blob: 9437c8e9d4b33338ba12f0003d44c95f9833f038 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Optimizations TODO:
// * Somehow track when values are already zero/signed-extended, avoid re-extending.
// * Use SLTI and SLTIU for comparisons to constants, instead of SLT/SLTU with constants in registers
// * Find a more efficient way to do zero/sign extension than left+right shift.
// There are many other options (store then load-extend, LUI+ANDI for zero extend, special case 32->64, ...),
// but left+right shift is simple and uniform, and we don't have real hardware to do perf testing on anyway.
// * Use the zero register instead of moving 0 into a register.
// * Add rules to avoid generating a temp bool value for (If (SLT[U] ...) ...).
// * Optimize left and right shift by simplifying SLTIU, Neg, and ADD for constants.
// * Arrange for non-trivial Zero and Move lowerings to use aligned loads and stores.
// * Eliminate zero immediate shifts, adds, etc.
// * Use a Duff's device for some moves and zeros.
// * Avoid using Neq32 for writeBarrier.enabled checks.
// Lowering arithmetic
(Add64 ...) => (ADD ...)
(AddPtr ...) => (ADD ...)
(Add32 ...) => (ADD ...)
(Add16 ...) => (ADD ...)
(Add8 ...) => (ADD ...)
(Add32F ...) => (FADDS ...)
(Add64F ...) => (FADDD ...)
(Sub64 ...) => (SUB ...)
(SubPtr ...) => (SUB ...)
(Sub32 ...) => (SUB ...)
(Sub16 ...) => (SUB ...)
(Sub8 ...) => (SUB ...)
(Sub32F ...) => (FSUBS ...)
(Sub64F ...) => (FSUBD ...)
(Mul64 ...) => (MUL ...)
(Mul32 ...) => (MULW ...)
(Mul16 x y) => (MULW (SignExt16to32 x) (SignExt16to32 y))
(Mul8 x y) => (MULW (SignExt8to32 x) (SignExt8to32 y))
(Mul32F ...) => (FMULS ...)
(Mul64F ...) => (FMULD ...)
(Div32F ...) => (FDIVS ...)
(Div64F ...) => (FDIVD ...)
(Div64 x y [false]) => (DIV x y)
(Div64u ...) => (DIVU ...)
(Div32 x y [false]) => (DIVW x y)
(Div32u ...) => (DIVUW ...)
(Div16 x y [false]) => (DIVW (SignExt16to32 x) (SignExt16to32 y))
(Div16u x y) => (DIVUW (ZeroExt16to32 x) (ZeroExt16to32 y))
(Div8 x y) => (DIVW (SignExt8to32 x) (SignExt8to32 y))
(Div8u x y) => (DIVUW (ZeroExt8to32 x) (ZeroExt8to32 y))
(Hmul64 ...) => (MULH ...)
(Hmul64u ...) => (MULHU ...)
(Hmul32 x y) => (SRAI [32] (MUL (SignExt32to64 x) (SignExt32to64 y)))
(Hmul32u x y) => (SRLI [32] (MUL (ZeroExt32to64 x) (ZeroExt32to64 y)))
// (x + y) / 2 => (x / 2) + (y / 2) + (x & y & 1)
(Avg64u <t> x y) => (ADD (ADD <t> (SRLI <t> [1] x) (SRLI <t> [1] y)) (ANDI <t> [1] (AND <t> x y)))
(Mod64 x y [false]) => (REM x y)
(Mod64u ...) => (REMU ...)
(Mod32 x y [false]) => (REMW x y)
(Mod32u ...) => (REMUW ...)
(Mod16 x y [false]) => (REMW (SignExt16to32 x) (SignExt16to32 y))
(Mod16u x y) => (REMUW (ZeroExt16to32 x) (ZeroExt16to32 y))
(Mod8 x y) => (REMW (SignExt8to32 x) (SignExt8to32 y))
(Mod8u x y) => (REMUW (ZeroExt8to32 x) (ZeroExt8to32 y))
(And64 ...) => (AND ...)
(And32 ...) => (AND ...)
(And16 ...) => (AND ...)
(And8 ...) => (AND ...)
(Or64 ...) => (OR ...)
(Or32 ...) => (OR ...)
(Or16 ...) => (OR ...)
(Or8 ...) => (OR ...)
(Xor64 ...) => (XOR ...)
(Xor32 ...) => (XOR ...)
(Xor16 ...) => (XOR ...)
(Xor8 ...) => (XOR ...)
(Neg64 ...) => (NEG ...)
(Neg32 ...) => (NEG ...)
(Neg16 ...) => (NEG ...)
(Neg8 ...) => (NEG ...)
(Neg32F ...) => (FNEGS ...)
(Neg64F ...) => (FNEGD ...)
(Com64 ...) => (NOT ...)
(Com32 ...) => (NOT ...)
(Com16 ...) => (NOT ...)
(Com8 ...) => (NOT ...)
(Sqrt ...) => (FSQRTD ...)
// Zero and sign extension
// Shift left until the bits we want are at the top of the register.
// Then logical/arithmetic shift right for zero/sign extend.
