| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| // |
| // The inlining facility makes 2 passes: first CanInline determines which |
| // functions are suitable for inlining, and for those that are it |
| // saves a copy of the body. Then InlineCalls walks each function body to |
| // expand calls to inlinable functions. |
| // |
| // The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1, |
| // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and |
| // are not supported. |
| // 0: disabled |
| // 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) |
| // 2: (unassigned) |
| // 3: (unassigned) |
| // 4: allow non-leaf functions |
| // |
| // At some point this may get another default and become switch-offable with -N. |
| // |
| // The -d typcheckinl flag enables early typechecking of all imported bodies, |
| // which is useful to flush out bugs. |
| // |
| // The Debug.m flag enables diagnostic output. a single -m is useful for verifying |
| // which calls get inlined or not, more is for debugging, and may go away at any point. |
| |
| package inline |
| |
| import ( |
| "fmt" |
| "go/constant" |
| "sort" |
| "strconv" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/logopt" |
| "cmd/compile/internal/pgo" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| ) |
| |
| // Inlining budget parameters, gathered in one place |
| const ( |
| inlineMaxBudget = 80 |
| inlineExtraAppendCost = 0 |
| // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. |
| inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 |
| inlineExtraPanicCost = 1 // do not penalize inlining panics. |
| inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. |
| |
| inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". |
| inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. |
| ) |
| |
| var ( |
| // List of all hot callee nodes. |
| // TODO(prattmic): Make this non-global. |
| candHotCalleeMap = make(map[*pgo.IRNode]struct{}) |
| |
| // List of all hot call sites. CallSiteInfo.Callee is always nil. |
| // TODO(prattmic): Make this non-global. |
| candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{}) |
| |
| // Threshold in percentage for hot callsite inlining. |
| inlineHotCallSiteThresholdPercent float64 |
| |
| // Threshold in CDF percentage for hot callsite inlining, |
| // that is, for a threshold of X the hottest callsites that |
| // make up the top X% of total edge weight will be |
| // considered hot for inlining candidates. |
| inlineCDFHotCallSiteThresholdPercent = float64(99) |
| |
| // Budget increased due to hotness. |
| inlineHotMaxBudget int32 = 2000 |
| ) |
| |
| // pgoInlinePrologue records the hot callsites from ir-graph. |
| func pgoInlinePrologue(p *pgo.Profile, decls []ir.Node) { |
| if base.Debug.PGOInlineCDFThreshold != "" { |
| if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 { |
| inlineCDFHotCallSiteThresholdPercent = s |
| } else { |
| base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100") |
| } |
| } |
| var hotCallsites []pgo.NodeMapKey |
| inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p) |
| if base.Debug.PGODebug > 0 { |
| fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent) |
| } |
| |
| if x := base.Debug.PGOInlineBudget; x != 0 { |
| inlineHotMaxBudget = int32(x) |
| } |
| |
| for _, n := range hotCallsites { |
| // mark inlineable callees from hot edges |
| if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil { |
| candHotCalleeMap[callee] = struct{}{} |
| } |
| // mark hot call sites |
| if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil { |
| csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST} |
| candHotEdgeMap[csi] = struct{}{} |
| } |
| } |
| |
| if base.Debug.PGODebug >= 3 { |
| fmt.Printf("hot-cg before inline in dot format:") |
| p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent) |
| } |
| } |
| |
| // hotNodesFromCDF computes an edge weight threshold and the list of hot |
| // nodes that make up the given percentage of the CDF. The threshold, as |
| // a percent, is the lower bound of weight for nodes to be considered hot |
| // (currently only used in debug prints) (in case of equal weights, |
| // comparing with the threshold may not accurately reflect which nodes are |
| // considiered hot). |
| func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NodeMapKey) { |
| nodes := make([]pgo.NodeMapKey, len(p.NodeMap)) |
| i := 0 |
| for n := range p.NodeMap { |
| nodes[i] = n |
| i++ |
| } |
| sort.Slice(nodes, func(i, j int) bool { |
| ni, nj := nodes[i], nodes[j] |
| if wi, wj := p.NodeMap[ni].EWeight, p.NodeMap[nj].EWeight; wi != wj { |
| return wi > wj // want larger weight first |
| } |
| // same weight, order by name/line number |
| if ni.CallerName != nj.CallerName { |
| return ni.CallerName < nj.CallerName |
| } |
| if ni.CalleeName != nj.CalleeName { |
| return ni.CalleeName < nj.CalleeName |
| } |
| return ni.CallSiteOffset < nj.CallSiteOffset |
| }) |
| cum := int64(0) |
| for i, n := range nodes { |
| w := p.NodeMap[n].EWeight |
| cum += w |
