blob: 3e0993dd818b5e97d8d91a9333dd53f73e924d5f [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package escape
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// call evaluates a call expressions, including builtin calls. ks
// should contain the holes representing where the function callee's
// results flows.
func (e *escape) call(ks []hole, call ir.Node) {
var init ir.Nodes
e.callCommon(ks, call, &init, nil)
if len(init) != 0 {
call.(ir.InitNode).PtrInit().Append(init...)
}
}
func (e *escape) callCommon(ks []hole, call ir.Node, init *ir.Nodes, wrapper *ir.Func) {
// argumentPragma handles escape analysis of argument *argp to the
// given hole. If the function callee is known, pragma is the
// function's pragma flags; otherwise 0.
argumentFunc := func(fn *ir.Name, k hole, argp *ir.Node) {
e.rewriteArgument(argp, init, call, fn, wrapper)
e.expr(k.note(call, "call parameter"), *argp)
}
argument := func(k hole, argp *ir.Node) {
argumentFunc(nil, k, argp)
}
argumentRType := func(rtypep *ir.Node) {
rtype := *rtypep
if rtype == nil {
return
}
// common case: static rtype/itab argument, which can be evaluated within the wrapper instead.
if addr, ok := rtype.(*ir.AddrExpr); ok && addr.Op() == ir.OADDR && addr.X.Op() == ir.OLINKSYMOFFSET {
return
}
e.wrapExpr(rtype.Pos(), rtypep, init, call, wrapper)
}
switch call.Op() {
default:
ir.Dump("esc", call)
base.Fatalf("unexpected call op: %v", call.Op())
case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
call := call.(*ir.CallExpr)
typecheck.AssertFixedCall(call)
// Pick out the function callee, if statically known.
//
// TODO(mdempsky): Change fn from *ir.Name to *ir.Func, but some
// functions (e.g., runtime builtins, method wrappers, generated
// eq/hash functions) don't have it set. Investigate whether
// that's a concern.
var fn *ir.Name
switch call.Op() {
case ir.OCALLFUNC:
// If we have a direct call to a closure (not just one we were
// able to statically resolve with ir.StaticValue), mark it as
// such so batch.outlives can optimize the flow results.
if call.X.Op() == ir.OCLOSURE {
call.X.(*ir.ClosureExpr).Func.SetClosureCalled(true)
}
switch v := ir.StaticValue(call.X); v.Op() {
case ir.ONAME:
if v := v.(*ir.Name); v.Class == ir.PFUNC {
fn = v
}
case ir.OCLOSURE:
fn = v.(*ir.ClosureExpr).Func.Nname
case ir.OMETHEXPR:
fn = ir.MethodExprName(v)
}
case ir.OCALLMETH:
base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
}
fntype := call.X.Type()
if fn != nil {
fntype = fn.Type()
}
if ks != nil && fn != nil && e.inMutualBatch(fn) {
for i, result := range fn.Type().Results().FieldSlice() {
e.expr(ks[i], ir.AsNode(result.Nname))
}
}
var recvp *ir.Node
if call.Op() == ir.OCALLFUNC {
// Evaluate callee function expression.
//
// Note: We use argument and not argumentFunc, because while
// call.X here may be an argument to runtime.{new,defer}proc,
// it's not an argument to fn itself.
argument(e.discardHole(), &call.X)
} else {
recvp = &call.X.(*ir.SelectorExpr).X
}
args := call.Args
if recv := fntype.Recv(); recv != nil {
if recvp == nil {
// Function call using method expression. Receiver argument is
// at the front of the regular arguments list.
recvp = &args[0]
args = args[1:]
}
argumentFunc(fn, e.tagHole(ks, fn, recv), recvp)
}
for i, param := range fntype.Params().FieldSlice() {
argumentFunc(fn, e.tagHole(ks, fn, param), &args[i])
}
case ir.OINLCALL:
call := call.(*ir.InlinedCallExpr)
e.stmts(call.Body)
for i, result := range call.ReturnVars {
k := e.discardHole()
if ks != nil {
k = ks[i]
}
e.expr(k, result)
}
case ir.OAPPEND:
call := call.(*ir.CallExpr)
args := call.Args
// Appendee slice may flow directly to the result, if
// it has enough capacity. Alternatively, a new heap
// slice might be allocated, and all slice elements
// might flow to heap.
appendeeK := ks[0]
if args[0].Type().Elem().HasPointers() {
appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
}
argument(appendeeK, &args[0])
if call.IsDDD {
appendedK := e.discardHole()
if args[1].Type().IsSlice() && args[1].Type().Elem().HasPointers() {
appendedK = e.heapHole().deref(call, "appended slice...")
