blob: c97d60b9967cb481f5cc57800e2262de3d09f0a4 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssagen
import (
"fmt"
"internal/buildcfg"
"log"
"os"
"strings"
"cmd/compile/internal/abi"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/wasm"
)
// SymABIs records information provided by the assembler about symbol
// definition ABIs and reference ABIs.
type SymABIs struct {
defs map[string]obj.ABI
refs map[string]obj.ABISet
}
func NewSymABIs() *SymABIs {
return &SymABIs{
defs: make(map[string]obj.ABI),
refs: make(map[string]obj.ABISet),
}
}
// canonicalize returns the canonical name used for a linker symbol in
// s's maps. Symbols in this package may be written either as "".X or
// with the package's import path already in the symbol. This rewrites
// both to use the full path, which matches compiler-generated linker
// symbol names.
func (s *SymABIs) canonicalize(linksym string) string {
// If the symbol is already prefixed with "", rewrite it to start
// with LocalPkg.Prefix.
//
// TODO(mdempsky): Have cmd/asm stop writing out symbols like this.
if strings.HasPrefix(linksym, `"".`) {
return types.LocalPkg.Prefix + linksym[2:]
}
return linksym
}
// ReadSymABIs reads a symabis file that specifies definitions and
// references of text symbols by ABI.
//
// The symabis format is a set of lines, where each line is a sequence
// of whitespace-separated fields. The first field is a verb and is
// either "def" for defining a symbol ABI or "ref" for referencing a
// symbol using an ABI. For both "def" and "ref", the second field is
// the symbol name and the third field is the ABI name, as one of the
// named cmd/internal/obj.ABI constants.
func (s *SymABIs) ReadSymABIs(file string) {
data, err := os.ReadFile(file)
if err != nil {
log.Fatalf("-symabis: %v", err)
}
for lineNum, line := range strings.Split(string(data), "\n") {
lineNum++ // 1-based
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#") {
continue
}
parts := strings.Fields(line)
switch parts[0] {
case "def", "ref":
// Parse line.
if len(parts) != 3 {
log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
}
sym, abistr := parts[1], parts[2]
abi, valid := obj.ParseABI(abistr)
if !valid {
log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
}
sym = s.canonicalize(sym)
// Record for later.
if parts[0] == "def" {
s.defs[sym] = abi
} else {
s.refs[sym] |= obj.ABISetOf(abi)
}
default:
log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
}
}
}
// GenABIWrappers applies ABI information to Funcs and generates ABI
// wrapper functions where necessary.
func (s *SymABIs) GenABIWrappers() {
// For cgo exported symbols, we tell the linker to export the
// definition ABI to C. That also means that we don't want to
// create ABI wrappers even if there's a linkname.
//
// TODO(austin): Maybe we want to create the ABI wrappers, but
// ensure the linker exports the right ABI definition under
// the unmangled name?
cgoExports := make(map[string][]*[]string)
for i, prag := range typecheck.Target.CgoPragmas {
switch prag[0] {
case "cgo_export_static", "cgo_export_dynamic":
symName := s.canonicalize(prag[1])
pprag := &typecheck.Target.CgoPragmas[i]
cgoExports[symName] = append(cgoExports[symName], pprag)
}
}
// Apply ABI defs and refs to Funcs and generate wrappers.
//
// This may generate new decls for the wrappers, but we
// specifically *don't* want to visit those, lest we create
// wrappers for wrappers.
for _, fn := range typecheck.Target.Decls {
if fn.Op() != ir.ODCLFUNC {
continue
}
fn := fn.(*ir.Func)
nam := fn.Nname
if ir.IsBlank(nam) {
continue
}
sym := nam.Sym()
symName := sym.Linkname
if symName == "" {
symName = sym.Pkg.Prefix + "." + sym.Name
}
symName = s.canonicalize(symName)
// Apply definitions.
defABI, hasDefABI := s.defs[symName]
if hasDefABI {
if len(fn.Body) != 0 {
base.ErrorfAt(fn.Pos(), 0, "%v defined in both Go and assembly", fn)
}
fn.ABI = defABI
}
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
// CgoUnsafeArgs indicates the function (or its callee) uses
// offsets to dispatch arguments, which currently using ABI0
// frame layout. Pin it to ABI0.
fn.ABI = obj.ABI0
}
// If cgo-exported, add the definition ABI to the cgo
// pragmas.
cgoExport := cgoExports[symName]
for _, pprag := range cgoExport {
// The export pragmas have the form:
//
// cgo_export_* <local> [<remote>]
//
// If <remote> is omitted, it's the same as
// <local>.