| if pgo.WeightInPercentage(cum, p.TotalEdgeWeight) > inlineCDFHotCallSiteThresholdPercent { |
| // nodes[:i+1] to include the very last node that makes it to go over the threshold. |
| // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to |
| // include that node instead of excluding it.) |
| return pgo.WeightInPercentage(w, p.TotalEdgeWeight), nodes[:i+1] |
| } |
| } |
| return 0, nodes |
| } |
| |
| // InlinePackage finds functions that can be inlined and clones them before walk expands them. |
| func InlinePackage(p *pgo.Profile) { |
| if base.Debug.PGOInline == 0 { |
| p = nil |
| } |
| |
| InlineDecls(p, typecheck.Target.Decls, true) |
| |
| // Perform a garbage collection of hidden closures functions that |
| // are no longer reachable from top-level functions following |
| // inlining. See #59404 and #59638 for more context. |
| garbageCollectUnreferencedHiddenClosures() |
| } |
| |
| // InlineDecls applies inlining to the given batch of declarations. |
| func InlineDecls(p *pgo.Profile, decls []ir.Node, doInline bool) { |
| if p != nil { |
| pgoInlinePrologue(p, decls) |
| } |
| |
| doCanInline := func(n *ir.Func, recursive bool, numfns int) { |
| if !recursive || numfns > 1 { |
| // We allow inlining if there is no |
| // recursion, or the recursion cycle is |
| // across more than one function. |
| CanInline(n, p) |
| } else { |
| if base.Flag.LowerM > 1 && n.OClosure == nil { |
| fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname) |
| } |
| } |
| } |
| |
| ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) { |
| numfns := numNonClosures(list) |
| // We visit functions within an SCC in fairly arbitrary order, |
| // so by computing inlinability for all functions in the SCC |
| // before performing any inlining, the results are less |
| // sensitive to the order within the SCC (see #58905 for an |
| // example). |
| |
| // First compute inlinability for all functions in the SCC ... |
| for _, n := range list { |
| doCanInline(n, recursive, numfns) |
| } |
| // ... then make a second pass to do inlining of calls. |
| if doInline { |
| for _, n := range list { |
| InlineCalls(n, p) |
| } |
| } |
| }) |
| } |
| |
| // garbageCollectUnreferencedHiddenClosures makes a pass over all the |
| // top-level (non-hidden-closure) functions looking for nested closure |
| // functions that are reachable, then sweeps through the Target.Decls |
| // list and marks any non-reachable hidden closure function as dead. |
| // See issues #59404 and #59638 for more context. |
| func garbageCollectUnreferencedHiddenClosures() { |
| |
| liveFuncs := make(map[*ir.Func]bool) |
| |
| var markLiveFuncs func(fn *ir.Func) |
| markLiveFuncs = func(fn *ir.Func) { |
| if liveFuncs[fn] { |
| return |
| } |
| liveFuncs[fn] = true |
| ir.Visit(fn, func(n ir.Node) { |
| if clo, ok := n.(*ir.ClosureExpr); ok { |
| markLiveFuncs(clo.Func) |
| } |
| }) |
| } |
| |
| for i := 0; i < len(typecheck.Target.Decls); i++ { |
| if fn, ok := typecheck.Target.Decls[i].(*ir.Func); ok { |
| if fn.IsHiddenClosure() { |
| continue |
| } |
| markLiveFuncs(fn) |
| } |
| } |
| |
| for i := 0; i < len(typecheck.Target.Decls); i++ { |
| if fn, ok := typecheck.Target.Decls[i].(*ir.Func); ok { |
| if !fn.IsHiddenClosure() { |
| continue |
| } |
| if fn.IsDeadcodeClosure() { |
| continue |
| } |
| if liveFuncs[fn] { |
| continue |
| } |
| fn.SetIsDeadcodeClosure(true) |
| if base.Flag.LowerM > 2 { |
| fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn) |
| } |
| if fn.Inl != nil && fn.LSym == nil { |
| ir.InitLSym(fn, true) |
| } |
| } |
| } |
| } |
| |
| // CanInline determines whether fn is inlineable. |
| // If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl. |
| // fn and fn.Body will already have been typechecked. |
| func CanInline(fn *ir.Func, profile *pgo.Profile) { |
| if fn.Nname == nil { |
| base.Fatalf("CanInline no nname %+v", fn) |
| } |
| |
| var reason string // reason, if any, that the function was not inlined |
| if base.Flag.LowerM > 1 || logopt.Enabled() { |
| defer func() { |
| if reason != "" { |
| if base.Flag.LowerM > 1 { |
| fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason) |
| } |
| if logopt.Enabled() { |
| logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason) |
| } |
| } |
| }() |
| } |
| |
| reason = InlineImpossible(fn) |
| if reason != "" { |
| return |
| } |
| if fn.Typecheck() == 0 { |
| base.Fatalf("CanInline on non-typechecked function %v", fn) |
| } |
| |
| n := fn.Nname |
| if n.Func.InlinabilityChecked() { |
| return |
| } |
| defer n.Func.SetInlinabilityChecked(true) |
| |
| cc := int32(inlineExtraCallCost) |
| if base.Flag.LowerL == 4 { |
| cc = 1 // this appears to yield better performance than 0. |
| } |
| |
| // Update the budget for profile-guided inlining. |
| budget := int32(inlineMaxBudget) |
| if profile != nil { |
| if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok { |
| if _, ok := candHotCalleeMap[n]; ok { |
| budget = int32(inlineHotMaxBudget) |
| if base.Debug.PGODebug > 0 { |
| fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn)) |
| } |
| } |
| } |