// We always extend to 64 bits; there's no reason not to,
// and optimization rules can then collapse some extensions.
(SignExt8to16 <t> x) => (SRAI [56] (SLLI <t> [56] x))
(SignExt8to32 <t> x) => (SRAI [56] (SLLI <t> [56] x))
(SignExt8to64 <t> x) => (SRAI [56] (SLLI <t> [56] x))
(SignExt16to32 <t> x) => (SRAI [48] (SLLI <t> [48] x))
(SignExt16to64 <t> x) => (SRAI [48] (SLLI <t> [48] x))
(SignExt32to64 <t> x) => (ADDIW [0] x)
(ZeroExt8to16 <t> x) => (SRLI [56] (SLLI <t> [56] x))
(ZeroExt8to32 <t> x) => (SRLI [56] (SLLI <t> [56] x))
(ZeroExt8to64 <t> x) => (SRLI [56] (SLLI <t> [56] x))
(ZeroExt16to32 <t> x) => (SRLI [48] (SLLI <t> [48] x))
(ZeroExt16to64 <t> x) => (SRLI [48] (SLLI <t> [48] x))
(ZeroExt32to64 <t> x) => (SRLI [32] (SLLI <t> [32] x))
(Cvt32to32F ...) => (FCVTSW ...)
(Cvt32to64F ...) => (FCVTDW ...)
(Cvt64to32F ...) => (FCVTSL ...)
(Cvt64to64F ...) => (FCVTDL ...)
(Cvt32Fto32 ...) => (FCVTWS ...)
(Cvt32Fto64 ...) => (FCVTLS ...)
(Cvt64Fto32 ...) => (FCVTWD ...)
(Cvt64Fto64 ...) => (FCVTLD ...)
(Cvt32Fto64F ...) => (FCVTDS ...)
(Cvt64Fto32F ...) => (FCVTSD ...)
(CvtBoolToUint8 ...) => (Copy ...)
(Round32F ...) => (Copy ...)
(Round64F ...) => (Copy ...)
// From genericOps.go:
// "0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0"
//
// Like other arches, we compute ~((x-1) >> 63), with arithmetic right shift.
// For positive x, bit 63 of x-1 is always 0, so the result is -1.
// For zero x, bit 63 of x-1 is 1, so the result is 0.
//
(Slicemask <t> x) => (NOT (SRAI <t> [63] (ADDI <t> [-1] x)))
// Truncations
// We ignore the unused high parts of registers, so truncates are just copies.
(Trunc16to8 ...) => (Copy ...)
(Trunc32to8 ...) => (Copy ...)
(Trunc32to16 ...) => (Copy ...)
(Trunc64to8 ...) => (Copy ...)
(Trunc64to16 ...) => (Copy ...)
(Trunc64to32 ...) => (Copy ...)
// Shifts
// SLL only considers the bottom 6 bits of y. If y > 64, the result should
// always be 0.
//
// Breaking down the operation:
//
// (SLL x y) generates x << (y & 63).
//
// If y < 64, this is the value we want. Otherwise, we want zero.
//
// So, we AND with -1 * uint64(y < 64), which is 0xfffff... if y < 64 and 0 otherwise.
(Lsh8x8 <t> x y) => (AND (SLL <t> x y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Lsh8x16 <t> x y) => (AND (SLL <t> x y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh8x32 <t> x y) => (AND (SLL <t> x y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh8x64 <t> x y) => (AND (SLL <t> x y) (Neg8 <t> (SLTIU <t> [64] y)))
(Lsh16x8 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Lsh16x16 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh16x32 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh16x64 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] y)))
(Lsh32x8 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Lsh32x16 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh32x32 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh32x64 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] y)))
(Lsh64x8 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Lsh64x16 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh64x32 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh64x64 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] y)))
// SRL only considers the bottom 6 bits of y. If y > 64, the result should
// always be 0. See Lsh above for a detailed description.
(Rsh8Ux8 <t> x y) => (AND (SRL <t> (ZeroExt8to64 x) y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Rsh8Ux16 <t> x y) => (AND (SRL <t> (ZeroExt8to64 x) y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh8Ux32 <t> x y) => (AND (SRL <t> (ZeroExt8to64 x) y) (Neg8 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh8Ux64 <t> x y) => (AND (SRL <t> (ZeroExt8to64 x) y) (Neg8 <t> (SLTIU <t> [64] y)))
(Rsh16Ux8 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Rsh16Ux16 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh16Ux32 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh16Ux64 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] y)))
(Rsh32Ux8 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Rsh32Ux16 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh32Ux32 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh32Ux64 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] y)))
(Rsh64Ux8 <t> x y) => (AND (SRL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt8to64 y))))
(Rsh64Ux16 <t> x y) => (AND (SRL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh64Ux32 <t> x y) => (AND (SRL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh64Ux64 <t> x y) => (AND (SRL <t> x y) (Neg64 <t> (SLTIU <t> [64] y)))
// SRA only considers the bottom 6 bits of y. If y > 64, the result should
// be either 0 or -1 based on the sign bit.
//
// We implement this by performing the max shift (-1) if y >= 64.