//
// Expand to
//
// cgo_export_* <local> <remote> <ABI>
if len(*pprag) == 2 {
*pprag = append(*pprag, (*pprag)[1])
}
// Add the ABI argument.
*pprag = append(*pprag, fn.ABI.String())
}
// Apply references.
if abis, ok := s.refs[symName]; ok {
fn.ABIRefs |= abis
}
// Assume all functions are referenced at least as
// ABIInternal, since they may be referenced from
// other packages.
fn.ABIRefs.Set(obj.ABIInternal, true)
// If a symbol is defined in this package (either in
// Go or assembly) and given a linkname, it may be
// referenced from another package, so make it
// callable via any ABI. It's important that we know
// it's defined in this package since other packages
// may "pull" symbols using linkname and we don't want
// to create duplicate ABI wrappers.
//
// However, if it's given a linkname for exporting to
// C, then we don't make ABI wrappers because the cgo
// tool wants the original definition.
hasBody := len(fn.Body) != 0
if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
fn.ABIRefs |= obj.ABISetCallable
}
// Double check that cgo-exported symbols don't get
// any wrappers.
if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn)
}
if !buildcfg.Experiment.RegabiWrappers {
continue
}
forEachWrapperABI(fn, makeABIWrapper)
}
}
func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
if need == 0 {
return
}
for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
if !need.Get(wrapperABI) {
continue
}
cb(fn, wrapperABI)
}
}
// makeABIWrapper creates a new function that will be called with
// wrapperABI and calls "f" using f.ABI.
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
if base.Debug.ABIWrap != 0 {
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
}
// Q: is this needed?
savepos := base.Pos
savedclcontext := typecheck.DeclContext
savedcurfn := ir.CurFunc
base.Pos = base.AutogeneratedPos
typecheck.DeclContext = ir.PEXTERN
// At the moment we don't support wrapping a method, we'd need machinery
// below to handle the receiver. Panic if we see this scenario.
ft := f.Nname.Type()
if ft.NumRecvs() != 0 {
base.ErrorfAt(f.Pos(), 0, "makeABIWrapper support for wrapping methods not implemented")
return
}
// Reuse f's types.Sym to create a new ODCLFUNC/function.
fn := typecheck.DeclFunc(f.Nname.Sym(), nil,
typecheck.NewFuncParams(ft.Params(), true),
typecheck.NewFuncParams(ft.Results(), false))
fn.ABI = wrapperABI
fn.SetABIWrapper(true)
fn.SetDupok(true)
// ABI0-to-ABIInternal wrappers will be mainly loading params from
// stack into registers (and/or storing stack locations back to
// registers after the wrapped call); in most cases they won't
// need to allocate stack space, so it should be OK to mark them
// as NOSPLIT in these cases. In addition, my assumption is that
// functions written in assembly are NOSPLIT in most (but not all)
// cases. In the case of an ABIInternal target that has too many
// parameters to fit into registers, the wrapper would need to
// allocate stack space, but this seems like an unlikely scenario.
// Hence: mark these wrappers NOSPLIT.
//
// ABIInternal-to-ABI0 wrappers on the other hand will be taking
// things in registers and pushing them onto the stack prior to
// the ABI0 call, meaning that they will always need to allocate
// stack space. If the compiler marks them as NOSPLIT this seems
// as though it could lead to situations where the linker's
// nosplit-overflow analysis would trigger a link failure. On the
// other hand if they not tagged NOSPLIT then this could cause
// problems when building the runtime (since there may be calls to
// asm routine in cases where it's not safe to grow the stack). In
// most cases the wrapper would be (in effect) inlined, but are
// there (perhaps) indirect calls from the runtime that could run
// into trouble here.
// FIXME: at the moment all.bash does not pass when I leave out
// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
fn.Pragma |= ir.Nosplit
// Generate call. Use tail call if no params and no returns,
// but a regular call otherwise.