| } |
| |
| // At this point in the game the function we're looking at may |
| // have "stale" autos, vars that still appear in the Dcl list, but |
| // which no longer have any uses in the function body (due to |
| // elimination by deadcode). We'd like to exclude these dead vars |
| // when creating the "Inline.Dcl" field below; to accomplish this, |
| // the hairyVisitor below builds up a map of used/referenced |
| // locals, and we use this map to produce a pruned Inline.Dcl |
| // list. See issue 25249 for more context. |
| |
| visitor := hairyVisitor{ |
| curFunc: fn, |
| budget: budget, |
| maxBudget: budget, |
| extraCallCost: cc, |
| profile: profile, |
| } |
| if visitor.tooHairy(fn) { |
| reason = visitor.reason |
| return |
| } |
| |
| n.Func.Inl = &ir.Inline{ |
| Cost: budget - visitor.budget, |
| Dcl: pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor), |
| Body: inlcopylist(fn.Body), |
| |
| CanDelayResults: canDelayResults(fn), |
| } |
| |
| if base.Flag.LowerM > 1 { |
| fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, budget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body)) |
| } else if base.Flag.LowerM != 0 { |
| fmt.Printf("%v: can inline %v\n", ir.Line(fn), n) |
| } |
| if logopt.Enabled() { |
| logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", budget-visitor.budget)) |
| } |
| } |
| |
| // InlineImpossible returns a non-empty reason string if fn is impossible to |
| // inline regardless of cost or contents. |
| func InlineImpossible(fn *ir.Func) string { |
| var reason string // reason, if any, that the function can not be inlined. |
| if fn.Nname == nil { |
| reason = "no name" |
| return reason |
| } |
| |
| // If marked "go:noinline", don't inline. |
| if fn.Pragma&ir.Noinline != 0 { |
| reason = "marked go:noinline" |
| return reason |
| } |
| |
| // If marked "go:norace" and -race compilation, don't inline. |
| if base.Flag.Race && fn.Pragma&ir.Norace != 0 { |
| reason = "marked go:norace with -race compilation" |
| return reason |
| } |
| |
| // If marked "go:nocheckptr" and -d checkptr compilation, don't inline. |
| if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 { |
| reason = "marked go:nocheckptr" |
| return reason |
| } |
| |
| // If marked "go:cgo_unsafe_args", don't inline, since the function |
| // makes assumptions about its argument frame layout. |
| if fn.Pragma&ir.CgoUnsafeArgs != 0 { |
| reason = "marked go:cgo_unsafe_args" |
| return reason |
| } |
| |
| // If marked as "go:uintptrkeepalive", don't inline, since the keep |
| // alive information is lost during inlining. |
| // |
| // TODO(prattmic): This is handled on calls during escape analysis, |
| // which is after inlining. Move prior to inlining so the keep-alive is |
| // maintained after inlining. |
| if fn.Pragma&ir.UintptrKeepAlive != 0 { |
| reason = "marked as having a keep-alive uintptr argument" |
| return reason |
| } |
| |
| // If marked as "go:uintptrescapes", don't inline, since the escape |
| // information is lost during inlining. |
| if fn.Pragma&ir.UintptrEscapes != 0 { |
| reason = "marked as having an escaping uintptr argument" |
| return reason |
| } |
| |
| // The nowritebarrierrec checker currently works at function |
| // granularity, so inlining yeswritebarrierrec functions can confuse it |
| // (#22342). As a workaround, disallow inlining them for now. |
| if fn.Pragma&ir.Yeswritebarrierrec != 0 { |
| reason = "marked go:yeswritebarrierrec" |
| return reason |
| } |
| |
| // If a local function has no fn.Body (is defined outside of Go), cannot inline it. |
| // Imported functions don't have fn.Body but might have inline body in fn.Inl. |
| if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) { |
| reason = "no function body" |
| return reason |
| } |
| |
| // If fn is synthetic hash or eq function, cannot inline it. |
| // The function is not generated in Unified IR frontend at this moment. |
| if ir.IsEqOrHashFunc(fn) { |
| reason = "type eq/hash function" |
| return reason |
| } |
| |
| return "" |
| } |
| |
| // canDelayResults reports whether inlined calls to fn can delay |
| // declaring the result parameter until the "return" statement. |
| func canDelayResults(fn *ir.Func) bool { |
| // We can delay declaring+initializing result parameters if: |
| // (1) there's exactly one "return" statement in the inlined function; |
| // (2) it's not an empty return statement (#44355); and |
| // (3) the result parameters aren't named. |
| |
| nreturns := 0 |
| ir.VisitList(fn.Body, func(n ir.Node) { |
| if n, ok := n.(*ir.ReturnStmt); ok { |
| nreturns++ |
| if len(n.Results) == 0 { |
| nreturns++ // empty return statement (case 2) |
| } |
| } |
| }) |
| |
| if nreturns != 1 { |
| return false // not exactly one return statement (case 1) |
| } |
| |
| // temporaries for return values. |
| for _, param := range fn.Type().Results().FieldSlice() { |
| if sym := types.OrigSym(param.Sym); sym != nil && !sym.IsBlank() { |
| return false // found a named result parameter (case 3) |
| } |
| } |
| |
| return true |
| } |
| |
