blob: eea9207f2521a60fdf897931365bfc1e791df1db [file] [log] [blame]
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package textproto
import (
"bufio"
"bytes"
"io"
"io/ioutil"
"strconv"
"strings"
)
// BUG(rsc): To let callers manage exposure to denial of service
// attacks, Reader should allow them to set and reset a limit on
// the number of bytes read from the connection.
// A Reader implements convenience methods for reading requests
// or responses from a text protocol network connection.
type Reader struct {
R *bufio.Reader
dot *dotReader
buf []byte // a re-usable buffer for readContinuedLineSlice
}
// NewReader returns a new Reader reading from r.
func NewReader(r *bufio.Reader) *Reader {
return &Reader{R: r}
}
// ReadLine reads a single line from r,
// eliding the final \n or \r\n from the returned string.
func (r *Reader) ReadLine() (string, error) {
line, err := r.readLineSlice()
return string(line), err
}
// ReadLineBytes is like ReadLine but returns a []byte instead of a string.
func (r *Reader) ReadLineBytes() ([]byte, error) {
line, err := r.readLineSlice()
if line != nil {
buf := make([]byte, len(line))
copy(buf, line)
line = buf
}
return line, err
}
func (r *Reader) readLineSlice() ([]byte, error) {
r.closeDot()
var line []byte
for {
l, more, err := r.R.ReadLine()
if err != nil {
return nil, err
}
// Avoid the copy if the first call produced a full line.
if line == nil && !more {
return l, nil
}
line = append(line, l...)
if !more {
break
}
}
return line, nil
}
// ReadContinuedLine reads a possibly continued line from r,
// eliding the final trailing ASCII white space.
// Lines after the first are considered continuations if they
// begin with a space or tab character. In the returned data,
// continuation lines are separated from the previous line
// only by a single space: the newline and leading white space
// are removed.
//
// For example, consider this input:
//
// Line 1
// continued...
// Line 2
//
// The first call to ReadContinuedLine will return "Line 1 continued..."
// and the second will return "Line 2".
//
// A line consisting of only white space is never continued.
//
func (r *Reader) ReadContinuedLine() (string, error) {
line, err := r.readContinuedLineSlice()
return string(line), err
}
// trim returns s with leading and trailing spaces and tabs removed.
// It does not assume Unicode or UTF-8.
func trim(s []byte) []byte {
i := 0
for i < len(s) && (s[i] == ' ' || s[i] == '\t') {
i++
}
n := len(s)
for n > i && (s[n-1] == ' ' || s[n-1] == '\t') {
n--
}
return s[i:n]
}
// ReadContinuedLineBytes is like ReadContinuedLine but
// returns a []byte instead of a string.
func (r *Reader) ReadContinuedLineBytes() ([]byte, error) {
line, err := r.readContinuedLineSlice()
if line != nil {
buf := make([]byte, len(line))
copy(buf, line)
line = buf
}
return line, err
}
func (r *Reader) readContinuedLineSlice() ([]byte, error) {
// Read the first line.
line, err := r.readLineSlice()
if err != nil {
return nil, err
}
if len(line) == 0 { // blank line - no continuation
return line, nil
}
// Optimistically assume that we have started to buffer the next line
// and it starts with an ASCII letter (the next header key), so we can
// avoid copying that buffered data around in memory and skipping over
// non-existent whitespace.
if r.R.Buffered() > 1 {
peek, err := r.R.Peek(1)
if err == nil && isASCIILetter(peek[0]) {
return trim(line), nil
}
}
// ReadByte or the next readLineSlice will flush the read buffer;
// copy the slice into buf.
r.buf = append(r.buf[:0], trim(line)...)
// Read continuation lines.
for r.skipSpace() > 0 {
line, err := r.readLineSlice()
if err != nil {
break
}
r.buf = append(r.buf, ' ')
r.buf = append(r.buf, line...)
