (r != nil && r.Type() == nil) { |
| n.SetType(nil) |
| return n |
| } |
| if !checkmake(t, "len", &l) || r != nil && !checkmake(t, "cap", &r) { |
| n.SetType(nil) |
| return n |
| } |
| if ir.IsConst(l, constant.Int) && r != nil && ir.IsConst(r, constant.Int) && constant.Compare(l.Val(), token.GTR, r.Val()) { |
| base.Errorf("len larger than cap in make(%v)", t) |
| n.SetType(nil) |
| return n |
| } |
| nn = ir.NewMakeExpr(n.Pos(), ir.OMAKESLICE, l, r) |
| |
| case types.TMAP: |
| if i < len(args) { |
| l = args[i] |
| i++ |
| l = Expr(l) |
| l = DefaultLit(l, types.Types[types.TINT]) |
| if l.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| if !checkmake(t, "size", &l) { |
| n.SetType(nil) |
| return n |
| } |
| } else { |
| l = ir.NewInt(base.Pos, 0) |
| } |
| nn = ir.NewMakeExpr(n.Pos(), ir.OMAKEMAP, l, nil) |
| nn.SetEsc(n.Esc()) |
| |
| case types.TCHAN: |
| l = nil |
| if i < len(args) { |
| l = args[i] |
| i++ |
| l = Expr(l) |
| l = DefaultLit(l, types.Types[types.TINT]) |
| if l.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| if !checkmake(t, "buffer", &l) { |
| n.SetType(nil) |
| return n |
| } |
| } else { |
| l = ir.NewInt(base.Pos, 0) |
| } |
| nn = ir.NewMakeExpr(n.Pos(), ir.OMAKECHAN, l, nil) |
| } |
| |
| if i < len(args) { |
| base.Errorf("too many arguments to make(%v)", t) |
| n.SetType(nil) |
| return n |
| } |
| |
| nn.SetType(t) |
| return nn |
| } |
| |
| // tcMakeSliceCopy typechecks an OMAKESLICECOPY node. |
| func tcMakeSliceCopy(n *ir.MakeExpr) ir.Node { |
| // Errors here are Fatalf instead of Errorf because only the compiler |
| // can construct an OMAKESLICECOPY node. |
| // Components used in OMAKESCLICECOPY that are supplied by parsed source code |
| // have already been typechecked in OMAKE and OCOPY earlier. |
| t := n.Type() |
| |
| if t == nil { |
| base.Fatalf("no type specified for OMAKESLICECOPY") |
| } |
| |
| if !t.IsSlice() { |
| base.Fatalf("invalid type %v for OMAKESLICECOPY", n.Type()) |
| } |
| |
| if n.Len == nil { |
| base.Fatalf("missing len argument for OMAKESLICECOPY") |
| } |
| |
| if n.Cap == nil { |
| base.Fatalf("missing slice argument to copy for OMAKESLICECOPY") |
| } |
| |
| n.Len = Expr(n.Len) |
| n.Cap = Expr(n.Cap) |
| |
| n.Len = DefaultLit(n.Len, types.Types[types.TINT]) |
| |
| if !n.Len.Type().IsInteger() && n.Type().Kind() != types.TIDEAL { |
| base.Errorf("non-integer len argument in OMAKESLICECOPY") |
| } |
| |
| if ir.IsConst(n.Len, constant.Int) { |
| if ir.ConstOverflow(n.Len.Val(), types.Types[types.TINT]) { |
| base.Fatalf("len for OMAKESLICECOPY too large") |
| } |
| if constant.Sign(n.Len.Val()) < 0 { |
| base.Fatalf("len for OMAKESLICECOPY must be non-negative") |
| } |
| } |
| return n |
| } |
| |
| // tcNew typechecks an ONEW node. |
| func tcNew(n *ir.UnaryExpr) ir.Node { |
| if n.X == nil { |
| // Fatalf because the OCALL above checked for us, |
| // so this must be an internally-generated mistake. |
| base.Fatalf("missing argument to new") |
| } |
| l := n.X |
| l = typecheck(l, ctxType) |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| n.X = l |
| n.SetType(types.NewPtr(t)) |
| return n |
| } |
| |
| // tcPanic typechecks an OPANIC node. |
| func tcPanic(n *ir.UnaryExpr) ir.Node { |
| n.X = Expr(n.X) |
| n.X = AssignConv(n.X, types.Types[types.TINTER], "argument to panic") |
| if n.X.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| return n |
| } |
| |
| // tcPrint typechecks an OPRINT or OPRINTN node. |
| func tcPrint(n *ir.CallExpr) ir.Node { |
| typecheckargs(n) |
| ls := n.Args |
| for i1, n1 := range ls { |
| // Special case for print: int constant is int64, not int. |
| if ir.IsConst(n1, constant.Int) { |
