blob: d731871d4494fe85c093cebae0159e7a10e61bd3 [file] [log] [blame]
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build race
#include "go_asm.h"
#include "funcdata.h"
#include "textflag.h"
#include "cgo/abi_loong64.h"
// The following thunks allow calling the gcc-compiled race runtime directly
// from Go code without going all the way through cgo.
// First, it's much faster (up to 50% speedup for real Go programs).
// Second, it eliminates race-related special cases from cgocall and scheduler.
// Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go.
// A brief recap of the loong64 calling convention.
// Arguments are passed in R4...R11, the rest is on stack.
// Callee-saved registers are: R23...R30.
// Temporary registers are: R12...R20
// SP must be 16-byte aligned.
// When calling racecalladdr, R20 is the call target address.
// The race ctx, ThreadState *thr below, is passed in R4 and loaded in racecalladdr.
// Load g from TLS. (See tls_loong64.s)
#define load_g \
MOVV runtime·tls_g(SB), g
#define RARG0 R4
#define RARG1 R5
#define RARG2 R6
#define RARG3 R7
#define RCALL R20
// func runtime·raceread(addr uintptr)
// Called from instrumented code.
// Defined as ABIInternal so as to avoid introducing a wrapper,
// which would make caller's PC ineffective.
TEXT runtime·raceread<ABIInternal>(SB), NOSPLIT, $0-8
MOVV R4, RARG1
MOVV R1, RARG2
// void __tsan_read(ThreadState *thr, void *addr, void *pc);
MOVV $__tsan_read(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·RaceRead(addr uintptr)
TEXT runtime·RaceRead(SB), NOSPLIT, $0-8
// This needs to be a tail call, because raceread reads caller pc.
JMP runtime·raceread(SB)
// func runtime·racereadpc(void *addr, void *callpc, void *pc)
TEXT runtime·racereadpc(SB), NOSPLIT, $0-24
MOVV addr+0(FP), RARG1
MOVV callpc+8(FP), RARG2
MOVV pc+16(FP), RARG3
// void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
MOVV $__tsan_read_pc(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·racewrite(addr uintptr)
// Called from instrumented code.
// Defined as ABIInternal so as to avoid introducing a wrapper,
// which would make caller's PC ineffective.
TEXT runtime·racewrite<ABIInternal>(SB), NOSPLIT, $0-8
MOVV R4, RARG1
MOVV R1, RARG2
// void __tsan_write(ThreadState *thr, void *addr, void *pc);
MOVV $__tsan_write(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·RaceWrite(addr uintptr)
TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8
// This needs to be a tail call, because racewrite reads caller pc.
JMP runtime·racewrite(SB)
// func runtime·racewritepc(void *addr, void *callpc, void *pc)
TEXT runtime·racewritepc(SB), NOSPLIT, $0-24
MOVV addr+0(FP), RARG1
MOVV callpc+8(FP), RARG2
MOVV pc+16(FP), RARG3
// void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
MOVV $__tsan_write_pc(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·racereadrange(addr, size uintptr)
// Called from instrumented code.
// Defined as ABIInternal so as to avoid introducing a wrapper,
// which would make caller's PC ineffective.
TEXT runtime·racereadrange<ABIInternal>(SB), NOSPLIT, $0-16
MOVV R5, RARG2
MOVV R4, RARG1
MOVV R1, RARG3
// void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVV $__tsan_read_range(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·RaceReadRange(addr, size uintptr)
TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16
// This needs to be a tail call, because racereadrange reads caller pc.
JMP runtime·racereadrange(SB)
// func runtime·racereadrangepc1(void *addr, uintptr sz, void *pc)
TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24
MOVV addr+0(FP), RARG1
MOVV size+8(FP), RARG2
MOVV pc+16(FP), RARG3
ADDV $4, RARG3 // pc is function start, tsan wants return address.
// void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVV $__tsan_read_range(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·racewriterange(addr, size uintptr)
// Called from instrumented code.
// Defined as ABIInternal so as to avoid introducing a wrapper,
// which would make caller's PC ineffective.
TEXT runtime·racewriterange<ABIInternal>(SB), NOSPLIT, $0-16
MOVV R5, RARG2
MOVV R4, RARG1
MOVV R1, RARG3
// void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVV $__tsan_write_range(SB), RCALL
JMP racecalladdr<>(SB)
// func runtime·RaceWriteRange(addr, size uintptr)
TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16
// This needs to be a tail call, because racewriterange reads caller pc.
