blob: ddb5114c50211190d2b304082e981d445974c1ef [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// IP address manipulations
//
// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
// An IPv4 address can be converted to an IPv6 address by
// adding a canonical prefix (10 zeros, 2 0xFFs).
// This library accepts either size of byte array but always
// returns 16-byte addresses.
package ip
export const (
IPv4len = 4;
IPv6len = 16
)
// Make the 4 bytes into an IPv4 address (in IPv6 form)
func MakeIPv4(a, b, c, d byte) *[]byte {
p := new([]byte, IPv6len)
for i := 0; i < 10; i++ {
p[i] = 0
}
p[10] = 0xff;
p[11] = 0xff;
p[12] = a;
p[13] = b;
p[14] = c;
p[15] = d
return p
}
// Well-known IP addresses
export var IPv4bcast, IPv4allsys, IPv4allrouter, IPv4prefix, IPallbits, IPnoaddr *[]byte
func init() {
IPv4bcast = MakeIPv4(0xff, 0xff, 0xff, 0xff);
IPv4allsys = MakeIPv4(0xe0, 0x00, 0x00, 0x01);
IPv4allrouter = MakeIPv4(0xe0, 0x00, 0x00, 0x02);
IPv4prefix = MakeIPv4(0, 0, 0, 0);
IPallbits = new([]byte, IPv6len);
for i := 0; i < IPv6len; i++ {
IPallbits[i] = 0xff
}
IPnoaddr = new([]byte, IPv6len); // zeroed
}
// Is p all zeros?
func IsZeros(p *[]byte) bool {
for i := 0; i < len(p); i++ {
if p[i] != 0 {
return false
}
}
return true
}
// Is p an IPv4 address (perhaps in IPv6 form)?
// If so, return the 4-byte V4 array.
export func ToIPv4(p *[]byte) *[]byte {
if len(p) == IPv4len {
return p
}
if len(p) == IPv6len
&& IsZeros(p[0:10])
&& p[10] == 0xff
&& p[11] == 0xff {
return p[12:16]
}
return nil
}
// Convert p to IPv6 form.
export func ToIPv6(p *[]byte) *[]byte {
if len(p) == IPv4len {
return MakeIPv4(p[0], p[1], p[2], p[3])
}
if len(p) == IPv6len {
return p
}
return nil
}
// Default route masks for IPv4.
export var (
ClassAMask = MakeIPv4(0xff, 0, 0, 0);
ClassBMask = MakeIPv4(0xff, 0xff, 0, 0);
ClassCMask = MakeIPv4(0xff, 0xff, 0xff, 0);
)
export func DefaultMask(p *[]byte) *[]byte {
if p = ToIPv4(p); p == nil {
return nil
}
switch true {
case p[0] < 0x80:
return ClassAMask;
case p[0] < 0xC0:
return ClassBMask;
default:
return ClassCMask;
}
return nil; // not reached
}
// Apply mask to ip, returning new address.
export func Mask(ip *[]byte, mask *[]byte) *[]byte {
n := len(ip)
if n != len(mask) {
return nil
}
out := new([]byte, n)
for i := 0; i < n; i++ {
out[i] = ip[i] & mask[i];
}
return out
}
// Convert i to decimal string.
func itod(i uint) string {
if i == 0 {
return "0"
}
// Assemble decimal in reverse order.
var b [32]byte;
bp := len(b);
for ; i > 0; i /= 10 {
bp--;
b[bp] = byte(i%10) + '0'
}
// return string(b[bp:len(b)])
return string((&b)[bp:len(b)])
}
// Convert i to hexadecimal string.
func itox(i uint) string {
if i == 0 {
return "0"
}
// Assemble hexadecimal in reverse order.
var b [32]byte;
bp := len(b);
for ; i > 0; i /= 16 {
bp--;
b[bp] = "0123456789abcdef"[byte(i%16)]
}
// return string(b[bp:len(b)])
return string((&b)[bp:len(b)])
}
// Convert IP address to string.
export func IPToString(p *[]byte) string {
// If IPv4, use dotted notation.
if p4 := ToIPv4(p); p4 != nil {
return itod(uint(p4[0]))+"."
+itod(uint(p4[1]))+"."
+itod(uint(p4[2]))+"."
+itod(uint(p4[3]))
}
if len(p) != IPv6len {
return "?"
}
// Find longest run of zeros.
e0 := -1;
e1 := -1
for i := 0; i < 16; i+=2 {
j := i
for j < 16 && p[j] == 0 && p[j+1] == 0 {
j += 2
}
if j > i && j - i > e1 - e0 {
e0 = i;
e1 = j
}
}
// Print with possible :: in place of run of zeros
var s string;
for i := 0; i < 16; i += 2 {
if i == e0 {
s += "::";
i = e1
if i >= 16 {
break
}
} else if i > 0 {
s += ":"
}
s += itox((uint(p[i])<<8) | uint(p[i+1]))
}
return s
}
// If mask is a sequence of 1 bits followed by 0 bits,
// return the number of 1 bits.
func SimpleMaskLength(mask *[]byte) int {
var i int
for i = 0; i < len(mask); i++ {
if mask[i] != 0xFF {
break
}
}
n := 8*i;
v := mask[i]
for v & 0x80 != 0 {
n++
v <<= 1
}
if v != 0 {
return -1
}
for i++; i < len(mask); i++ {
if mask[i] != 0 {
return -1
}
}
return n
}
export func MaskToString(mask *[]byte) string {
switch len(mask) {
case 4:
n := SimpleMaskLength(mask)
if n >= 0 {
return itod(uint(n+(IPv6len-IPv4len)*8))
}
case 16:
n := SimpleMaskLength(mask)
if n >= 0 {
return itod(uint(n))
}
}
return IPToString(mask)
}
// Parsing.