//
// Note: ideally we would be using a tail call in cases where
// there are params but no returns for ABI0->ABIInternal wrappers,
// provided that all params fit into registers (e.g. we don't have
// to allocate any stack space). Doing this will require some
// extra work in typecheck/walk/ssa, might want to add a new node
// OTAILCALL or something to this effect.
tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0
if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
// cannot tailcall on PPC64 with dynamic linking, as we need
// to restore R2 after call.
tailcall = false
}
if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
// cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
// to special registers (X15) when returning to ABIInternal.
tailcall = false
}
var tail ir.Node
call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
call.Args = ir.ParamNames(fn.Type())
call.IsDDD = fn.Type().IsVariadic()
tail = call
if tailcall {
tail = ir.NewTailCallStmt(base.Pos, call)
} else if fn.Type().NumResults() > 0 {
n := ir.NewReturnStmt(base.Pos, nil)
n.Results = []ir.Node{call}
tail = n
}
fn.Body.Append(tail)
typecheck.FinishFuncBody()
typecheck.Func(fn)
ir.CurFunc = fn
typecheck.Stmts(fn.Body)
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
// Restore previous context.
base.Pos = savepos
typecheck.DeclContext = savedclcontext
ir.CurFunc = savedcurfn
}
// CreateWasmImportWrapper creates a wrapper for imported WASM functions to
// adapt them to the Go calling convention. The body for this function is
// generated in cmd/internal/obj/wasm/wasmobj.go
func CreateWasmImportWrapper(fn *ir.Func) bool {
if fn.WasmImport == nil {
return false
}
if buildcfg.GOARCH != "wasm" {
base.FatalfAt(fn.Pos(), "CreateWasmImportWrapper call not supported on %s: func was %v", buildcfg.GOARCH, fn)
}
ir.InitLSym(fn, true)
setupWasmABI(fn)
pp := objw.NewProgs(fn, 0)
defer pp.Free()
pp.Text.To.Type = obj.TYPE_TEXTSIZE
pp.Text.To.Val = int32(types.RoundUp(fn.Type().ArgWidth(), int64(types.RegSize)))
// Wrapper functions never need their own stack frame
pp.Text.To.Offset = 0
pp.Flush()
return true
}
func paramsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField {
wfs := make([]obj.WasmField, len(abiParams))
for i, p := range abiParams {
t := p.Type
switch t.Kind() {
case types.TINT32, types.TUINT32:
wfs[i].Type = obj.WasmI32
case types.TINT64, types.TUINT64:
wfs[i].Type = obj.WasmI64
case types.TFLOAT32:
wfs[i].Type = obj.WasmF32
case types.TFLOAT64:
wfs[i].Type = obj.WasmF64
case types.TUNSAFEPTR:
wfs[i].Type = obj.WasmPtr
default:
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported parameter type %s", f.WasmImport.Module, f.WasmImport.Name, t.String())
}
wfs[i].Offset = p.FrameOffset(result)
}
return wfs
}
func resultsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField {
if len(abiParams) > 1 {
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: too many return values", f.WasmImport.Module, f.WasmImport.Name)
return nil
}
wfs := make([]obj.WasmField, len(abiParams))
for i, p := range abiParams {
t := p.Type
switch t.Kind() {
case types.TINT32, types.TUINT32:
wfs[i].Type = obj.WasmI32
case types.TINT64, types.TUINT64:
wfs[i].Type = obj.WasmI64
case types.TFLOAT32:
wfs[i].Type = obj.WasmF32
case types.TFLOAT64:
wfs[i].Type = obj.WasmF64
default:
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported result type %s", f.WasmImport.Module, f.WasmImport.Name, t.String())
}
wfs[i].Offset = p.FrameOffset(result)
}
return wfs
}
// setupTextLSym initializes the LSym for a with-body text symbol.
func setupWasmABI(f *ir.Func) {
wi := obj.WasmImport{
Module: f.WasmImport.Module,
Name: f.WasmImport.Name,
}
if wi.Module == wasm.GojsModule {
// Functions that are imported from the "gojs" module use a special
// ABI that just accepts the stack pointer.
// Example:
//
// //go:wasmimport gojs add
// func importedAdd(a, b uint) uint
//
// will roughly become
//
// (import "gojs" "add" (func (param i32)))
wi.Params = []obj.WasmField{{Type: obj.WasmI32}}
} else {
// All other imported functions use the normal WASM ABI.
// Example:
//
// //go:wasmimport a_module add
// func importedAdd(a, b uint) uint
//
// will roughly become
//
// (import "a_module" "add" (func (param i32 i32) (result i32)))
abiConfig := AbiForBodylessFuncStackMap(f)
abiInfo := abiConfig.ABIAnalyzeFuncType(f.Type().FuncType())
wi.Params = paramsToWasmFields(f, abiInfo, abiInfo.InParams())
wi.Results = resultsToWasmFields(f, abiInfo, abiInfo.OutParams())
}
f.LSym.Func().WasmImport = &wi
}