}
argument(appendedK, &args[1])
} else {
for i := 1; i < len(args); i++ {
argument(e.heapHole(), &args[i])
}
}
argumentRType(&call.RType)
case ir.OCOPY:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), &call.X)
copiedK := e.discardHole()
if call.Y.Type().IsSlice() && call.Y.Type().Elem().HasPointers() {
copiedK = e.heapHole().deref(call, "copied slice")
}
argument(copiedK, &call.Y)
argumentRType(&call.RType)
case ir.OPANIC:
call := call.(*ir.UnaryExpr)
argument(e.heapHole(), &call.X)
case ir.OCOMPLEX:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), &call.X)
argument(e.discardHole(), &call.Y)
case ir.ODELETE, ir.OMAX, ir.OMIN, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
call := call.(*ir.CallExpr)
fixRecoverCall(call)
for i := range call.Args {
argument(e.discardHole(), &call.Args[i])
}
argumentRType(&call.RType)
case ir.OLEN, ir.OCAP, ir.OREAL, ir.OIMAG, ir.OCLOSE, ir.OCLEAR:
call := call.(*ir.UnaryExpr)
argument(e.discardHole(), &call.X)
case ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
call := call.(*ir.UnaryExpr)
argument(ks[0], &call.X)
case ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING:
call := call.(*ir.BinaryExpr)
argument(ks[0], &call.X)
argument(e.discardHole(), &call.Y)
argumentRType(&call.RType)
}
}
// goDeferStmt analyzes a "go" or "defer" statement.
//
// In the process, it also normalizes the statement to always use a
// simple function call with no arguments and no results. For example,
// it rewrites:
//
// defer f(x, y)
//
// into:
//
// x1, y1 := x, y
// defer func() { f(x1, y1) }()
func (e *escape) goDeferStmt(n *ir.GoDeferStmt) {
k := e.heapHole()
if n.Op() == ir.ODEFER && e.loopDepth == 1 && n.DeferAt == nil {
// Top-level defer arguments don't escape to the heap,
// but they do need to last until they're invoked.
k = e.later(e.discardHole())
// force stack allocation of defer record, unless
// open-coded defers are used (see ssa.go)
n.SetEsc(ir.EscNever)
}
call := n.Call
init := n.PtrInit()
init.Append(ir.TakeInit(call)...)
e.stmts(*init)
// If the function is already a zero argument/result function call,
// just escape analyze it normally.
//
// Note that the runtime is aware of this optimization for
// "go" statements that start in reflect.makeFuncStub or
// reflect.methodValueCall.
if call, ok := call.(*ir.CallExpr); ok && call.Op() == ir.OCALLFUNC {
if sig := call.X.Type(); sig.NumParams()+sig.NumResults() == 0 {
if clo, ok := call.X.(*ir.ClosureExpr); ok && n.Op() == ir.OGO {
clo.IsGoWrap = true
}
e.expr(k, call.X)
return
}
}
// Create a new no-argument function that we'll hand off to defer.
fn := ir.NewClosureFunc(n.Pos(), true)
fn.SetWrapper(true)
fn.Nname.SetType(types.NewSignature(nil, nil, nil))
fn.Body = []ir.Node{call}
if call, ok := call.(*ir.CallExpr); ok && call.Op() == ir.OCALLFUNC {
// If the callee is a named function, link to the original callee.
x := call.X
if x.Op() == ir.ONAME && x.(*ir.Name).Class == ir.PFUNC {
fn.WrappedFunc = call.X.(*ir.Name).Func
} else if x.Op() == ir.OMETHEXPR && ir.MethodExprFunc(x).Nname != nil {
fn.WrappedFunc = ir.MethodExprName(x).Func
}
}
clo := fn.OClosure
if n.Op() == ir.OGO {
clo.IsGoWrap = true
}
e.callCommon(nil, call, init, fn)
e.closures = append(e.closures, closure{e.spill(k, clo), clo})
// Create new top level call to closure.
n.Call = ir.NewCallExpr(call.Pos(), ir.OCALL, clo, nil)
ir.WithFunc(e.curfn, func() {
typecheck.Stmt(n.Call)
})
}
// rewriteArgument rewrites the argument *argp of the given call expression.
// fn is the static callee function, if known.
// wrapper is the go/defer wrapper function for call, if any.
func (e *escape) rewriteArgument(argp *ir.Node, init *ir.Nodes, call ir.Node, fn *ir.Name, wrapper *ir.Func) {
var pragma ir.PragmaFlag
if fn != nil && fn.Func != nil {
pragma = fn.Func.Pragma
}
// unsafeUintptr rewrites "uintptr(ptr)" arguments to syscall-like
// functions, so that ptr is kept alive and/or escaped as
// appropriate. unsafeUintptr also reports whether it modified arg0.
unsafeUintptr := func(arg0 ir.Node) bool {
if pragma&(ir.UintptrKeepAlive|ir.UintptrEscapes) == 0 {
return false
}
// If the argument is really a pointer being converted to uintptr,
// arrange for the pointer to be kept alive until the call returns,
// by copying it into a temp and marking that temp
// still alive when we pop the temp stack.
if arg0.Op() != ir.OCONVNOP || !arg0.Type().IsUintptr() {
return false
}
arg := arg0.(*ir.ConvExpr)
if !arg.X.Type().IsUnsafePtr() {
return false
}
// Create and declare a new pointer-typed temp variable.
tmp := e.wrapExpr(arg.Pos(), &arg.X, init, call, wrapper)
if pragma&ir.UintptrEscapes != 0 {
e.flow(e.heapHole().note(arg, "//go:uintptrescapes"), e.oldLoc(tmp))
}
if pragma&ir.UintptrKeepAlive != 0 {
call := call.(*ir.CallExpr)
// SSA implements CallExpr.KeepAlive using OpVarLive, which
// doesn't support PAUTOHEAP variables. I tried changing it to
// use OpKeepAlive, but that ran into issues of its own.
