blob: 41e12c30f87cf0aa86f73b4923fb06dda0d83d20 [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// System calls and other sys.stuff for loong64, Linux
//
#include "go_asm.h"
#include "go_tls.h"
#include "textflag.h"
#include "cgo/abi_loong64.h"
#define AT_FDCWD -100
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 1
#define SYS_exit 93
#define SYS_read 63
#define SYS_write 64
#define SYS_close 57
#define SYS_getpid 172
#define SYS_kill 129
#define SYS_mmap 222
#define SYS_munmap 215
#define SYS_setitimer 103
#define SYS_clone 220
#define SYS_nanosleep 101
#define SYS_sched_yield 124
#define SYS_rt_sigreturn 139
#define SYS_rt_sigaction 134
#define SYS_rt_sigprocmask 135
#define SYS_sigaltstack 132
#define SYS_madvise 233
#define SYS_mincore 232
#define SYS_gettid 178
#define SYS_futex 98
#define SYS_sched_getaffinity 123
#define SYS_exit_group 94
#define SYS_tgkill 131
#define SYS_openat 56
#define SYS_clock_gettime 113
#define SYS_brk 214
#define SYS_pipe2 59
#define SYS_timer_create 107
#define SYS_timer_settime 110
#define SYS_timer_delete 111
// func exit(code int32)
TEXT runtime·exit<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_exit_group, R11
SYSCALL
RET
// func exitThread(wait *atomic.Uint32)
TEXT runtime·exitThread<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
// We're done using the stack.
DBAR $0x12 // StoreRelease barrier
MOVW R0, (R4)
MOVW $0, R4 // exit code
MOVV $SYS_exit, R11
SYSCALL
JMP 0(PC)
// func open(name *byte, mode, perm int32) int32
TEXT runtime·open<ABIInternal>(SB),NOSPLIT,$0
// before:
// R4: name, R5: mode, R6: perm
// after:
// R4: AT_FDCWD, R5: name, R6: mode, R7: perm
MOVW R6, R7
MOVW R5, R6
MOVV R4, R5
MOVW $AT_FDCWD, R4 // AT_FDCWD, so this acts like open
MOVV $SYS_openat, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, 2(PC)
MOVW $-1, R4
RET
// func closefd(fd int32) int32
TEXT runtime·closefd<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_close, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, 2(PC)
MOVW $-1, R4
RET
// func write1(fd uintptr, p unsafe.Pointer, n int32) int32
TEXT runtime·write1<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_write, R11
SYSCALL
RET
// func read(fd int32, p unsafe.Pointer, n int32) int32
TEXT runtime·read<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_read, R11
SYSCALL
RET
// func pipe2(flags int32) (r, w int32, errno int32)
TEXT runtime·pipe2(SB),NOSPLIT|NOFRAME,$0-20
MOVV $r+8(FP), R4
MOVW flags+0(FP), R5
MOVV $SYS_pipe2, R11
SYSCALL
MOVW R4, errno+16(FP)
RET
// func usleep(usec uint32)
TEXT runtime·usleep<ABIInternal>(SB),NOSPLIT,$16
MOVV $1000, R6
MULVU R6, R4, R4
MOVV $1000000000, R6
DIVVU R6, R4, R5 // ts->tv_sec
REMVU R6, R4, R8 // ts->tv_nsec
MOVV R5, 8(R3)
MOVV R8, 16(R3)
// nanosleep(&ts, 0)
ADDV $8, R3, R4
MOVV R0, R5
MOVV $SYS_nanosleep, R11
SYSCALL
RET
// func gettid() uint32
TEXT runtime·gettid<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_gettid, R11
SYSCALL
RET
// func raise(sig uint32)
TEXT runtime·raise<ABIInternal>(SB),NOSPLIT,$0
MOVW R4, R24 // backup sig
MOVV $SYS_getpid, R11
SYSCALL
MOVW R4, R23
MOVV $SYS_gettid, R11
SYSCALL
MOVW R4, R5 // arg 2 tid
MOVW R23, R4 // arg 1 pid
MOVW R24, R6 // arg 3
MOVV $SYS_tgkill, R11
SYSCALL
RET
// func raiseproc(sig uint32)
TEXT runtime·raiseproc<ABIInternal>(SB),NOSPLIT,$0
MOVW R4, R24 // backup sig
MOVV $SYS_getpid, R11
SYSCALL
//MOVW R4, R4 // arg 1 pid
MOVW R24, R5 // arg 2
MOVV $SYS_kill, R11
SYSCALL
RET
// func getpid() int
TEXT ·getpid<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_getpid, R11
SYSCALL
RET
// func tgkill(tgid, tid, sig int)
TEXT ·tgkill<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_tgkill, R11
SYSCALL
RET
// func setitimer(mode int32, new, old *itimerval)
TEXT runtime·setitimer<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_setitimer, R11
SYSCALL
RET
// func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32
TEXT runtime·timer_create<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_timer_create, R11
SYSCALL
RET
// func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32
TEXT runtime·timer_settime<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_timer_settime, R11
SYSCALL
RET
// func timer_delete(timerid int32) int32
TEXT runtime·timer_delete<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_timer_delete, R11
SYSCALL
RET
// func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
TEXT runtime·mincore<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_mincore, R11
SYSCALL
RET
// func walltime() (sec int64, nsec int32)
TEXT runtime·walltime<ABIInternal>(SB),NOSPLIT,$24
MOVV R3, R23 // R23 is unchanged by C code
MOVV R3, R25
MOVV g_m(g), R24 // R24 = m
// Set vdsoPC and vdsoSP for SIGPROF traceback.
