blob: e7fd2cc06f5ca92cf87a869255d1dafa8c7812a1 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
#include "../../cmd/ld/textflag.h"
extern SigTab runtime·sigtab[];
extern int32 runtime·sys_umtx_sleep(uint32*, int32, int32);
extern int32 runtime·sys_umtx_wakeup(uint32*, int32);
// From DragonFly's <sys/sysctl.h>
#define CTL_HW 6
#define HW_NCPU 3
static Sigset sigset_none;
static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, };
static int32
getncpu(void)
{
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
// Fetch hw.ncpu via sysctl.
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
return out;
else
return 1;
}
#pragma textflag NOSPLIT
void
runtime·futexsleep(uint32 *addr, uint32 val, int64 ns)
{
int32 timeout = 0;
int32 ret;
if(ns >= 0) {
// The timeout is specified in microseconds - ensure that we
// do not end up dividing to zero, which would put us to sleep
// indefinitely...
timeout = runtime·timediv(ns, 1000, nil);
if(timeout == 0)
timeout = 1;
}
// sys_umtx_sleep will return EWOULDBLOCK (EAGAIN) when the timeout
// expires or EBUSY if the mutex value does not match.
ret = runtime·sys_umtx_sleep(addr, val, timeout);
if(ret >= 0 || ret == -EINTR || ret == -EAGAIN || ret == -EBUSY)
return;
runtime·prints("umtx_wait addr=");
runtime·printpointer(addr);
runtime·prints(" val=");
runtime·printint(val);
runtime·prints(" ret=");
runtime·printint(ret);
runtime·prints("\n");
*(int32*)0x1005 = 0x1005;
}
void
runtime·futexwakeup(uint32 *addr, uint32 cnt)
{
int32 ret;
ret = runtime·sys_umtx_wakeup(addr, cnt);
if(ret >= 0)
return;
runtime·printf("umtx_wake addr=%p ret=%d\n", addr, ret);
*(int32*)0x1006 = 0x1006;
}
void runtime·lwp_start(void*);
void
runtime·newosproc(M *mp, void *stk)
{
Lwpparams params;
Sigset oset;
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
runtime·sigprocmask(&sigset_all, &oset);
runtime·memclr((byte*)&params, sizeof params);
params.func = runtime·lwp_start;
params.arg = (byte*)mp;
params.stack = (byte*)stk;
params.tid1 = (int32*)&mp->procid;
params.tid2 = nil;
mp->tls[0] = mp->id; // so 386 asm can find it
runtime·lwp_create(&params);
runtime·sigprocmask(&oset, nil);
}
void
runtime·osinit(void)
{
runtime·ncpu = getncpu();
}
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
#pragma dataflag NOPTR
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024);
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling
runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024);
runtime·sigprocmask(&sigset_none, nil);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
void
runtime·sigpanic(void)
{
if(!runtime·canpanic(g))
runtime·throw("unexpected signal during runtime execution");
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000 || g->paniconfault) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000 || g->paniconfault) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
uintptr
runtime·memlimit(void)
{
Rlimit rl;
extern byte text[], end[];
uintptr used;
if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
return 0;
if(rl.rlim_cur >= 0x7fffffff)
return 0;
// Estimate our VM footprint excluding the heap.
// Not an exact science: use size of binary plus
// some room for thread stacks.
used = end - text + (64<<20);
if(used >= rl.rlim_cur)
return 0;
// If there's not at least 16 MB left, we're probably
// not going to be able to do much. Treat as no limit.
rl.rlim_cur -= used;
if(rl.rlim_cur < (16<<20))
return 0;
return rl.rlim_cur - used;
}
extern void runtime·sigtramp(void);
typedef struct sigaction {
union {
void (*__sa_handler)(int32);
void (*__sa_sigaction)(int32, Siginfo*, void *);
} __sigaction_u; /* signal handler */
int32 sa_flags; /* see signal options below */
Sigset sa_mask; /* signal mask to apply */
} Sigaction;
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask.__bits[0] = ~(uint32)0;
sa.sa_mask.__bits[1] = ~(uint32)0;
sa.sa_mask.__bits[2] = ~(uint32)0;
sa.sa_mask.__bits[3] = ~(uint32)0;
if(fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa.__sigaction_u.__sa_sigaction = (void*)fn;
runtime·sigaction(i, &sa, nil);
}
GoSighandler*
runtime·getsig(int32 i)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
runtime·sigaction(i, nil, &sa);
if((void*)sa.__sigaction_u.__sa_sigaction == runtime·sigtramp)
return runtime·sighandler;
return (void*)sa.__sigaction_u.__sa_sigaction;
}
void
runtime·signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = (void*)p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}
void
runtime·unblocksignals(void)
{
runtime·sigprocmask(&sigset_none, nil);
}