| // hairyVisitor visits a function body to determine its inlining |
| // hairiness and whether or not it can be inlined. |
| type hairyVisitor struct { |
| // This is needed to access the current caller in the doNode function. |
| curFunc *ir.Func |
| budget int32 |
| maxBudget int32 |
| reason string |
| extraCallCost int32 |
| usedLocals ir.NameSet |
| do func(ir.Node) bool |
| profile *pgo.Profile |
| } |
| |
| func (v *hairyVisitor) tooHairy(fn *ir.Func) bool { |
| v.do = v.doNode // cache closure |
| if ir.DoChildren(fn, v.do) { |
| return true |
| } |
| if v.budget < 0 { |
| v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget) |
| return true |
| } |
| return false |
| } |
| |
| // doNode visits n and its children, updates the state in v, and returns true if |
| // n makes the current function too hairy for inlining. |
| func (v *hairyVisitor) doNode(n ir.Node) bool { |
| if n == nil { |
| return false |
| } |
| switch n.Op() { |
| // Call is okay if inlinable and we have the budget for the body. |
| case ir.OCALLFUNC: |
| n := n.(*ir.CallExpr) |
| // Functions that call runtime.getcaller{pc,sp} can not be inlined |
| // because getcaller{pc,sp} expect a pointer to the caller's first argument. |
| // |
| // runtime.throw is a "cheap call" like panic in normal code. |
| var cheap bool |
| if n.X.Op() == ir.ONAME { |
| name := n.X.(*ir.Name) |
| if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) { |
| fn := name.Sym().Name |
| if fn == "getcallerpc" || fn == "getcallersp" { |
| v.reason = "call to " + fn |
| return true |
| } |
| if fn == "throw" { |
| v.budget -= inlineExtraThrowCost |
| break |
| } |
| } |
| // Special case for reflect.noescpae. It does just type |
| // conversions to appease the escape analysis, and doesn't |
| // generate code. |
| if name.Class == ir.PFUNC && types.IsReflectPkg(name.Sym().Pkg) { |
| if name.Sym().Name == "noescape" { |
| cheap = true |
| } |
| } |
| // Special case for coverage counter updates; although |
| // these correspond to real operations, we treat them as |
| // zero cost for the moment. This is due to the existence |
| // of tests that are sensitive to inlining-- if the |
| // insertion of coverage instrumentation happens to tip a |
| // given function over the threshold and move it from |
| // "inlinable" to "not-inlinable", this can cause changes |
| // in allocation behavior, which can then result in test |
| // failures (a good example is the TestAllocations in |
| // crypto/ed25519). |
| if isAtomicCoverageCounterUpdate(n) { |
| return false |
| } |
| } |
| if n.X.Op() == ir.OMETHEXPR { |
| if meth := ir.MethodExprName(n.X); meth != nil { |
| if fn := meth.Func; fn != nil { |
| s := fn.Sym() |
| if types.IsRuntimePkg(s.Pkg) && s.Name == "heapBits.nextArena" { |
| // Special case: explicitly allow mid-stack inlining of |
| // runtime.heapBits.next even though it calls slow-path |
| // runtime.heapBits.nextArena. |
| cheap = true |
| } |
| // Special case: on architectures that can do unaligned loads, |
| // explicitly mark encoding/binary methods as cheap, |
| // because in practice they are, even though our inlining |
| // budgeting system does not see that. See issue 42958. |
| if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" { |
| switch s.Name { |
| case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16", |
| "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16", |
| "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16", |
| "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16", |
| "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16", |
| "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16": |
| cheap = true |
| } |
| } |
| } |
| } |
| } |
| if cheap { |
| break // treat like any other node, that is, cost of 1 |
| } |
| |
| // Determine if the callee edge is for an inlinable hot callee or not. |
| if v.profile != nil && v.curFunc != nil { |
| if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) { |
| lineOffset := pgo.NodeLineOffset(n, fn) |
| csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: v.curFunc} |
| if _, o := candHotEdgeMap[csi]; o { |
| if base.Debug.PGODebug > 0 { |
| fmt.Printf("hot-callsite identified at line=%v for func=%v\n", ir.Line(n), ir.PkgFuncName(v.curFunc)) |
| } |
| } |
| } |
| } |
| |
| if ir.IsIntrinsicCall(n) { |
| // Treat like any other node. |
| break |
| } |
| |
| if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) { |
| v.budget -= fn.Inl.Cost |
| break |
| } |
| |
| // Call cost for non-leaf inlining. |
| v.budget -= v.extraCallCost |
| |
| case ir.OCALLMETH: |
| base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") |
| |
| // Things that are too hairy, irrespective of the budget |
| case ir.OCALL, ir.OCALLINTER: |
| // Call cost for non-leaf inlining. |
| v.budget -= v.extraCallCost |
| |
| case ir.OPANIC: |
| n := n.(*ir.UnaryExpr) |
| if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() { |
| // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining. |
| // Before CL 284412, these conversions were introduced later in the |