// Bigger than we need, not too big to worry about overflow
const Big = 0xFFFFFF
// Decimal to integer starting at &s[i].
// Returns number, new offset, success.
func dtoi(s string, i int) (n int, i1 int, ok bool) {
if len(s) <= i || s[i] < '0' || s[i] > '9' {
return 0, i, false
}
n = 0;
for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
n = n*10 + int(s[i] - '0')
if n >= Big {
return 0, i, false
}
}
return n, i, true
}
// Is b a hex digit?
func ishex(b byte) bool {
return '0' <= b && b <= '9'
|| 'a' <= b && b <= 'f'
|| 'A' <= b && b <= 'F'
}
// Hexadecimal to integer starting at &s[i].
// Returns number, new offset, success.
func xtoi(s string, i int) (n int, i1 int, ok bool) {
if len(s) <= i || !ishex(s[i]) {
return 0, i, false
}
n = 0;
for ; i < len(s) && ishex(s[i]); i++ {
n *= 16
if '0' <= s[i] && s[i] <= '9' {
n += int(s[i] - '0')
} else if 'a' <= s[i] && s[i] <= 'f' {
n += int(s[i] - 'a') + 10
} else {
n += int(s[i] -'A') + 10
}
if n >= Big {
return 0, i, false
}
}
return n, i, true
}
// Parse IPv4 address (d.d.d.d).
func ParseIPv4(s string) *[]byte {
var p [IPv4len]byte
i := 0
for j := 0; j < IPv4len; j++ {
if j > 0 {
if s[i] != '.' {
return nil
}
i++
}
var (
n int;
ok bool
)
n, i, ok = dtoi(s, i)
if !ok || n > 0xFF {
return nil
}
p[j] = byte(n)
}
if i != len(s) {
return nil
}
return MakeIPv4(p[0], p[1], p[2], p[3])
}
// Parse IPv6 address. Many forms.
// The basic form is a sequence of eight colon-separated
// 16-bit hex numbers separated by colons,
// as in 0123:4567:89ab:cdef:0123:4567:89ab:cdef.
// Two exceptions:
// * A run of zeros can be replaced with "::".
// * The last 32 bits can be in IPv4 form.
// Thus, ::ffff:1.2.3.4 is the IPv4 address 1.2.3.4.
func ParseIPv6(s string) *[]byte {
p := new([]byte, 16);
ellipsis := -1; // position of ellipsis in p
i := 0; // index in string s
// Might have leading ellipsis
if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
ellipsis = 0;
i = 2
}
// Loop, parsing hex numbers followed by colon.
j := 0;
L: for j < IPv6len {
// Hex number.
n, i1, ok := xtoi(s, i)
if !ok || n >= 0xFFFF {
return nil
}
// If followed by dot, might be in trailing IPv4.
if s[i1] == '.' {
if ellipsis < 0 && j != IPv6len - IPv4len {
// Not the right place.
return nil
}
if j+IPv4len > IPv6len {
// Not enough room.
return nil
}
p4 := ParseIPv4(s[i:len(s)]);
if p4 == nil {
return nil
}
// BUG: p[j:j+4] = p4
p[j] = p4[12];
p[j+1] = p4[13];
p[j+2] = p4[14];
p[j+3] = p4[15];
i = len(s);
j += 4
break
}
// Save this 16-bit chunk.
p[j] = byte(n>>8);
p[j+1] = byte(n);
j += 2;
// Stop at end of string.
i = i1
if i == len(s) {
break
}
// Otherwise must be followed by colon and more.
if s[i] != ':' && i+1 == len(s) {
return nil
}
i++
// Look for ellipsis.
if s[i+1] == ':' {
if ellipsis >= 0 { // already have one
return nil
}
ellipsis = j;
if i++; i == len(s) { // can be at end
break
}
}
}
// Must have used entire string.
if i != len(s) {
return nil
}
// If didn't parse enough, expand ellipsis.
if j < IPv6len {
if ellipsis < 0 {
return nil
}
n := IPv6len - j
for k := j; k >= ellipsis; k-- {
p[k+n] = p[k]
}
for k := ellipsis+n-1; k>=ellipsis; k-- {
p[k] = 0
}
}
return p
}
export func ParseIP(s string) *[]byte {
p := ParseIPv4(s)
if p != nil {
return p
}
return ParseIPv6(s)
}