| ls[i1] = DefaultLit(ls[i1], types.Types[types.TINT64]) |
| } else { |
| ls[i1] = DefaultLit(ls[i1], nil) |
| } |
| } |
| return n |
| } |
| |
| // tcMinMax typechecks an OMIN or OMAX node. |
| func tcMinMax(n *ir.CallExpr) ir.Node { |
| typecheckargs(n) |
| arg0 := n.Args[0] |
| for _, arg := range n.Args[1:] { |
| if !types.Identical(arg.Type(), arg0.Type()) { |
| base.FatalfAt(n.Pos(), "mismatched arguments: %L and %L", arg0, arg) |
| } |
| } |
| n.SetType(arg0.Type()) |
| return n |
| } |
| |
| // tcRealImag typechecks an OREAL or OIMAG node. |
| func tcRealImag(n *ir.UnaryExpr) ir.Node { |
| n.X = Expr(n.X) |
| l := n.X |
| t := l.Type() |
| if t == nil { |
| n.SetType(nil) |
| return n |
| } |
| |
| // Determine result type. |
| switch t.Kind() { |
| case types.TIDEAL: |
| n.SetType(types.UntypedFloat) |
| case types.TCOMPLEX64: |
| n.SetType(types.Types[types.TFLOAT32]) |
| case types.TCOMPLEX128: |
| n.SetType(types.Types[types.TFLOAT64]) |
| default: |
| base.Errorf("invalid argument %L for %v", l, n.Op()) |
| n.SetType(nil) |
| return n |
| } |
| return n |
| } |
| |
| // tcRecover typechecks an ORECOVER node. |
| func tcRecover(n *ir.CallExpr) ir.Node { |
| if len(n.Args) != 0 { |
| base.Errorf("too many arguments to recover") |
| n.SetType(nil) |
| return n |
| } |
| |
| n.SetType(types.Types[types.TINTER]) |
| return n |
| } |
| |
| // tcRecoverFP typechecks an ORECOVERFP node. |
| func tcRecoverFP(n *ir.CallExpr) ir.Node { |
| if len(n.Args) != 1 { |
| base.FatalfAt(n.Pos(), "wrong number of arguments: %v", n) |
| } |
| |
| n.Args[0] = Expr(n.Args[0]) |
| if !n.Args[0].Type().IsPtrShaped() { |
| base.FatalfAt(n.Pos(), "%L is not pointer shaped", n.Args[0]) |
| } |
| |
| n.SetType(types.Types[types.TINTER]) |
| return n |
| } |
| |
| // tcUnsafeAdd typechecks an OUNSAFEADD node. |
| func tcUnsafeAdd(n *ir.BinaryExpr) *ir.BinaryExpr { |
| n.X = AssignConv(Expr(n.X), types.Types[types.TUNSAFEPTR], "argument to unsafe.Add") |
| n.Y = DefaultLit(Expr(n.Y), types.Types[types.TINT]) |
| if n.X.Type() == nil || n.Y.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| if !n.Y.Type().IsInteger() { |
| n.SetType(nil) |
| return n |
| } |
| n.SetType(n.X.Type()) |
| return n |
| } |
| |
| // tcUnsafeSlice typechecks an OUNSAFESLICE node. |
| func tcUnsafeSlice(n *ir.BinaryExpr) *ir.BinaryExpr { |
| n.X = Expr(n.X) |
| n.Y = Expr(n.Y) |
| if n.X.Type() == nil || n.Y.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| t := n.X.Type() |
| if !t.IsPtr() { |
| base.Errorf("first argument to unsafe.Slice must be pointer; have %L", t) |
| } else if t.Elem().NotInHeap() { |
| // TODO(mdempsky): This can be relaxed, but should only affect the |
| // Go runtime itself. End users should only see not-in-heap |
| // types due to incomplete C structs in cgo, and those types don't |
| // have a meaningful size anyway. |
| base.Errorf("unsafe.Slice of incomplete (or unallocatable) type not allowed") |
| } |
| |
| if !checkunsafesliceorstring(n.Op(), &n.Y) { |
| n.SetType(nil) |
| return n |
| } |
| n.SetType(types.NewSlice(t.Elem())) |
| return n |
| } |
| |
| // tcUnsafeString typechecks an OUNSAFESTRING node. |
| func tcUnsafeString(n *ir.BinaryExpr) *ir.BinaryExpr { |
| n.X = Expr(n.X) |
| n.Y = Expr(n.Y) |
| if n.X.Type() == nil || n.Y.Type() == nil { |
| n.SetType(nil) |
| return n |
| } |
| t := n.X.Type() |
| if !t.IsPtr() || !types.Identical(t.Elem(), types.Types[types.TUINT8]) { |
| base.Errorf("first argument to unsafe.String must be *byte; have %L", t) |
| } |
| |
| if !checkunsafesliceorstring(n.Op(), &n.Y) { |
| n.SetType(nil) |
| return n |
| } |
| n.SetType(types.Types[types.TSTRING]) |
| return n |
| } |