}
return r.buf, nil
}
// skipSpace skips R over all spaces and returns the number of bytes skipped.
func (r *Reader) skipSpace() int {
n := 0
for {
c, err := r.R.ReadByte()
if err != nil {
// Bufio will keep err until next read.
break
}
if c != ' ' && c != '\t' {
r.R.UnreadByte()
break
}
n++
}
return n
}
func (r *Reader) readCodeLine(expectCode int) (code int, continued bool, message string, err error) {
line, err := r.ReadLine()
if err != nil {
return
}
return parseCodeLine(line, expectCode)
}
func parseCodeLine(line string, expectCode int) (code int, continued bool, message string, err error) {
if len(line) < 4 || line[3] != ' ' && line[3] != '-' {
err = ProtocolError("short response: " + line)
return
}
continued = line[3] == '-'
code, err = strconv.Atoi(line[0:3])
if err != nil || code < 100 {
err = ProtocolError("invalid response code: " + line)
return
}
message = line[4:]
if 1 <= expectCode && expectCode < 10 && code/100 != expectCode ||
10 <= expectCode && expectCode < 100 && code/10 != expectCode ||
100 <= expectCode && expectCode < 1000 && code != expectCode {
err = &Error{code, message}
}
return
}
// ReadCodeLine reads a response code line of the form
// code message
// where code is a three-digit status code and the message
// extends to the rest of the line. An example of such a line is:
// 220 plan9.bell-labs.com ESMTP
//
// If the prefix of the status does not match the digits in expectCode,
// ReadCodeLine returns with err set to &Error{code, message}.
// For example, if expectCode is 31, an error will be returned if
// the status is not in the range [310,319].
//
// If the response is multi-line, ReadCodeLine returns an error.
//
// An expectCode <= 0 disables the check of the status code.
//
func (r *Reader) ReadCodeLine(expectCode int) (code int, message string, err error) {
code, continued, message, err := r.readCodeLine(expectCode)
if err == nil && continued {
err = ProtocolError("unexpected multi-line response: " + message)
}
return
}
// ReadResponse reads a multi-line response of the form:
//
// code-message line 1
// code-message line 2
// ...
// code message line n
//
// where code is a three-digit status code. The first line starts with the
// code and a hyphen. The response is terminated by a line that starts
// with the same code followed by a space. Each line in message is
// separated by a newline (\n).
//
// See page 36 of RFC 959 (http://www.ietf.org/rfc/rfc959.txt) for
// details.
//
// If the prefix of the status does not match the digits in expectCode,
// ReadResponse returns with err set to &Error{code, message}.
// For example, if expectCode is 31, an error will be returned if
// the status is not in the range [310,319].
//
// An expectCode <= 0 disables the check of the status code.
//
func (r *Reader) ReadResponse(expectCode int) (code int, message string, err error) {
code, continued, message, err := r.readCodeLine(expectCode)
for err == nil && continued {
line, err := r.ReadLine()
if err != nil {
return 0, "", err
}
var code2 int
var moreMessage string
code2, continued, moreMessage, err = parseCodeLine(line, expectCode)
if err != nil || code2 != code {
message += "\n" + strings.TrimRight(line, "\r\n")
continued = true
continue
}
message += "\n" + moreMessage
}
return
}
// DotReader returns a new Reader that satisfies Reads using the
// decoded text of a dot-encoded block read from r.
// The returned Reader is only valid until the next call
// to a method on r.
//
// Dot encoding is a common framing used for data blocks
// in text protocols such as SMTP. The data consists of a sequence
// of lines, each of which ends in "\r\n". The sequence itself
// ends at a line containing just a dot: ".\r\n". Lines beginning
// with a dot are escaped with an additional dot to avoid
// looking like the end of the sequence.
