blob: 23ff417eee930335610ddf2f04eb9538617853d6 [file] [log] [blame]
// Code generated from gen/decArgs.rules; DO NOT EDIT.
// generated with: cd gen; go run *.go
package ssa
func rewriteValuedecArgs(v *Value) bool {
switch v.Op {
case OpArg:
return rewriteValuedecArgs_OpArg(v)
}
return false
}
func rewriteValuedecArgs_OpArg(v *Value) bool {
b := v.Block
config := b.Func.Config
fe := b.Func.fe
typ := &b.Func.Config.Types
// match: (Arg {n} [off])
// cond: v.Type.IsString()
// result: (StringMake (Arg <typ.BytePtr> {n} [off]) (Arg <typ.Int> {n} [off+int32(config.PtrSize)]))
for {
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(v.Type.IsString()) {
break
}
v.reset(OpStringMake)
v0 := b.NewValue0(v.Pos, OpArg, typ.BytePtr)
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, typ.Int)
v1.AuxInt = int32ToAuxInt(off + int32(config.PtrSize))
v1.Aux = symToAux(n)
v.AddArg2(v0, v1)
return true
}
// match: (Arg {n} [off])
// cond: v.Type.IsSlice()
// result: (SliceMake (Arg <v.Type.Elem().PtrTo()> {n} [off]) (Arg <typ.Int> {n} [off+int32(config.PtrSize)]) (Arg <typ.Int> {n} [off+2*int32(config.PtrSize)]))
for {
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(v.Type.IsSlice()) {
break
}
v.reset(OpSliceMake)
v0 := b.NewValue0(v.Pos, OpArg, v.Type.Elem().PtrTo())
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, typ.Int)
v1.AuxInt = int32ToAuxInt(off + int32(config.PtrSize))
v1.Aux = symToAux(n)
v2 := b.NewValue0(v.Pos, OpArg, typ.Int)
v2.AuxInt = int32ToAuxInt(off + 2*int32(config.PtrSize))
v2.Aux = symToAux(n)
v.AddArg3(v0, v1, v2)
return true
}
// match: (Arg {n} [off])
// cond: v.Type.IsInterface()
// result: (IMake (Arg <typ.Uintptr> {n} [off]) (Arg <typ.BytePtr> {n} [off+int32(config.PtrSize)]))
for {
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(v.Type.IsInterface()) {
break
}
v.reset(OpIMake)
v0 := b.NewValue0(v.Pos, OpArg, typ.Uintptr)
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, typ.BytePtr)
v1.AuxInt = int32ToAuxInt(off + int32(config.PtrSize))
v1.Aux = symToAux(n)
v.AddArg2(v0, v1)
return true
}
// match: (Arg {n} [off])
// cond: v.Type.IsComplex() && v.Type.Size() == 16
// result: (ComplexMake (Arg <typ.Float64> {n} [off]) (Arg <typ.Float64> {n} [off+8]))
for {
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(v.Type.IsComplex() && v.Type.Size() == 16) {
break
}
v.reset(OpComplexMake)
v0 := b.NewValue0(v.Pos, OpArg, typ.Float64)
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, typ.Float64)
v1.AuxInt = int32ToAuxInt(off + 8)
v1.Aux = symToAux(n)
v.AddArg2(v0, v1)
return true
}
// match: (Arg {n} [off])
// cond: v.Type.IsComplex() && v.Type.Size() == 8
// result: (ComplexMake (Arg <typ.Float32> {n} [off]) (Arg <typ.Float32> {n} [off+4]))
for {
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(v.Type.IsComplex() && v.Type.Size() == 8) {
break
}
v.reset(OpComplexMake)
v0 := b.NewValue0(v.Pos, OpArg, typ.Float32)
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, typ.Float32)
v1.AuxInt = int32ToAuxInt(off + 4)
v1.Aux = symToAux(n)
v.AddArg2(v0, v1)
return true
}
// match: (Arg <t>)
// cond: t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t)
// result: (StructMake0)
for {
t := v.Type
if !(t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t)) {
break
}
v.reset(OpStructMake0)
return true
}
// match: (Arg <t> {n} [off])
// cond: t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t)
// result: (StructMake1 (Arg <t.FieldType(0)> {n} [off+int32(t.FieldOff(0))]))