// For now, the easy solution is to explicitly copy to (yet
// another) new temporary variable.
keep := tmp
if keep.Class == ir.PAUTOHEAP {
keep = e.copyExpr(arg.Pos(), tmp, call.PtrInit(), wrapper, false)
}
keep.SetAddrtaken(true) // ensure SSA keeps the tmp variable
call.KeepAlive = append(call.KeepAlive, keep)
}
return true
}
visit := func(pos src.XPos, argp *ir.Node) {
// Optimize a few common constant expressions. By leaving these
// untouched in the call expression, we let the wrapper handle
// evaluating them, rather than taking up closure context space.
switch arg := *argp; arg.Op() {
case ir.OLITERAL, ir.ONIL, ir.OMETHEXPR:
return
case ir.ONAME:
if arg.(*ir.Name).Class == ir.PFUNC {
return
}
}
if unsafeUintptr(*argp) {
return
}
if wrapper != nil {
e.wrapExpr(pos, argp, init, call, wrapper)
}
}
// Peel away any slice literals for better escape analyze
// them. For example:
//
// go F([]int{a, b})
//
// If F doesn't escape its arguments, then the slice can
// be allocated on the new goroutine's stack.
//
// For variadic functions, the compiler has already rewritten:
//
// f(a, b, c)
//
// to:
//
// f([]T{a, b, c}...)
//
// So we need to look into slice elements to handle uintptr(ptr)
// arguments to syscall-like functions correctly.
if arg := *argp; arg.Op() == ir.OSLICELIT {
list := arg.(*ir.CompLitExpr).List
for i := range list {
el := &list[i]
if list[i].Op() == ir.OKEY {
el = &list[i].(*ir.KeyExpr).Value
}
visit(arg.Pos(), el)
}
} else {
visit(call.Pos(), argp)
}
}
// wrapExpr replaces *exprp with a temporary variable copy. If wrapper
// is non-nil, the variable will be captured for use within that
// function.
func (e *escape) wrapExpr(pos src.XPos, exprp *ir.Node, init *ir.Nodes, call ir.Node, wrapper *ir.Func) *ir.Name {
tmp := e.copyExpr(pos, *exprp, init, e.curfn, true)
if wrapper != nil {
// Currently for "defer i.M()" if i is nil it panics at the point
// of defer statement, not when deferred function is called. We
// need to do the nil check outside of the wrapper.
if call.Op() == ir.OCALLINTER && exprp == &call.(*ir.CallExpr).X.(*ir.SelectorExpr).X {
check := ir.NewUnaryExpr(pos, ir.OCHECKNIL, ir.NewUnaryExpr(pos, ir.OITAB, tmp))
init.Append(typecheck.Stmt(check))
}
e.oldLoc(tmp).captured = true
tmp = ir.NewClosureVar(pos, wrapper, tmp)
}
*exprp = tmp
return tmp
}
// copyExpr creates and returns a new temporary variable within fn;
// appends statements to init to declare and initialize it to expr;
// and escape analyzes the data flow if analyze is true.
func (e *escape) copyExpr(pos src.XPos, expr ir.Node, init *ir.Nodes, fn *ir.Func, analyze bool) *ir.Name {
if ir.HasUniquePos(expr) {
pos = expr.Pos()
}
tmp := typecheck.TempAt(pos, fn, expr.Type())
stmts := []ir.Node{
ir.NewDecl(pos, ir.ODCL, tmp),
ir.NewAssignStmt(pos, tmp, expr),
}
typecheck.Stmts(stmts)
init.Append(stmts...)
if analyze {
e.newLoc(tmp, false)
e.stmts(stmts)
}
return tmp
}
// tagHole returns a hole for evaluating an argument passed to param.
// ks should contain the holes representing where the function
// callee's results flows. fn is the statically-known callee function,
// if any.
func (e *escape) tagHole(ks []hole, fn *ir.Name, param *types.Field) hole {
// If this is a dynamic call, we can't rely on param.Note.
if fn == nil {
return e.heapHole()
}
if e.inMutualBatch(fn) {
return e.addr(ir.AsNode(param.Nname))
}
// Call to previously tagged function.
var tagKs []hole
esc := parseLeaks(param.Note)
if x := esc.Heap(); x >= 0 {
tagKs = append(tagKs, e.heapHole().shift(x))
}
if ks != nil {
for i := 0; i < numEscResults; i++ {
if x := esc.Result(i); x >= 0 {
tagKs = append(tagKs, ks[i].shift(x))
}
}
}
return e.teeHole(tagKs...)
}