| // compiler, so they didn't count against inlining budget. |
| v.budget++ |
| } |
| v.budget -= inlineExtraPanicCost |
| |
| case ir.ORECOVER: |
| // recover matches the argument frame pointer to find |
| // the right panic value, so it needs an argument frame. |
| v.reason = "call to recover" |
| return true |
| |
| case ir.OCLOSURE: |
| if base.Debug.InlFuncsWithClosures == 0 { |
| v.reason = "not inlining functions with closures" |
| return true |
| } |
| |
| // TODO(danscales): Maybe make budget proportional to number of closure |
| // variables, e.g.: |
| //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3) |
| // TODO(austin): However, if we're able to inline this closure into |
| // v.curFunc, then we actually pay nothing for the closure captures. We |
| // should try to account for that if we're going to account for captures. |
| v.budget -= 15 |
| |
| case ir.OGO, |
| ir.ODEFER, |
| ir.ODCLTYPE, // can't print yet |
| ir.OTAILCALL: |
| v.reason = "unhandled op " + n.Op().String() |
| return true |
| |
| case ir.OAPPEND: |
| v.budget -= inlineExtraAppendCost |
| |
| case ir.OADDR: |
| n := n.(*ir.AddrExpr) |
| // Make "&s.f" cost 0 when f's offset is zero. |
| if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) { |
| if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 { |
| v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR |
| } |
| } |
| |
| case ir.ODEREF: |
| // *(*X)(unsafe.Pointer(&x)) is low-cost |
| n := n.(*ir.StarExpr) |
| |
| ptr := n.X |
| for ptr.Op() == ir.OCONVNOP { |
| ptr = ptr.(*ir.ConvExpr).X |
| } |
| if ptr.Op() == ir.OADDR { |
| v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR |
| } |
| |
| case ir.OCONVNOP: |
| // This doesn't produce code, but the children might. |
| v.budget++ // undo default cost |
| |
| case ir.ODCLCONST, ir.OFALL, ir.OTYPE: |
| // These nodes don't produce code; omit from inlining budget. |
| return false |
| |
| case ir.OIF: |
| n := n.(*ir.IfStmt) |
| if ir.IsConst(n.Cond, constant.Bool) { |
| // This if and the condition cost nothing. |
| if doList(n.Init(), v.do) { |
| return true |
| } |
| if ir.BoolVal(n.Cond) { |
| return doList(n.Body, v.do) |
| } else { |
| return doList(n.Else, v.do) |
| } |
| } |
| |
| case ir.ONAME: |
| n := n.(*ir.Name) |
| if n.Class == ir.PAUTO { |
| v.usedLocals.Add(n) |
| } |
| |
| case ir.OBLOCK: |
| // The only OBLOCK we should see at this point is an empty one. |
| // In any event, let the visitList(n.List()) below take care of the statements, |
| // and don't charge for the OBLOCK itself. The ++ undoes the -- below. |
| v.budget++ |
| |
| case ir.OMETHVALUE, ir.OSLICELIT: |
| v.budget-- // Hack for toolstash -cmp. |
| |
| case ir.OMETHEXPR: |
| v.budget++ // Hack for toolstash -cmp. |
| |
| case ir.OAS2: |
| n := n.(*ir.AssignListStmt) |
| |
| // Unified IR unconditionally rewrites: |
| // |
| // a, b = f() |
| // |
| // into: |
| // |
| // DCL tmp1 |
| // DCL tmp2 |
| // tmp1, tmp2 = f() |
| // a, b = tmp1, tmp2 |
| // |
| // so that it can insert implicit conversions as necessary. To |
| // minimize impact to the existing inlining heuristics (in |
| // particular, to avoid breaking the existing inlinability regress |
| // tests), we need to compensate for this here. |
| // |
| // See also identical logic in isBigFunc. |
| if init := n.Rhs[0].Init(); len(init) == 1 { |
| if _, ok := init[0].(*ir.AssignListStmt); ok { |
| // 4 for each value, because each temporary variable now |
| // appears 3 times (DCL, LHS, RHS), plus an extra DCL node. |
| // |
| // 1 for the extra "tmp1, tmp2 = f()" assignment statement. |
| v.budget += 4*int32(len(n.Lhs)) + 1 |
| } |
| } |
| |
| case ir.OAS: |
| // Special case for coverage counter updates and coverage |
| // function registrations. Although these correspond to real |
| // operations, we treat them as zero cost for the moment. This |
| // is primarily due to the existence of tests that are |
| // sensitive to inlining-- if the insertion of coverage |
| // instrumentation happens to tip a given function over the |
| // threshold and move it from "inlinable" to "not-inlinable", |
| // this can cause changes in allocation behavior, which can |
| // then result in test failures (a good example is the |
| // TestAllocations in crypto/ed25519). |
| n := n.(*ir.AssignStmt) |
| if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) { |
| return false |
| } |
| } |
| |
| v.budget-- |
| |
| // When debugging, don't stop early, to get full cost of inlining this function |
| if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() { |
| v.reason = "too expensive" |
| return true |
| } |
| |
| return ir.DoChildren(n, v.do) |
| } |
| |
| func isBigFunc(fn *ir.Func) bool { |
| budget := inlineBigFunctionNodes |
| return ir.Any(fn, func(n ir.Node) bool { |
| // See logic in hairyVisitor.doNode, explaining unified IR's |
| // handling of "a, b = f()" assignments. |
| if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 { |
| if init := n.Rhs[0].Init(); len(init) == 1 { |
| if _, ok := init[0].(*ir.AssignListStmt); ok { |
| budget += 4*len(n.Lhs) + 1 |