// Save the old values on stack and restore them on exit,
// so this function is reentrant.
MOVV m_vdsoPC(R24), R11
MOVV m_vdsoSP(R24), R7
MOVV R11, 8(R3)
MOVV R7, 16(R3)
MOVV $ret-8(FP), R11 // caller's SP
MOVV R1, m_vdsoPC(R24)
MOVV R11, m_vdsoSP(R24)
MOVV m_curg(R24), R4
MOVV g, R5
BNE R4, R5, noswitch
MOVV m_g0(R24), R4
MOVV (g_sched+gobuf_sp)(R4), R25 // Set SP to g0 stack
noswitch:
SUBV $16, R25
AND $~15, R25 // Align for C code
MOVV R25, R3
MOVW $CLOCK_REALTIME, R4
MOVV $0(R3), R5
MOVV runtime·vdsoClockgettimeSym(SB), R20
BEQ R20, fallback
// Store g on gsignal's stack, see sys_linux_arm64.s for detail
MOVBU runtime·iscgo(SB), R25
BNE R25, nosaveg
MOVV m_gsignal(R24), R25 // g.m.gsignal
BEQ R25, nosaveg
BEQ g, R25, nosaveg
MOVV (g_stack+stack_lo)(R25), R25 // g.m.gsignal.stack.lo
MOVV g, (R25)
JAL (R20)
MOVV R0, (R25)
JMP finish
nosaveg:
JAL (R20)
finish:
MOVV 0(R3), R4 // sec
MOVV 8(R3), R5 // nsec
MOVV R23, R3 // restore SP
// Restore vdsoPC, vdsoSP
// We don't worry about being signaled between the two stores.
// If we are not in a signal handler, we'll restore vdsoSP to 0,
// and no one will care about vdsoPC. If we are in a signal handler,
// we cannot receive another signal.
MOVV 16(R3), R25
MOVV R25, m_vdsoSP(R24)
MOVV 8(R3), R25
MOVV R25, m_vdsoPC(R24)
RET
fallback:
MOVV $SYS_clock_gettime, R11
SYSCALL
JMP finish
// func nanotime1() int64
TEXT runtime·nanotime1<ABIInternal>(SB),NOSPLIT,$24
MOVV R3, R23 // R23 is unchanged by C code
MOVV R3, R25
MOVV g_m(g), R24 // R24 = m
// Set vdsoPC and vdsoSP for SIGPROF traceback.
// Save the old values on stack and restore them on exit,
// so this function is reentrant.
