blob: 1080b276e7c7f389e52c0764d6cf7715edb2568e [file] [log] [blame]
 // run // Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY! // (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src") // This program tests arbitrary precision constant arithmetic // by generating the constant elements of a Hilbert matrix H, // its inverse I, and the product P = H*I. The product should // be the identity matrix. package main func main() { if !ok { print() return } } // Hilbert matrix, n = 2 const ( h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2) h1_0, h1_1 ) // Inverse Hilbert matrix const ( i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0 i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0 i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1 i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1 ) // Product matrix const ( p0_0 = h0_0*i0_0 + h0_1*i1_0 p0_1 = h0_0*i0_1 + h0_1*i1_1 p1_0 = h1_0*i0_0 + h1_1*i1_0 p1_1 = h1_0*i0_1 + h1_1*i1_1 ) // Verify that product is identity matrix const ok = p0_0 == 1 && p0_1 == 0 && p1_0 == 0 && p1_1 == 1 && true func print() { println(p0_0, p0_1) println(p1_0, p1_1) } // Binomials const ( b0_0 = f0 / (f0 * f0) b1_0 = f1 / (f0 * f1) b1_1 = f1 / (f1 * f0) b2_0 = f2 / (f0 * f2) b2_1 = f2 / (f1 * f1) b2_2 = f2 / (f2 * f0) b3_0 = f3 / (f0 * f3) b3_1 = f3 / (f1 * f2) b3_2 = f3 / (f2 * f1) b3_3 = f3 / (f3 * f0) ) // Factorials const ( f0 = 1 f1 = 1 f2 = f1 * 2 f3 = f2 * 3 )