| } |
| } |
| } |
| |
| budget-- |
| return budget <= 0 |
| }) |
| } |
| |
| // inlcopylist (together with inlcopy) recursively copies a list of nodes, except |
| // that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying |
| // the body and dcls of an inlineable function. |
| func inlcopylist(ll []ir.Node) []ir.Node { |
| s := make([]ir.Node, len(ll)) |
| for i, n := range ll { |
| s[i] = inlcopy(n) |
| } |
| return s |
| } |
| |
| // inlcopy is like DeepCopy(), but does extra work to copy closures. |
| func inlcopy(n ir.Node) ir.Node { |
| var edit func(ir.Node) ir.Node |
| edit = func(x ir.Node) ir.Node { |
| switch x.Op() { |
| case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL: |
| return x |
| } |
| m := ir.Copy(x) |
| ir.EditChildren(m, edit) |
| if x.Op() == ir.OCLOSURE { |
| x := x.(*ir.ClosureExpr) |
| // Need to save/duplicate x.Func.Nname, |
| // x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and |
| // x.Func.Body for iexport and local inlining. |
| oldfn := x.Func |
| newfn := ir.NewFunc(oldfn.Pos()) |
| m.(*ir.ClosureExpr).Func = newfn |
| newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym()) |
| // XXX OK to share fn.Type() ?? |
| newfn.Nname.SetType(oldfn.Nname.Type()) |
| newfn.Body = inlcopylist(oldfn.Body) |
| // Make shallow copy of the Dcl and ClosureVar slices |
| newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...) |
| newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...) |
| } |
| return m |
| } |
| return edit(n) |
| } |
| |
| // InlineCalls/inlnode walks fn's statements and expressions and substitutes any |
| // calls made to inlineable functions. This is the external entry point. |
| func InlineCalls(fn *ir.Func, profile *pgo.Profile) { |
| savefn := ir.CurFunc |
| ir.CurFunc = fn |
| bigCaller := isBigFunc(fn) |
| if bigCaller && base.Flag.LowerM > 1 { |
| fmt.Printf("%v: function %v considered 'big'; reducing max cost of inlinees\n", ir.Line(fn), fn) |
| } |
| var inlCalls []*ir.InlinedCallExpr |
| var edit func(ir.Node) ir.Node |
| edit = func(n ir.Node) ir.Node { |
| return inlnode(n, bigCaller, &inlCalls, edit, profile) |
| } |
| ir.EditChildren(fn, edit) |
| |
| // If we inlined any calls, we want to recursively visit their |
| // bodies for further inlining. However, we need to wait until |
| // *after* the original function body has been expanded, or else |
| // inlCallee can have false positives (e.g., #54632). |
| for len(inlCalls) > 0 { |
| call := inlCalls[0] |
| inlCalls = inlCalls[1:] |
| ir.EditChildren(call, edit) |
| } |
| |
| ir.CurFunc = savefn |
| } |
| |
| // inlnode recurses over the tree to find inlineable calls, which will |
| // be turned into OINLCALLs by mkinlcall. When the recursion comes |
| // back up will examine left, right, list, rlist, ninit, ntest, nincr, |
| // nbody and nelse and use one of the 4 inlconv/glue functions above |
| // to turn the OINLCALL into an expression, a statement, or patch it |
| // in to this nodes list or rlist as appropriate. |
| // NOTE it makes no sense to pass the glue functions down the |
| // recursion to the level where the OINLCALL gets created because they |
| // have to edit /this/ n, so you'd have to push that one down as well, |
| // but then you may as well do it here. so this is cleaner and |
| // shorter and less complicated. |
| // The result of inlnode MUST be assigned back to n, e.g. |
| // |
| // n.Left = inlnode(n.Left) |
| func inlnode(n ir.Node, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node, profile *pgo.Profile) ir.Node { |
| if n == nil { |
| return n |
| } |
| |
| switch n.Op() { |
| case ir.ODEFER, ir.OGO: |
| n := n.(*ir.GoDeferStmt) |
| switch call := n.Call; call.Op() { |
| case ir.OCALLMETH: |
| base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck") |
| case ir.OCALLFUNC: |
| call := call.(*ir.CallExpr) |
| call.NoInline = true |
| } |
| case ir.OTAILCALL: |
| n := n.(*ir.TailCallStmt) |
| n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)? |
| |
| // TODO do them here (or earlier), |
| // so escape analysis can avoid more heapmoves. |
| case ir.OCLOSURE: |
| return n |
| case ir.OCALLMETH: |
| base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") |
| case ir.OCALLFUNC: |
| n := n.(*ir.CallExpr) |
| if n.X.Op() == ir.OMETHEXPR { |
| // Prevent inlining some reflect.Value methods when using checkptr, |
| // even when package reflect was compiled without it (#35073). |
| if meth := ir.MethodExprName(n.X); meth != nil { |
| s := meth.Sym() |
| if base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") { |
| return n |
| } |
| } |
| } |
| } |
| |
| lno := ir.SetPos(n) |
| |
| ir.EditChildren(n, edit) |
| |
| // with all the branches out of the way, it is now time to |
| // transmogrify this node itself unless inhibited by the |
| // switch at the top of this function. |
| switch n.Op() { |
| case ir.OCALLMETH: |
| base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") |
| |
| case ir.OCALLFUNC: |
| call := n.(*ir.CallExpr) |
| if call.NoInline { |
| break |
| } |
| if base.Flag.LowerM > 3 { |
| fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X) |
| } |
| if ir.IsIntrinsicCall(call) { |
| break |
| } |
| if fn := inlCallee(call.X, profile); fn != nil && typecheck.HaveInlineBody(fn) { |
| n = mkinlcall(call, fn, bigCaller, inlCalls) |
| } |
| } |
| |
| base.Pos = lno |
| |
| return n |
| } |
| |
| // inlCallee takes a function-typed expression and returns the underlying function ONAME |
| // that it refers to if statically known. Otherwise, it returns nil. |
| func inlCallee(fn ir.Node, profile *pgo.Profile) *ir.Func { |
| fn = ir.StaticValue(fn) |
| switch fn.Op() { |
| case ir.OMETHEXPR: |
| fn := fn.(*ir.SelectorExpr) |
| n := ir.MethodExprName(fn) |
| // Check that receiver type matches fn.X. |
| // TODO(mdempsky): Handle implicit dereference |
| // of pointer receiver argument? |
| if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { |
| return nil |
| } |
| return n.Func |
| case ir.ONAME: |
| fn := fn.(*ir.Name) |
| if fn.Class == ir.PFUNC { |
| return fn.Func |
| } |
| case ir.OCLOSURE: |
| fn := fn.(*ir.ClosureExpr) |
| c := fn.Func |
| CanInline(c, profile) |
| return c |
| } |
| return nil |
| } |
| |
| var inlgen int |
| |
| // SSADumpInline gives the SSA back end a chance to dump the function |
| // when producing output for debugging the compiler itself. |
| var SSADumpInline = func(*ir.Func) {} |
| |
| // InlineCall allows the inliner implementation to be overridden. |
| // If it returns nil, the function will not be inlined. |
| var InlineCall = func(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { |
| base.Fatalf("inline.InlineCall not overridden") |
| panic("unreachable") |
| } |
| |
| // inlineCostOK returns true if call n from caller to callee is cheap enough to |
| // inline. bigCaller indicates that caller is a big function. |
| // |
| // If inlineCostOK returns false, it also returns the max cost that the callee |
| // exceeded. |
| func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32) { |
| maxCost := int32(inlineMaxBudget) |
| if bigCaller { |
| // We use this to restrict inlining into very big functions. |
| // See issue 26546 and 17566. |
| maxCost = inlineBigFunctionMaxCost |
| } |
| |
| if callee.Inl.Cost <= maxCost { |
| // Simple case. Function is already cheap enough. |
| return true, 0 |
| } |
| |
| // We'll also allow inlining of hot functions below inlineHotMaxBudget, |
| // but only in small functions. |
| |
| lineOffset := pgo.NodeLineOffset(n, caller) |
| csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller} |
| if _, ok := candHotEdgeMap[csi]; !ok { |
| // Cold |
| return false, maxCost |
| } |
| |
| // Hot |
| |
| if bigCaller { |
| if base.Debug.PGODebug > 0 { |
| fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) |
| } |
| return false, maxCost |
| } |
| |
| if callee.Inl.Cost > inlineHotMaxBudget { |
| return false, inlineHotMaxBudget |
| } |
| |
| if base.Debug.PGODebug > 0 { |
| fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) |
| } |
| |
| return true, 0 |
| } |
| |
| // If n is a OCALLFUNC node, and fn is an ONAME node for a |
| // function with an inlinable body, return an OINLCALL node that can replace n. |
| // The returned node's Ninit has the parameter assignments, the Nbody is the |
| // inlined function body, and (List, Rlist) contain the (input, output) |
| // parameters. |
| // The result of mkinlcall MUST be assigned back to n, e.g. |
| // |
| // n.Left = mkinlcall(n.Left, fn, isddd) |
| func mkinlcall(n *ir.CallExpr, fn *ir.Func, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr) ir.Node { |
| if fn.Inl == nil { |
| if logopt.Enabled() { |
| logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc), |
| fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn))) |
| } |
| return n |
| } |
| |
| if ok, maxCost := inlineCostOK(n, ir.CurFunc, fn, bigCaller); !ok { |
| if logopt.Enabled() { |
| logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc), |
| fmt.Sprintf("cost %d of %s exceeds max caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost)) |
| } |
| return n |
| } |
| |
| if fn == ir.CurFunc { |
| // Can't recursively inline a function into itself. |
| if logopt.Enabled() { |
| logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc))) |
| } |
| return n |
| } |
| |
| if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(fn.Sym().Pkg) { |
| // Runtime package must not be instrumented. |
| // Instrument skips runtime package. However, some runtime code can be |
| // inlined into other packages and instrumented there. To avoid this, |
| // we disable inlining of runtime functions when instrumenting. |
| // The example that we observed is inlining of LockOSThread, |
| // which lead to false race reports on m contents. |
| return n |
| } |
| if base.Flag.Race && types.IsNoRacePkg(fn.Sym().Pkg) { |
| return n |
| } |
| |
| parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() |
| sym := fn.Linksym() |
| |
| // Check if we've already inlined this function at this particular |
| // call site, in order to stop inlining when we reach the beginning |