//
// The decoded form returned by the Reader's Read method
// rewrites the "\r\n" line endings into the simpler "\n",
// removes leading dot escapes if present, and stops with error io.EOF
// after consuming (and discarding) the end-of-sequence line.
func (r *Reader) DotReader() io.Reader {
r.closeDot()
r.dot = &dotReader{r: r}
return r.dot
}
type dotReader struct {
r *Reader
state int
}
// Read satisfies reads by decoding dot-encoded data read from d.r.
func (d *dotReader) Read(b []byte) (n int, err error) {
// Run data through a simple state machine to
// elide leading dots, rewrite trailing \r\n into \n,
// and detect ending .\r\n line.
const (
stateBeginLine = iota // beginning of line; initial state; must be zero
stateDot // read . at beginning of line
stateDotCR // read .\r at beginning of line
stateCR // read \r (possibly at end of line)
stateData // reading data in middle of line
stateEOF // reached .\r\n end marker line
)
br := d.r.R
for n < len(b) && d.state != stateEOF {
var c byte
c, err = br.ReadByte()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
break
}
switch d.state {
case stateBeginLine:
if c == '.' {
d.state = stateDot
continue
}
if c == '\r' {
d.state = stateCR
continue
}
d.state = stateData
case stateDot:
if c == '\r' {
d.state = stateDotCR
continue
}
if c == '\n' {
d.state = stateEOF
continue
}
d.state = stateData
case stateDotCR:
if c == '\n' {
d.state = stateEOF
continue
}
// Not part of .\r\n.
// Consume leading dot and emit saved \r.
br.UnreadByte()
c = '\r'
d.state = stateData
case stateCR:
if c == '\n' {
d.state = stateBeginLine
break
}
// Not part of \r\n. Emit saved \r
br.UnreadByte()
c = '\r'
d.state = stateData
case stateData:
if c == '\r' {
d.state = stateCR
continue
}
if c == '\n' {
d.state = stateBeginLine
}
}
b[n] = c
n++
}
if err == nil && d.state == stateEOF {
err = io.EOF
}
if err != nil && d.r.dot == d {
d.r.dot = nil
}
return
}
// closeDot drains the current DotReader if any,
// making sure that it reads until the ending dot line.
func (r *Reader) closeDot() {
if r.dot == nil {
return
}
buf := make([]byte, 128)
for r.dot != nil {
// When Read reaches EOF or an error,
// it will set r.dot == nil.
r.dot.Read(buf)
}
}
// ReadDotBytes reads a dot-encoding and returns the decoded data.
//
// See the documentation for the DotReader method for details about dot-encoding.
func (r *Reader) ReadDotBytes() ([]byte, error) {
return ioutil.ReadAll(r.DotReader())
}
// ReadDotLines reads a dot-encoding and returns a slice
// containing the decoded lines, with the final \r\n or \n elided from each.
//
// See the documentation for the DotReader method for details about dot-encoding.
func (r *Reader) ReadDotLines() ([]string, error) {
// We could use ReadDotBytes and then Split it,
// but reading a line at a time avoids needing a
// large contiguous block of memory and is simpler.
var v []string
var err error
for {
var line string
line, err = r.ReadLine()
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
break
}
// Dot by itself marks end; otherwise cut one dot.
if len(line) > 0 && line[0] == '.' {
if len(line) == 1 {
break
}
line = line[1:]
}
v = append(v, line)
}
return v, err
}
// ReadMIMEHeader reads a MIME-style header from r.
// The header is a sequence of possibly continued Key: Value lines
// ending in a blank line.
// The returned map m maps CanonicalMIMEHeaderKey(key) to a
// sequence of values in the same order encountered in the input.
//
// For example, consider this input:
//
// My-Key: Value 1
// Long-Key: Even
// Longer Value
// My-Key: Value 2
//
// Given that input, ReadMIMEHeader returns the map:
//
// map[string][]string{
// "My-Key": {"Value 1", "Value 2"},
// "Long-Key": {"Even Longer Value"},
// }
//
func (r *Reader) ReadMIMEHeader() (MIMEHeader, error) {
// Avoid lots of small slice allocations later by allocating one
// large one ahead of time which we'll cut up into smaller
// slices. If this isn't big enough later, we allocate small ones.
var strs []string
hint := r.upcomingHeaderNewlines()
if hint > 0 {
strs = make([]string, hint)
}
m := make(MIMEHeader, hint)
for {
kv, err := r.readContinuedLineSlice()
if len(kv) == 0 {
return m, err
}
// Key ends at first colon; should not have spaces but
// they appear in the wild, violating specs, so we
// remove them if present.
i := bytes.IndexByte(kv, ':')
if i < 0 {
return m, ProtocolError("malformed MIME header line: " + string(kv))
}
endKey := i
for endKey > 0 && kv[endKey-1] == ' ' {
endKey--
}
key := canonicalMIMEHeaderKey(kv[:endKey])
// Skip initial spaces in value.
i++ // skip colon
for i < len(kv) && (kv[i] == ' ' || kv[i] == '\t') {
i++
}
value := string(kv[i:])
vv := m[key]
if vv == nil && len(strs) > 0 {
// More than likely this will be a single-element key.