JMP runtime·racewriterange(SB)
// func runtime·racewriterangepc1(void *addr, uintptr sz, void *pc)
TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24
MOVV addr+0(FP), RARG1
MOVV size+8(FP), RARG2
MOVV pc+16(FP), RARG3
ADDV $4, RARG3 // pc is function start, tsan wants return address.
// void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
MOVV $__tsan_write_range(SB), RCALL
JMP racecalladdr<>(SB)
// Call a __tsan function from Go code.
//
// RCALL = tsan function address
// RARG0 = *ThreadState a.k.a. g_racectx from g
// RARG1 = addr passed to __tsan function
//
// If addr (RARG1) is out of range, do nothing. Otherwise, setup goroutine
// context and invoke racecall. Other arguments already set.
TEXT racecalladdr<>(SB), NOSPLIT, $0-0
// Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend).
MOVV runtime·racearenastart(SB), R12
BLT RARG1, R12, data
MOVV runtime·racearenaend(SB), R12
BLT RARG1, R12, call
data:
MOVV runtime·racedatastart(SB), R12
BLT RARG1, R12, ret
MOVV runtime·racedataend(SB), R12
BGE RARG1, R12, ret
call:
load_g
MOVV g_racectx(g), RARG0
JMP racecall<>(SB)
ret:
RET
// func runtime·racefuncenter(pc uintptr)
// Called from instrumented code.
TEXT runtime·racefuncenter<ABIInternal>(SB), NOSPLIT, $0-8
MOVV R4, RCALL
JMP racefuncenter<>(SB)
// Common code for racefuncenter
// RCALL = caller's return address
TEXT racefuncenter<>(SB), NOSPLIT, $0-0
load_g
MOVV g_racectx(g), RARG0 // goroutine racectx
MOVV RCALL, RARG1
// void __tsan_func_enter(ThreadState *thr, void *pc);
MOVV $__tsan_func_enter(SB), RCALL
JAL racecall<>(SB)
RET
// func runtime·racefuncexit()
// Called from instrumented code.
TEXT runtime·racefuncexit<ABIInternal>(SB), NOSPLIT, $0-0
load_g
MOVV g_racectx(g), RARG0 // race context
// void __tsan_func_exit(ThreadState *thr);
MOVV $__tsan_func_exit(SB), RCALL
JMP racecall<>(SB)
// Atomic operations for sync/atomic package.
// R7 = addr of arguments passed to this function, it can
// be fetched at 24(R3) in racecallatomic after two times JAL
// RARG0, RARG1, RARG2 set in racecallatomic
// Load
TEXT sync∕atomic·LoadInt32(SB), NOSPLIT, $0-12
GO_ARGS
MOVV $__tsan_go_atomic32_load(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·LoadInt64(SB), NOSPLIT, $0-16
GO_ARGS
MOVV $__tsan_go_atomic64_load(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·LoadUint32(SB), NOSPLIT, $0-12
GO_ARGS
JMP sync∕atomic·LoadInt32(SB)
TEXT sync∕atomic·LoadUint64(SB), NOSPLIT, $0-16
GO_ARGS
JMP sync∕atomic·LoadInt64(SB)
TEXT sync∕atomic·LoadUintptr(SB), NOSPLIT, $0-16
GO_ARGS
JMP sync∕atomic·LoadInt64(SB)
TEXT sync∕atomic·LoadPointer(SB), NOSPLIT, $0-16
GO_ARGS
JMP sync∕atomic·LoadInt64(SB)
// Store
TEXT sync∕atomic·StoreInt32(SB), NOSPLIT, $0-12
GO_ARGS
MOVV $__tsan_go_atomic32_store(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·StoreInt64(SB), NOSPLIT, $0-16
GO_ARGS
MOVV $__tsan_go_atomic64_store(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·StoreUint32(SB), NOSPLIT, $0-12
GO_ARGS
JMP sync∕atomic·StoreInt32(SB)
TEXT sync∕atomic·StoreUint64(SB), NOSPLIT, $0-16
GO_ARGS
JMP sync∕atomic·StoreInt64(SB)
TEXT sync∕atomic·StoreUintptr(SB), NOSPLIT, $0-16
GO_ARGS
JMP sync∕atomic·StoreInt64(SB)
// Swap
TEXT sync∕atomic·SwapInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVV $__tsan_go_atomic32_exchange(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·SwapInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVV $__tsan_go_atomic64_exchange(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·SwapUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP sync∕atomic·SwapInt32(SB)
TEXT sync∕atomic·SwapUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·SwapInt64(SB)