for {
t := v.Type
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t)) {
break
}
v.reset(OpStructMake1)
v0 := b.NewValue0(v.Pos, OpArg, t.FieldType(0))
v0.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(0)))
v0.Aux = symToAux(n)
v.AddArg(v0)
return true
}
// match: (Arg <t> {n} [off])
// cond: t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t)
// result: (StructMake2 (Arg <t.FieldType(0)> {n} [off+int32(t.FieldOff(0))]) (Arg <t.FieldType(1)> {n} [off+int32(t.FieldOff(1))]))
for {
t := v.Type
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t)) {
break
}
v.reset(OpStructMake2)
v0 := b.NewValue0(v.Pos, OpArg, t.FieldType(0))
v0.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(0)))
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, t.FieldType(1))
v1.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(1)))
v1.Aux = symToAux(n)
v.AddArg2(v0, v1)
return true
}
// match: (Arg <t> {n} [off])
// cond: t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t)
// result: (StructMake3 (Arg <t.FieldType(0)> {n} [off+int32(t.FieldOff(0))]) (Arg <t.FieldType(1)> {n} [off+int32(t.FieldOff(1))]) (Arg <t.FieldType(2)> {n} [off+int32(t.FieldOff(2))]))
for {
t := v.Type
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t)) {
break
}
v.reset(OpStructMake3)
v0 := b.NewValue0(v.Pos, OpArg, t.FieldType(0))
v0.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(0)))
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, t.FieldType(1))
v1.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(1)))
v1.Aux = symToAux(n)
v2 := b.NewValue0(v.Pos, OpArg, t.FieldType(2))
v2.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(2)))
v2.Aux = symToAux(n)
v.AddArg3(v0, v1, v2)
return true
}
// match: (Arg <t> {n} [off])
// cond: t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t)
// result: (StructMake4 (Arg <t.FieldType(0)> {n} [off+int32(t.FieldOff(0))]) (Arg <t.FieldType(1)> {n} [off+int32(t.FieldOff(1))]) (Arg <t.FieldType(2)> {n} [off+int32(t.FieldOff(2))]) (Arg <t.FieldType(3)> {n} [off+int32(t.FieldOff(3))]))
for {
t := v.Type
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t)) {
break
}
v.reset(OpStructMake4)
v0 := b.NewValue0(v.Pos, OpArg, t.FieldType(0))
v0.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(0)))
v0.Aux = symToAux(n)
v1 := b.NewValue0(v.Pos, OpArg, t.FieldType(1))
v1.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(1)))
v1.Aux = symToAux(n)
v2 := b.NewValue0(v.Pos, OpArg, t.FieldType(2))
v2.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(2)))
v2.Aux = symToAux(n)
v3 := b.NewValue0(v.Pos, OpArg, t.FieldType(3))
v3.AuxInt = int32ToAuxInt(off + int32(t.FieldOff(3)))
v3.Aux = symToAux(n)
v.AddArg4(v0, v1, v2, v3)
return true
}
// match: (Arg <t>)
// cond: t.IsArray() && t.NumElem() == 0
// result: (ArrayMake0)
for {
t := v.Type
if !(t.IsArray() && t.NumElem() == 0) {
break
}
v.reset(OpArrayMake0)
return true
}
// match: (Arg <t> {n} [off])
// cond: t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t)
// result: (ArrayMake1 (Arg <t.Elem()> {n} [off]))
for {
t := v.Type
off := auxIntToInt32(v.AuxInt)
n := auxToSym(v.Aux)
if !(t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t)) {
break
}
v.reset(OpArrayMake1)
v0 := b.NewValue0(v.Pos, OpArg, t.Elem())
v0.AuxInt = int32ToAuxInt(off)
v0.Aux = symToAux(n)
v.AddArg(v0)
return true
}
return false
}
func rewriteBlockdecArgs(b *Block) bool {
switch b.Kind {
}
return false
}