| // of a recursion cycle again. We don't inline immediately recursive |
| // functions, but allow inlining if there is a recursion cycle of |
| // many functions. Most likely, the inlining will stop before we |
| // even hit the beginning of the cycle again, but this catches the |
| // unusual case. |
| for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) { |
| if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym { |
| if base.Flag.LowerM > 1 { |
| fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc)) |
| } |
| return n |
| } |
| } |
| |
| typecheck.AssertFixedCall(n) |
| |
| inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn)) |
| |
| closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) { |
| // The linker needs FuncInfo metadata for all inlined |
| // functions. This is typically handled by gc.enqueueFunc |
| // calling ir.InitLSym for all function declarations in |
| // typecheck.Target.Decls (ir.UseClosure adds all closures to |
| // Decls). |
| // |
| // However, non-trivial closures in Decls are ignored, and are |
| // insteaded enqueued when walk of the calling function |
| // discovers them. |
| // |
| // This presents a problem for direct calls to closures. |
| // Inlining will replace the entire closure definition with its |
| // body, which hides the closure from walk and thus suppresses |
| // symbol creation. |
| // |
| // Explicitly create a symbol early in this edge case to ensure |
| // we keep this metadata. |
| // |
| // TODO: Refactor to keep a reference so this can all be done |
| // by enqueueFunc. |
| |
| if n.Op() != ir.OCALLFUNC { |
| // Not a standard call. |
| return |
| } |
| if n.X.Op() != ir.OCLOSURE { |
| // Not a direct closure call. |
| return |
| } |
| |
| clo := n.X.(*ir.ClosureExpr) |
| if ir.IsTrivialClosure(clo) { |
| // enqueueFunc will handle trivial closures anyways. |
| return |
| } |
| |
| ir.InitLSym(fn, true) |
| } |
| |
| closureInitLSym(n, fn) |
| |
| if base.Flag.GenDwarfInl > 0 { |
| if !sym.WasInlined() { |
| base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn) |
| sym.Set(obj.AttrWasInlined, true) |
| } |
| } |
| |
| if base.Flag.LowerM != 0 { |
| fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn) |
| } |
| if base.Flag.LowerM > 2 { |
| fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n) |
| } |
| |
| res := InlineCall(n, fn, inlIndex) |
| |
| if res == nil { |
| base.FatalfAt(n.Pos(), "inlining call to %v failed", fn) |
| } |
| |
| if base.Flag.LowerM > 2 { |
| fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res) |
| } |
| |
| *inlCalls = append(*inlCalls, res) |
| |
| return res |
| } |
| |
| // CalleeEffects appends any side effects from evaluating callee to init. |
| func CalleeEffects(init *ir.Nodes, callee ir.Node) { |
| for { |
| init.Append(ir.TakeInit(callee)...) |
| |
| switch callee.Op() { |
| case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR: |
| return // done |
| |
| case ir.OCONVNOP: |
| conv := callee.(*ir.ConvExpr) |
| callee = conv.X |
| |
| case ir.OINLCALL: |
| ic := callee.(*ir.InlinedCallExpr) |
| init.Append(ic.Body.Take()...) |
| callee = ic.SingleResult() |
| |
| default: |
| base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee) |
| } |
| } |
| } |
| |
| func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name { |
| s := make([]*ir.Name, 0, len(ll)) |
| for _, n := range ll { |
| if n.Class == ir.PAUTO { |
| if !vis.usedLocals.Has(n) { |
| continue |
| } |
| } |
| s = append(s, n) |
| } |
| return s |
| } |
| |
| // numNonClosures returns the number of functions in list which are not closures. |
| func numNonClosures(list []*ir.Func) int { |
| count := 0 |
| for _, fn := range list { |
| if fn.OClosure == nil { |
| count++ |
| } |
| } |
| return count |
| } |
| |
| func doList(list []ir.Node, do func(ir.Node) bool) bool { |
| for _, x := range list { |
| if x != nil { |
| if do(x) { |
| return true |
| } |
| } |
| } |
| return false |
| } |
| |
| // isIndexingCoverageCounter returns true if the specified node 'n' is indexing |
| // into a coverage counter array. |
| func isIndexingCoverageCounter(n ir.Node) bool { |
| if n.Op() != ir.OINDEX { |
| return false |
| } |
| ixn := n.(*ir.IndexExpr) |
| if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() { |
| return false |
| } |
| nn := ixn.X.(*ir.Name) |
| return nn.CoverageCounter() |
| } |
| |
| // isAtomicCoverageCounterUpdate examines the specified node to |
| // determine whether it represents a call to sync/atomic.AddUint32 to |
| // increment a coverage counter. |
| func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool { |
| if cn.X.Op() != ir.ONAME { |
| return false |
| } |
| name := cn.X.(*ir.Name) |
| if name.Class != ir.PFUNC { |
| return false |
| } |
| fn := name.Sym().Name |
| if name.Sym().Pkg.Path != "sync/atomic" || |
| (fn != "AddUint32" && fn != "StoreUint32") { |
| return false |
| } |
| if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR { |
| return false |
| } |
| adn := cn.Args[0].(*ir.AddrExpr) |
| v := isIndexingCoverageCounter(adn.X) |
| return v |
| } |