TEXT sync∕atomic·SwapUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·SwapInt64(SB)
// Add
TEXT sync∕atomic·AddInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVV $__tsan_go_atomic32_fetch_add(SB), RCALL
JAL racecallatomic<>(SB)
MOVW add+8(FP), RARG0 // convert fetch_add to add_fetch
MOVW ret+16(FP), RARG1
ADD RARG0, RARG1, RARG0
MOVW RARG0, ret+16(FP)
RET
TEXT sync∕atomic·AddInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVV $__tsan_go_atomic64_fetch_add(SB), RCALL
JAL racecallatomic<>(SB)
MOVV add+8(FP), RARG0 // convert fetch_add to add_fetch
MOVV ret+16(FP), RARG1
ADDV RARG0, RARG1, RARG0
MOVV RARG0, ret+16(FP)
RET
TEXT sync∕atomic·AddUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP sync∕atomic·AddInt32(SB)
TEXT sync∕atomic·AddUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·AddInt64(SB)
TEXT sync∕atomic·AddUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·AddInt64(SB)
// And
TEXT sync∕atomic·AndInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVV $__tsan_go_atomic32_fetch_and(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·AndInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVV $__tsan_go_atomic64_fetch_and(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·AndUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP sync∕atomic·AndInt32(SB)
TEXT sync∕atomic·AndUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·AndInt64(SB)
TEXT sync∕atomic·AndUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·AndInt64(SB)
// Or
TEXT sync∕atomic·OrInt32(SB), NOSPLIT, $0-20
GO_ARGS
MOVV $__tsan_go_atomic32_fetch_or(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·OrInt64(SB), NOSPLIT, $0-24
GO_ARGS
MOVV $__tsan_go_atomic64_fetch_or(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·OrUint32(SB), NOSPLIT, $0-20
GO_ARGS
JMP sync∕atomic·OrInt32(SB)
TEXT sync∕atomic·OrUint64(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·OrInt64(SB)
TEXT sync∕atomic·OrUintptr(SB), NOSPLIT, $0-24
GO_ARGS
JMP sync∕atomic·OrInt64(SB)
// CompareAndSwap
TEXT sync∕atomic·CompareAndSwapInt32(SB), NOSPLIT, $0-17
GO_ARGS
MOVV $__tsan_go_atomic32_compare_exchange(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·CompareAndSwapInt64(SB), NOSPLIT, $0-25
GO_ARGS
MOVV $__tsan_go_atomic64_compare_exchange(SB), RCALL
JAL racecallatomic<>(SB)
RET
TEXT sync∕atomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17
GO_ARGS
JMP sync∕atomic·CompareAndSwapInt32(SB)
TEXT sync∕atomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25
GO_ARGS
JMP sync∕atomic·CompareAndSwapInt64(SB)
TEXT sync∕atomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25
GO_ARGS
JMP sync∕atomic·CompareAndSwapInt64(SB)
// Generic atomic operation implementation.
// RCALL = addr of target function
TEXT racecallatomic<>(SB), NOSPLIT, $0
// Set up these registers
// RARG0 = *ThreadState
// RARG1 = caller pc
// RARG2 = pc
// RARG3 = addr of incoming arg list
// Trigger SIGSEGV early.
MOVV 24(R3), RARG3 // 1st arg is addr. after two times JAL, get it at 24(R3)
MOVB (RARG3), R12 // segv here if addr is bad
// Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend).
MOVV runtime·racearenastart(SB), R12
BLT RARG3, R12, racecallatomic_data
MOVV runtime·racearenaend(SB), R12
BLT RARG3, R12, racecallatomic_ok
racecallatomic_data:
MOVV runtime·racedatastart(SB), R12
BLT RARG3, R12, racecallatomic_ignore
MOVV runtime·racedataend(SB), R12
BGE RARG3, R12, racecallatomic_ignore
racecallatomic_ok:
// Addr is within the good range, call the atomic function.
load_g
MOVV g_racectx(g), RARG0 // goroutine context
MOVV 8(R3), RARG1 // caller pc
MOVV RCALL, RARG2 // pc
ADDV $24, R3, RARG3
JAL racecall<>(SB) // does not return
RET
racecallatomic_ignore:
// Addr is outside the good range.
