| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "os_GOOS.h" |
| #include "signal_unix.h" |
| #include "stack.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| extern SigTab runtime·sigtab[]; |
| extern int32 runtime·sys_umtx_sleep(uint32*, int32, int32); |
| extern int32 runtime·sys_umtx_wakeup(uint32*, int32); |
| |
| // From DragonFly's <sys/sysctl.h> |
| #define CTL_HW 6 |
| #define HW_NCPU 3 |
| |
| static Sigset sigset_none; |
| static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, }; |
| |
| static int32 |
| getncpu(void) |
| { |
| uint32 mib[2]; |
| uint32 out; |
| int32 ret; |
| uintptr nout; |
| |
| // Fetch hw.ncpu via sysctl. |
| mib[0] = CTL_HW; |
| mib[1] = HW_NCPU; |
| nout = sizeof out; |
| out = 0; |
| ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); |
| if(ret >= 0) |
| return out; |
| else |
| return 1; |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) |
| { |
| int32 timeout = 0; |
| int32 ret; |
| |
| if(ns >= 0) { |
| // The timeout is specified in microseconds - ensure that we |
| // do not end up dividing to zero, which would put us to sleep |
| // indefinitely... |
| timeout = runtime·timediv(ns, 1000, nil); |
| if(timeout == 0) |
| timeout = 1; |
| } |
| |
| // sys_umtx_sleep will return EWOULDBLOCK (EAGAIN) when the timeout |
| // expires or EBUSY if the mutex value does not match. |
| ret = runtime·sys_umtx_sleep(addr, val, timeout); |
| if(ret >= 0 || ret == -EINTR || ret == -EAGAIN || ret == -EBUSY) |
| return; |
| |
| runtime·prints("umtx_wait addr="); |
| runtime·printpointer(addr); |
| runtime·prints(" val="); |
| runtime·printint(val); |
| runtime·prints(" ret="); |
| runtime·printint(ret); |
| runtime·prints("\n"); |
| *(int32*)0x1005 = 0x1005; |
| } |
| |
| void |
| runtime·futexwakeup(uint32 *addr, uint32 cnt) |
| { |
| int32 ret; |
| |
| ret = runtime·sys_umtx_wakeup(addr, cnt); |
| if(ret >= 0) |
| return; |
| |
| runtime·printf("umtx_wake addr=%p ret=%d\n", addr, ret); |
| *(int32*)0x1006 = 0x1006; |
| } |
| |
| void runtime·lwp_start(void*); |
| |
| void |
| runtime·newosproc(M *mp, void *stk) |
| { |
| Lwpparams params; |
| Sigset oset; |
| |
| if(0){ |
| runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n", |
| stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp); |
| } |
| |
| runtime·sigprocmask(&sigset_all, &oset); |
| runtime·memclr((byte*)¶ms, sizeof params); |
| |
| params.func = runtime·lwp_start; |
| params.arg = (byte*)mp; |
| params.stack = (byte*)stk; |
| params.tid1 = (int32*)&mp->procid; |
| params.tid2 = nil; |
| |
| mp->tls[0] = mp->id; // so 386 asm can find it |
| |
| runtime·lwp_create(¶ms); |
| runtime·sigprocmask(&oset, nil); |
| } |
| |
| void |
| runtime·osinit(void) |
| { |
| runtime·ncpu = getncpu(); |
| } |
| |
| void |
| runtime·get_random_data(byte **rnd, int32 *rnd_len) |
| { |
| #pragma dataflag NOPTR |
| static byte urandom_data[HashRandomBytes]; |
| int32 fd; |
| fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); |
| if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { |
| *rnd = urandom_data; |
| *rnd_len = HashRandomBytes; |
| } else { |
| *rnd = nil; |
| *rnd_len = 0; |
| } |
| runtime·close(fd); |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| void |
| runtime·mpreinit(M *mp) |
| { |
| mp->gsignal = runtime·malg(32*1024); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, can not allocate memory. |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling |
| runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); |
| runtime·sigprocmask(&sigset_none, nil); |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| void |
| runtime·unminit(void) |
| { |
| runtime·signalstack(nil, 0); |
| } |
| |
| void |
| runtime·sigpanic(void) |
| { |
| if(!runtime·canpanic(g)) |
| runtime·throw("unexpected signal during runtime execution"); |
| |
| switch(g->sig) { |
| case SIGBUS: |
| if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000 || g->paniconfault) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGSEGV: |
| if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000 || g->paniconfault) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGFPE: |
| switch(g->sigcode0) { |
| case FPE_INTDIV: |
| runtime·panicstring("integer divide by zero"); |
| case FPE_INTOVF: |
| runtime·panicstring("integer overflow"); |
| } |
| runtime·panicstring("floating point error"); |
| } |
| runtime·panicstring(runtime·sigtab[g->sig].name); |
| } |
| |
| uintptr |
| runtime·memlimit(void) |
| { |
| Rlimit rl; |
| extern byte text[], end[]; |
| uintptr used; |
| |
| if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) |
| return 0; |
| if(rl.rlim_cur >= 0x7fffffff) |
| return 0; |
| |
| // Estimate our VM footprint excluding the heap. |
| // Not an exact science: use size of binary plus |
| // some room for thread stacks. |
| used = end - text + (64<<20); |
| if(used >= rl.rlim_cur) |
| return 0; |
| |
| // If there's not at least 16 MB left, we're probably |
| // not going to be able to do much. Treat as no limit. |
| rl.rlim_cur -= used; |
| if(rl.rlim_cur < (16<<20)) |
| return 0; |
| |
| return rl.rlim_cur - used; |
| } |
| |
| extern void runtime·sigtramp(void); |
| |
| typedef struct sigaction { |
| union { |
| void (*__sa_handler)(int32); |
| void (*__sa_sigaction)(int32, Siginfo*, void *); |
| } __sigaction_u; /* signal handler */ |
| int32 sa_flags; /* see signal options below */ |
| Sigset sa_mask; /* signal mask to apply */ |
| } Sigaction; |
| |
| void |
| runtime·setsig(int32 i, GoSighandler *fn, bool restart) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_SIGINFO|SA_ONSTACK; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask.__bits[0] = ~(uint32)0; |
| sa.sa_mask.__bits[1] = ~(uint32)0; |
| sa.sa_mask.__bits[2] = ~(uint32)0; |
| sa.sa_mask.__bits[3] = ~(uint32)0; |
| if(fn == runtime·sighandler) |
| fn = (void*)runtime·sigtramp; |
| sa.__sigaction_u.__sa_sigaction = (void*)fn; |
| runtime·sigaction(i, &sa, nil); |
| } |
| |
| GoSighandler* |
| runtime·getsig(int32 i) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| runtime·sigaction(i, nil, &sa); |
| if((void*)sa.__sigaction_u.__sa_sigaction == runtime·sigtramp) |
| return runtime·sighandler; |
| return (void*)sa.__sigaction_u.__sa_sigaction; |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| StackT st; |
| |
| st.ss_sp = (void*)p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| if(p == nil) |
| st.ss_flags = SS_DISABLE; |
| runtime·sigaltstack(&st, nil); |
| } |
| |
| void |
| runtime·unblocksignals(void) |
| { |
| runtime·sigprocmask(&sigset_none, nil); |
| } |