// Most headers aren't multi-valued.
// Set the capacity on strs[0] to 1, so any future append
// won't extend the slice into the other strings.
vv, strs = strs[:1:1], strs[1:]
vv[0] = value
m[key] = vv
} else {
m[key] = append(vv, value)
}
if err != nil {
return m, err
}
}
}
// upcomingHeaderNewlines returns an approximation of the number of newlines
// that will be in this header. If it gets confused, it returns 0.
func (r *Reader) upcomingHeaderNewlines() (n int) {
// Try to determine the 'hint' size.
r.R.Peek(1) // force a buffer load if empty
s := r.R.Buffered()
if s == 0 {
return
}
peek, _ := r.R.Peek(s)
for len(peek) > 0 {
i := bytes.IndexByte(peek, '\n')
if i < 3 {
// Not present (-1) or found within the next few bytes,
// implying we're at the end ("\r\n\r\n" or "\n\n")
return
}
n++
peek = peek[i+1:]
}
return
}
// CanonicalMIMEHeaderKey returns the canonical format of the
// MIME header key s. The canonicalization converts the first
// letter and any letter following a hyphen to upper case;
// the rest are converted to lowercase. For example, the
// canonical key for "accept-encoding" is "Accept-Encoding".
// MIME header keys are assumed to be ASCII only.
func CanonicalMIMEHeaderKey(s string) string {
// Quick check for canonical encoding.
upper := true
for i := 0; i < len(s); i++ {
c := s[i]
if upper && 'a' <= c && c <= 'z' {
return canonicalMIMEHeaderKey([]byte(s))
}
if !upper && 'A' <= c && c <= 'Z' {
return canonicalMIMEHeaderKey([]byte(s))
}
upper = c == '-'
}
return s
}
const toLower = 'a' - 'A'
// canonicalMIMEHeaderKey is like CanonicalMIMEHeaderKey but is
// allowed to mutate the provided byte slice before returning the
// string.
func canonicalMIMEHeaderKey(a []byte) string {
upper := true
for i, c := range a {
// Canonicalize: first letter upper case
// and upper case after each dash.
// (Host, User-Agent, If-Modified-Since).
// MIME headers are ASCII only, so no Unicode issues.
if c == ' ' {
c = '-'
} else if upper && 'a' <= c && c <= 'z' {
c -= toLower
} else if !upper && 'A' <= c && c <= 'Z' {
c += toLower
}
a[i] = c
upper = c == '-' // for next time
}
// The compiler recognizes m[string(byteSlice)] as a special
// case, so a copy of a's bytes into a new string does not
// happen in this map lookup:
if v := commonHeader[string(a)]; v != "" {
return v
}
return string(a)
}
// commonHeader interns common header strings.
var commonHeader = make(map[string]string)
func init() {
for _, v := range []string{
"Accept",
"Accept-Charset",
"Accept-Encoding",
"Accept-Language",
"Accept-Ranges",
"Cache-Control",
"Cc",
"Connection",
"Content-Id",
"Content-Language",
"Content-Length",
"Content-Transfer-Encoding",
"Content-Type",
"Cookie",
"Date",
"Dkim-Signature",
"Etag",
"Expires",
"From",
"Host",
"If-Modified-Since",
"If-None-Match",
"In-Reply-To",
"Last-Modified",
"Location",
"Message-Id",
"Mime-Version",
"Pragma",
"Received",
"Return-Path",
"Server",
"Set-Cookie",
"Subject",
"To",
"User-Agent",
"Via",
"X-Forwarded-For",
"X-Imforwards",
"X-Powered-By",
} {
commonHeader[v] = v
}
}