MOVV m_vdsoPC(R24), R11
MOVV m_vdsoSP(R24), R7
MOVV R11, 8(R3)
MOVV R7, 16(R3)
MOVV $ret-8(FP), R11 // caller's SP
MOVV R1, m_vdsoPC(R24)
MOVV R11, m_vdsoSP(R24)
MOVV m_curg(R24), R4
MOVV g, R5
BNE R4, R5, noswitch
MOVV m_g0(R24), R4
MOVV (g_sched+gobuf_sp)(R4), R25 // Set SP to g0 stack
noswitch:
SUBV $16, R25
AND $~15, R25 // Align for C code
MOVV R25, R3
MOVW $CLOCK_MONOTONIC, R4
MOVV $0(R3), R5
MOVV runtime·vdsoClockgettimeSym(SB), R20
BEQ R20, fallback
// Store g on gsignal's stack, see sys_linux_arm64.s for detail
MOVBU runtime·iscgo(SB), R25
BNE R25, nosaveg
MOVV m_gsignal(R24), R25 // g.m.gsignal
BEQ R25, nosaveg
BEQ g, R25, nosaveg
MOVV (g_stack+stack_lo)(R25), R25 // g.m.gsignal.stack.lo
MOVV g, (R25)
JAL (R20)
MOVV R0, (R25)
JMP finish
nosaveg:
JAL (R20)
finish:
MOVV 0(R3), R7 // sec
MOVV 8(R3), R5 // nsec
MOVV R23, R3 // restore SP
// Restore vdsoPC, vdsoSP
// We don't worry about being signaled between the two stores.
// If we are not in a signal handler, we'll restore vdsoSP to 0,
// and no one will care about vdsoPC. If we are in a signal handler,
// we cannot receive another signal.
MOVV 16(R3), R25
MOVV R25, m_vdsoSP(R24)
MOVV 8(R3), R25
MOVV R25, m_vdsoPC(R24)
// sec is in R7, nsec in R5
// return nsec in R7
MOVV $1000000000, R4
MULVU R4, R7, R7
ADDVU R5, R7, R4
RET
fallback:
MOVV $SYS_clock_gettime, R11
SYSCALL
JMP finish
// func rtsigprocmask(how int32, new, old *sigset, size int32)
TEXT runtime·rtsigprocmask<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_rt_sigprocmask, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, 2(PC)
MOVV R0, 0xf1(R0) // crash
RET
// func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
TEXT runtime·rt_sigaction<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_rt_sigaction, R11
SYSCALL
RET
// Call the function stored in _cgo_sigaction using the GCC calling convention.
TEXT runtime·callCgoSigaction<ABIInternal>(SB),NOSPLIT,$0
// R4: sig, R5: new, R6: old
MOVV _cgo_sigaction(SB), R7
SUBV $16, R3 // reserve 16 bytes for sp-8 where fp may be saved.
JAL (R7)
ADDV $16, R3
MOVW R4, R4
RET
// func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
TEXT runtime·sigfwd<ABIInternal>(SB),NOSPLIT,$0
// before:
// R4: fn, R5: sig, R6: info, R7: ctx
// after:
// R20: fn, R4: sig, R5: info, R6: ctx
MOVV R4, R20
MOVV R5, R4
MOVV R6, R5
MOVV R7, R6
JAL (R20)
RET
// Called from c-abi, R4: sig, R5: info, R6: cxt
// func sigtramp(signo, ureg, ctxt unsafe.Pointer)
TEXT runtime·sigtramp(SB),NOSPLIT|TOPFRAME,$168
// Save callee-save registers in the case of signal forwarding.
// Please refer to https://golang.org/issue/31827 .
SAVE_R22_TO_R31((4*8))
SAVE_F24_TO_F31((14*8))
// this might be called in external code context,
// where g is not set.
MOVB runtime·iscgo(SB), R7
BEQ R7, 2(PC)
JAL runtime·load_g(SB)
// R5 and R6 already contain info and ctx, respectively.
MOVV $runtime·sigtrampgo<ABIInternal>(SB), R7
JAL (R7)
// Restore callee-save registers.
RESTORE_R22_TO_R31((4*8))
RESTORE_F24_TO_F31((14*8))
RET
// Called from c-abi, R4: sig, R5: info, R6: cxt
TEXT runtime·sigprofNonGoWrapper<>(SB),NOSPLIT,$168
// Save callee-save registers because it's a callback from c code.
SAVE_R22_TO_R31((4*8))
SAVE_F24_TO_F31((14*8))
// R4, R5 and R6 already contain sig, info and ctx, respectively.
CALL runtime·sigprofNonGo<ABIInternal>(SB)
// Restore callee-save registers.
RESTORE_R22_TO_R31((4*8))
RESTORE_F24_TO_F31((14*8))
RET
// Called from c-abi, R4: sig, R5: info, R6: cxt
TEXT runtime·cgoSigtramp(SB),NOSPLIT|NOFRAME,$0
// The stack unwinder, presumably written in C, may not be able to
// handle Go frame correctly. So, this function is NOFRAME, and we
// save/restore LR manually.
MOVV R1, R12
// Save R30, g because they will be clobbered,
// we need to restore them before jump to sigtramp.
