| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Time-related runtime and pieces of package time. |
| |
| package time |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "os_GOOS.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| #include "race.h" |
| |
| enum { |
| debug = 0, |
| }; |
| |
| static Timers timers; |
| static void addtimer(Timer*); |
| static void dumptimers(int8*); |
| |
| // nacl fake time support. |
| int64 runtime·timens; |
| |
| // Package time APIs. |
| // Godoc uses the comments in package time, not these. |
| |
| // time.now is implemented in assembly. |
| |
| // runtimeNano returns the current value of the runtime clock in nanoseconds. |
| func runtimeNano() (ns int64) { |
| ns = runtime·nanotime(); |
| } |
| |
| // Sleep puts the current goroutine to sleep for at least ns nanoseconds. |
| func Sleep(ns int64) { |
| runtime·tsleep(ns, "sleep"); |
| } |
| |
| // startTimer adds t to the timer heap. |
| func startTimer(t *Timer) { |
| if(raceenabled) |
| runtime·racerelease(t); |
| runtime·addtimer(t); |
| } |
| |
| // stopTimer removes t from the timer heap if it is there. |
| // It returns true if t was removed, false if t wasn't even there. |
| func stopTimer(t *Timer) (stopped bool) { |
| stopped = runtime·deltimer(t); |
| } |
| |
| // C runtime. |
| |
| void runtime·gc_unixnanotime(int64 *now); |
| |
| int64 runtime·unixnanotime(void) |
| { |
| int64 now; |
| |
| runtime·gc_unixnanotime(&now); |
| return now; |
| } |
| |
| static void timerproc(void); |
| static void siftup(int32); |
| static void siftdown(int32); |
| |
| // Ready the goroutine e.data. |
| static void |
| ready(int64 now, Eface e) |
| { |
| USED(now); |
| |
| runtime·ready(e.data); |
| } |
| |
| static FuncVal readyv = {(void(*)(void))ready}; |
| |
| // Put the current goroutine to sleep for ns nanoseconds. |
| void |
| runtime·tsleep(int64 ns, int8 *reason) |
| { |
| Timer t; |
| |
| if(ns <= 0) |
| return; |
| |
| t.when = runtime·nanotime() + ns; |
| t.period = 0; |
| t.fv = &readyv; |
| t.arg.data = g; |
| runtime·lock(&timers); |
| addtimer(&t); |
| runtime·parkunlock(&timers, reason); |
| } |
| |
| static FuncVal timerprocv = {timerproc}; |
| |
| void |
| runtime·addtimer(Timer *t) |
| { |
| runtime·lock(&timers); |
| addtimer(t); |
| runtime·unlock(&timers); |
| } |
| |
| // Add a timer to the heap and start or kick the timer proc |
| // if the new timer is earlier than any of the others. |
| static void |
| addtimer(Timer *t) |
| { |
| int32 n; |
| Timer **nt; |
| |
| // when must never be negative; otherwise timerproc will overflow |
| // during its delta calculation and never expire other timers. |
| if(t->when < 0) |
| t->when = (1LL<<63)-1; |
| |
| if(timers.len >= timers.cap) { |
| // Grow slice. |
| n = 16; |
| if(n <= timers.cap) |
| n = timers.cap*3 / 2; |
| nt = runtime·malloc(n*sizeof nt[0]); |
| runtime·memmove(nt, timers.t, timers.len*sizeof nt[0]); |
| runtime·free(timers.t); |
| timers.t = nt; |
| timers.cap = n; |
| } |
| t->i = timers.len++; |
| timers.t[t->i] = t; |
| siftup(t->i); |
| if(t->i == 0) { |
| // siftup moved to top: new earliest deadline. |
| if(timers.sleeping) { |
| timers.sleeping = false; |
| runtime·notewakeup(&timers.waitnote); |
| } |
| if(timers.rescheduling) { |
| timers.rescheduling = false; |
| runtime·ready(timers.timerproc); |
| } |
| } |
| if(timers.timerproc == nil) { |
| timers.timerproc = runtime·newproc1(&timerprocv, nil, 0, 0, addtimer); |
| timers.timerproc->issystem = true; |
| } |
| if(debug) |
| dumptimers("addtimer"); |
| } |
| |
| // Delete timer t from the heap. |
| // Do not need to update the timerproc: |
| // if it wakes up early, no big deal. |
| bool |
| runtime·deltimer(Timer *t) |
| { |
| int32 i; |
| |
| // Dereference t so that any panic happens before the lock is held. |