// Call __tsan_go_ignore_sync_begin to ignore synchronization during the atomic op.
// An attempt to synchronize on the address would cause crash.
MOVV RCALL, R25 // remember the original function
MOVV $__tsan_go_ignore_sync_begin(SB), RCALL
load_g
MOVV g_racectx(g), RARG0 // goroutine context
JAL racecall<>(SB)
MOVV R25, RCALL // restore the original function
// Call the atomic function.
// racecall will call LLVM race code which might clobber R22 (g)
load_g
MOVV g_racectx(g), RARG0 // goroutine context
MOVV 8(R3), RARG1 // caller pc
MOVV RCALL, RARG2 // pc
ADDV $24, R3, RARG3 // arguments
JAL racecall<>(SB)
// Call __tsan_go_ignore_sync_end.
MOVV $__tsan_go_ignore_sync_end(SB), RCALL
MOVV g_racectx(g), RARG0 // goroutine context
JAL racecall<>(SB)
RET
// func runtime·racecall(void(*f)(...), ...)
// Calls C function f from race runtime and passes up to 4 arguments to it.
// The arguments are never heap-object-preserving pointers, so we pretend there are no arguments.
TEXT runtime·racecall(SB), NOSPLIT, $0-0
MOVV fn+0(FP), RCALL
MOVV arg0+8(FP), RARG0
MOVV arg1+16(FP), RARG1
MOVV arg2+24(FP), RARG2
MOVV arg3+32(FP), RARG3
JMP racecall<>(SB)
// Switches SP to g0 stack and calls (RCALL). Arguments already set.
TEXT racecall<>(SB), NOSPLIT|NOFRAME, $0-0
MOVV g_m(g), R12
// Switch to g0 stack.
MOVV R3, R23 // callee-saved, preserved across the CALL
MOVV R1, R24 // callee-saved, preserved across the CALL
// Switch to g0 stack if we aren't already on g0 or gsignal.
MOVV m_gsignal(R12), R13
BEQ R13, g, call
MOVV m_g0(R12), R13
BEQ R13, g, call
MOVV (g_sched+gobuf_sp)(R13), R3
call:
JAL (RCALL)
MOVV R23, R3
JAL (R24)
RET
// C->Go callback thunk that allows to call runtime·racesymbolize from C code.
// Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g.
// The overall effect of Go->C->Go call chain is similar to that of mcall.
// RARG0 contains command code. RARG1 contains command-specific context.
// See racecallback for command codes.
TEXT runtime·racecallbackthunk(SB), NOSPLIT|NOFRAME, $0
// Handle command raceGetProcCmd (0) here.
// First, code below assumes that we are on curg, while raceGetProcCmd
// can be executed on g0. Second, it is called frequently, so will
// benefit from this fast path.
BNE RARG0, R0, rest
MOVV g, R15
load_g
MOVV g_m(g), RARG0
MOVV m_p(RARG0), RARG0
MOVV p_raceprocctx(RARG0), RARG0
MOVV RARG0, (RARG1)
MOVV R15, g
JMP (R1)
rest:
// Save callee-saved registers (Go code won't respect that).
// 8(R3) and 16(R3) are for args passed through racecallback
ADDV $-176, R3
MOVV R1, 0(R3)
SAVE_R22_TO_R31(8*3)
SAVE_F24_TO_F31(8*13)
// Set g = g0.
load_g
MOVV g_m(g), R15
MOVV m_g0(R15), R14
BEQ R14, g, noswitch // branch if already on g0
MOVV R14, g
JAL runtime·racecallback<ABIInternal>(SB)
// All registers are smashed after Go code, reload.
MOVV g_m(g), R15
MOVV m_curg(R15), g // g = m->curg
ret:
// Restore callee-saved registers.
MOVV 0(R3), R1
RESTORE_F24_TO_F31(8*13)
RESTORE_R22_TO_R31(8*3)
ADDV $176, R3
JMP (R1)
noswitch:
// already on g0
JAL runtime·racecallback<ABIInternal>(SB)
JMP ret
// tls_g, g value for each thread in TLS
GLOBL runtime·tls_g+0(SB), TLSBSS+DUPOK, $8