MOVV R30, R13
MOVV g, R14
// If no traceback function, do usual sigtramp.
MOVV runtime·cgoTraceback(SB), R15
BEQ R15, sigtramp
// If no traceback support function, which means that
// runtime/cgo was not linked in, do usual sigtramp.
MOVV _cgo_callers(SB), R15
BEQ R15, sigtramp
// Figure out if we are currently in a cgo call.
// If not, just do usual sigtramp.
CALL runtime·load_g(SB)
BEQ g, sigtrampnog // g == nil
MOVV g_m(g), R15
BEQ R15, sigtramp // g.m == nil
MOVW m_ncgo(R15), R16
BEQ R16, sigtramp // g.m.ncgo = 0
MOVV m_curg(R15), R16
BEQ R16, sigtramp // g.m.curg == nil
MOVV g_syscallsp(R16), R17
BEQ R17, sigtramp // g.m.curg.syscallsp == 0
MOVV m_cgoCallers(R15), R8 // R8 is the fifth arg in C calling convention.
BEQ R8, sigtramp // g.m.cgoCallers == nil
MOVW m_cgoCallersUse(R15), R16
BNE R16, sigtramp // g.m.cgoCallersUse != 0
// Jump to a function in runtime/cgo.
// That function, written in C, will call the user's traceback
// function with proper unwind info, and will then call back here.
// The first three arguments, and the fifth, are already in registers.
// Set the two remaining arguments now.
MOVV runtime·cgoTraceback(SB), R7
MOVV $runtime·sigtramp(SB), R9
MOVV _cgo_callers(SB), R15
MOVV R12, R1 // restore
MOVV R13, R30
MOVV R14, g
JMP (R15)
sigtramp:
MOVV R12, R1 // restore
MOVV R13, R30
MOVV R14, g
JMP runtime·sigtramp(SB)
sigtrampnog:
// Signal arrived on a non-Go thread. If this is SIGPROF, get a
// stack trace.
MOVW $27, R15 // 27 == SIGPROF
BNE R4, R15, sigtramp
MOVV $runtime·sigprofCallersUse(SB), R16
DBAR $0x14
cas_again:
MOVV $1, R15
LL (R16), R17
BNE R17, fail
SC R15, (R16)
BEQ R15, cas_again
DBAR $0x14
// Jump to the traceback function in runtime/cgo.
// It will call back to sigprofNonGo, which will ignore the
// arguments passed in registers.
// First three arguments to traceback function are in registers already.
MOVV runtime·cgoTraceback(SB), R7
MOVV $runtime·sigprofCallers(SB), R8
MOVV $runtime·sigprofNonGoWrapper<>(SB), R9
MOVV _cgo_callers(SB), R15
MOVV R12, R1 // restore
MOVV R13, R30
MOVV R14, g
JMP (R15)
fail:
DBAR $0x14
JMP sigtramp
// func sysMmap(addr unsafe.Pointer, n uintptr, prot, flags, fd int32, off uint32) (p unsafe.Pointer, err int)
TEXT runtime·sysMmap<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_mmap, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, ok
SUBVU R4, R0, R5
MOVV $0, R4
RET
ok:
MOVV $0, R5
RET
// Call the function stored in _cgo_mmap using the GCC calling convention.
// This must be called on the system stack.
// func callCgoMmap(addr unsafe.Pointer, n uintptr, prot, flags, fd int32, off uint32) uintptr
TEXT runtime·callCgoMmap<ABIInternal>(SB),NOSPLIT,$0
MOVV _cgo_mmap(SB), R13
SUBV $16, R3 // reserve 16 bytes for sp-8 where fp may be saved.
JAL (R13)
ADDV $16, R3
MOVV R4, R4
RET
// func sysMunmap(addr unsafe.Pointer, n uintptr)
TEXT runtime·sysMunmap<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_munmap, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, 2(PC)
MOVV R0, 0xf3(R0) // crash
RET
// Call the function stored in _cgo_munmap using the GCC calling convention.
// This must be called on the system stack.
// func callCgoMunmap(addr unsafe.Pointer, n uintptr)
TEXT runtime·callCgoMunmap<ABIInternal>(SB),NOSPLIT,$0
MOVV _cgo_munmap(SB), R13
SUBV $16, R3 // reserve 16 bytes for sp-8 where fp may be saved.