| // Discard result, because t might be moving in the heap. |
| i = t->i; |
| USED(i); |
| |
| runtime·lock(&timers); |
| |
| // t may not be registered anymore and may have |
| // a bogus i (typically 0, if generated by Go). |
| // Verify it before proceeding. |
| i = t->i; |
| if(i < 0 || i >= timers.len || timers.t[i] != t) { |
| runtime·unlock(&timers); |
| return false; |
| } |
| |
| timers.len--; |
| if(i == timers.len) { |
| timers.t[i] = nil; |
| } else { |
| timers.t[i] = timers.t[timers.len]; |
| timers.t[timers.len] = nil; |
| timers.t[i]->i = i; |
| siftup(i); |
| siftdown(i); |
| } |
| if(debug) |
| dumptimers("deltimer"); |
| runtime·unlock(&timers); |
| return true; |
| } |
| |
| // Timerproc runs the time-driven events. |
| // It sleeps until the next event in the timers heap. |
| // If addtimer inserts a new earlier event, addtimer |
| // wakes timerproc early. |
| static void |
| timerproc(void) |
| { |
| int64 delta, now; |
| Timer *t; |
| void (*f)(int64, Eface); |
| Eface arg; |
| |
| for(;;) { |
| runtime·lock(&timers); |
| timers.sleeping = false; |
| now = runtime·nanotime(); |
| for(;;) { |
| if(timers.len == 0) { |
| delta = -1; |
| break; |
| } |
| t = timers.t[0]; |
| delta = t->when - now; |
| if(delta > 0) |
| break; |
| if(t->period > 0) { |
| // leave in heap but adjust next time to fire |
| t->when += t->period * (1 + -delta/t->period); |
| siftdown(0); |
| } else { |
| // remove from heap |
| timers.t[0] = timers.t[--timers.len]; |
| timers.t[0]->i = 0; |
| siftdown(0); |
| t->i = -1; // mark as removed |
| } |
| f = (void*)t->fv->fn; |
| arg = t->arg; |
| runtime·unlock(&timers); |
| if(raceenabled) |
| runtime·raceacquire(t); |
| f(now, arg); |
| |
| // clear f and arg to avoid leak while sleeping for next timer |
| f = nil; |
| USED(f); |
| arg.type = nil; |
| arg.data = nil; |
| USED(&arg); |
| |
| runtime·lock(&timers); |
| } |
| if(delta < 0) { |
| // No timers left - put goroutine to sleep. |
| timers.rescheduling = true; |
| g->isbackground = true; |
| runtime·parkunlock(&timers, "timer goroutine (idle)"); |
| g->isbackground = false; |
| continue; |
| } |
| // At least one timer pending. Sleep until then. |
| timers.sleeping = true; |
| runtime·noteclear(&timers.waitnote); |
| runtime·unlock(&timers); |
| runtime·notetsleepg(&timers.waitnote, delta); |
| } |
| } |
| |
| // heap maintenance algorithms. |
| |
| static void |
| siftup(int32 i) |
| { |
| int32 p; |
| int64 when; |
| Timer **t, *tmp; |
| |
| t = timers.t; |
| when = t[i]->when; |
| tmp = t[i]; |
| while(i > 0) { |
| p = (i-1)/4; // parent |
| if(when >= t[p]->when) |
| break; |
| t[i] = t[p]; |
| t[i]->i = i; |
| t[p] = tmp; |
| tmp->i = p; |
| i = p; |
| } |
| } |
| |
| static void |
| siftdown(int32 i) |
| { |
| int32 c, c3, len; |
| int64 when, w, w3; |
| Timer **t, *tmp; |
| |
| t = timers.t; |
| len = timers.len; |
| when = t[i]->when; |
| tmp = t[i]; |
| for(;;) { |
| c = i*4 + 1; // left child |
| c3 = c + 2; // mid child |
| if(c >= len) { |
| break; |
| } |
| w = t[c]->when; |
| if(c+1 < len && t[c+1]->when < w) { |
| w = t[c+1]->when; |
| c++; |
| } |
| if(c3 < len) { |
| w3 = t[c3]->when; |
| if(c3+1 < len && t[c3+1]->when < w3) { |
| w3 = t[c3+1]->when; |
| c3++; |
| } |
| if(w3 < w) { |
| w = w3; |
| c = c3; |
| } |
| } |
| if(w >= when) |
| break; |
| t[i] = t[c]; |
| t[i]->i = i; |
| t[c] = tmp; |
| tmp->i = c; |
| i = c; |
| } |
| } |
| |
| static void |
| dumptimers(int8 *msg) |
| { |
| Timer *t; |
| int32 i; |
| |
| runtime·printf("timers: %s\n", msg); |
| for(i = 0; i < timers.len; i++) { |
| t = timers.t[i]; |
| runtime·printf("\t%d\t%p:\ti %d when %D period %D fn %p\n", |
| i, t, t->i, t->when, t->period, t->fv->fn); |
| } |
| runtime·printf("\n"); |
| } |