JAL (R13)
ADDV $16, R3
RET
// func madvise(addr unsafe.Pointer, n uintptr, flags int32)
TEXT runtime·madvise<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_madvise, R11
SYSCALL
RET
// func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
TEXT runtime·futex<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_futex, R11
SYSCALL
RET
// int64 clone(int32 flags, void *stk, M *mp, G *gp, void (*fn)(void));
TEXT runtime·clone<ABIInternal>(SB),NOSPLIT,$0
// Copy mp, gp, fn off parent stack for use by child.
// Careful: Linux system call clobbers ???.
MOVV R6, R23
MOVV R7, R24
MOVV R8, R25
MOVV R23, -8(R5)
MOVV R24, -16(R5)
MOVV R25, -24(R5)
MOVV $1234, R23
MOVV R23, -32(R5)
MOVV $SYS_clone, R11
SYSCALL
// In parent, return.
BEQ R4, 2(PC)
RET
// In child, on new stack.
MOVV -32(R3), R23
MOVV $1234, R19
BEQ R23, R19, 2(PC)
MOVV R0, 0(R0)
// Initialize m->procid to Linux tid
MOVV $SYS_gettid, R11
SYSCALL
MOVV -24(R3), R25 // fn
MOVV -16(R3), R24 // g
MOVV -8(R3), R23 // m
BEQ R23, nog
BEQ R24, nog
MOVV R4, m_procid(R23)
// TODO: setup TLS.
// In child, set up new stack
MOVV R23, g_m(R24)
MOVV R24, g
//CALL runtime·stackcheck(SB)
nog:
// Call fn
JAL (R25)
// It shouldn't return. If it does, exit that thread.
MOVW $111, R4
MOVV $SYS_exit, R11
SYSCALL
JMP -3(PC) // keep exiting
// func sigaltstack(new, old *stackt)
TEXT runtime·sigaltstack<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_sigaltstack, R11
SYSCALL
MOVW $-4096, R5
BGEU R5, R4, 2(PC)
MOVV R0, 0xf1(R0) // crash
RET
// func osyield()
TEXT runtime·osyield<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_sched_yield, R11
SYSCALL
RET
// func sched_getaffinity(pid, len uintptr, buf *uintptr) int32
TEXT runtime·sched_getaffinity<ABIInternal>(SB),NOSPLIT,$0
MOVV $SYS_sched_getaffinity, R11
SYSCALL
RET
// func sbrk0() uintptr
TEXT runtime·sbrk0<ABIInternal>(SB),NOSPLIT,$0
// Implemented as brk(NULL).
MOVV $0, R4
MOVV $SYS_brk, R11
SYSCALL
RET
// unimplemented, only needed for android; declared in stubs_linux.go
TEXT runtime·access(SB),$0-20
MOVV R0, 2(R0)
MOVW R0, ret+16(FP) // for vet
RET
// unimplemented, only needed for android; declared in stubs_linux.go
TEXT runtime·connect(SB),$0-28
MOVV R0, 2(R0)
MOVW R0, ret+24(FP) // for vet
RET
// unimplemented, only needed for android; declared in stubs_linux.go
TEXT runtime·socket(SB),$0-20
MOVV R0, 2(R0)
MOVW R0, ret+16(FP) // for vet
RET
// func vgetrandom1(buf *byte, length uintptr, flags uint32, state uintptr, stateSize uintptr) int
TEXT runtime·vgetrandom1<ABIInternal>(SB),NOSPLIT,$16
MOVV R3, R23
MOVV runtime·vdsoGetrandomSym(SB), R12
MOVV g_m(g), R24
MOVV m_vdsoPC(R24), R13
MOVV R13, 8(R3)
MOVV m_vdsoSP(R24), R13
MOVV R13, 16(R3)
MOVV R1, m_vdsoPC(R24)
MOVV $buf-8(FP), R13
MOVV R13, m_vdsoSP(R24)
AND $~15, R3
MOVBU runtime·iscgo(SB), R13
BNE R13, nosaveg
MOVV m_gsignal(R24), R13
BEQ R13, nosaveg
BEQ g, R13, nosaveg
MOVV (g_stack+stack_lo)(R13), R25
MOVV g, (R25)
JAL (R12)
MOVV R0, (R25)
JMP restore
nosaveg:
JAL (R12)
restore:
MOVV R23, R3
MOVV 16(R3), R25
MOVV R25, m_vdsoSP(R24)
MOVV 8(R3), R25
MOVV R25, m_vdsoPC(R24)
NOP R4 // Satisfy go vet, since the return value comes from the vDSO function.
RET