//
// We OR (uint64(y < 64) - 1) into y before passing it to SRA. This leaves
// us with -1 (0xffff...) if y >= 64.
//
// We don't need to sign-extend the OR result, as it will be at minimum 8 bits,
// more than the 6 bits SRA cares about.
(Rsh8x8 <t> x y) => (SRA <t> (SignExt8to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64 y)))))
(Rsh8x16 <t> x y) => (SRA <t> (SignExt8to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh8x32 <t> x y) => (SRA <t> (SignExt8to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh8x64 <t> x y) => (SRA <t> (SignExt8to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh16x8 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64 y)))))
(Rsh16x16 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh16x32 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh16x64 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh32x8 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64 y)))))
(Rsh32x16 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh32x32 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh32x64 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh64x8 <t> x y) => (SRA <t> x (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64 y)))))
(Rsh64x16 <t> x y) => (SRA <t> x (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh64x32 <t> x y) => (SRA <t> x (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh64x64 <t> x y) => (SRA <t> x (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
// rotates
(RotateLeft8 <t> x (MOVBconst [c])) => (Or8 (Lsh8x64 <t> x (MOVBconst [c&7])) (Rsh8Ux64 <t> x (MOVBconst [-c&7])))
(RotateLeft16 <t> x (MOVHconst [c])) => (Or16 (Lsh16x64 <t> x (MOVHconst [c&15])) (Rsh16Ux64 <t> x (MOVHconst [-c&15])))
(RotateLeft32 <t> x (MOVWconst [c])) => (Or32 (Lsh32x64 <t> x (MOVWconst [c&31])) (Rsh32Ux64 <t> x (MOVWconst [-c&31])))
(RotateLeft64 <t> x (MOVDconst [c])) => (Or64 (Lsh64x64 <t> x (MOVDconst [c&63])) (Rsh64Ux64 <t> x (MOVDconst [-c&63])))
(Less64 ...) => (SLT ...)
(Less32 x y) => (SLT (SignExt32to64 x) (SignExt32to64 y))
(Less16 x y) => (SLT (SignExt16to64 x) (SignExt16to64 y))
(Less8 x y) => (SLT (SignExt8to64 x) (SignExt8to64 y))
(Less64U ...) => (SLTU ...)
(Less32U x y) => (SLTU (ZeroExt32to64 x) (ZeroExt32to64 y))
(Less16U x y) => (SLTU (ZeroExt16to64 x) (ZeroExt16to64 y))
(Less8U x y) => (SLTU (ZeroExt8to64 x) (ZeroExt8to64 y))
(Less64F ...) => (FLTD ...)
(Less32F ...) => (FLTS ...)
// Convert x <= y to !(y > x).
(Leq64 x y) => (Not (Less64 y x))
(Leq32 x y) => (Not (Less32 y x))
(Leq16 x y) => (Not (Less16 y x))
(Leq8 x y) => (Not (Less8 y x))
(Leq64U x y) => (Not (Less64U y x))
(Leq32U x y) => (Not (Less32U y x))
(Leq16U x y) => (Not (Less16U y x))
(Leq8U x y) => (Not (Less8U y x))
(Leq64F ...) => (FLED ...)
(Leq32F ...) => (FLES ...)
(EqPtr x y) => (SEQZ (SUB <x.Type> x y))
(Eq64 x y) => (SEQZ (SUB <x.Type> x y))
(Eq32 x y) => (SEQZ (SUBW <x.Type> x y))
(Eq16 x y) => (SEQZ (ZeroExt16to64 (SUB <x.Type> x y)))
(Eq8 x y) => (SEQZ (ZeroExt8to64 (SUB <x.Type> x y)))
(Eq64F ...) => (FEQD ...)
(Eq32F ...) => (FEQS ...)
(NeqPtr x y) => (SNEZ (SUB <x.Type> x y))
(Neq64 x y) => (SNEZ (SUB <x.Type> x y))
(Neq32 x y) => (SNEZ (SUBW <x.Type> x y))
(Neq16 x y) => (SNEZ (ZeroExt16to64 (SUB <x.Type> x y)))
(Neq8 x y) => (SNEZ (ZeroExt8to64 (SUB <x.Type> x y)))
(Neq64F ...) => (FNED ...)
(Neq32F ...) => (FNES ...)
// Loads
(Load <t> ptr mem) && t.IsBoolean() => (MOVBUload ptr mem)
(Load <t> ptr mem) && ( is8BitInt(t) && isSigned(t)) => (MOVBload ptr mem)
(Load <t> ptr mem) && ( is8BitInt(t) && !isSigned(t)) => (MOVBUload ptr mem)
(Load <t> ptr mem) && (is16BitInt(t) && isSigned(t)) => (MOVHload ptr mem)
(Load <t> ptr mem) && (is16BitInt(t) && !isSigned(t)) => (MOVHUload ptr mem)
(Load <t> ptr mem) && (is32BitInt(t) && isSigned(t)) => (MOVWload ptr mem)
(Load <t> ptr mem) && (is32BitInt(t) && !isSigned(t)) => (MOVWUload ptr mem)
(Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVDload ptr mem)
(Load <t> ptr mem) && is32BitFloat(t) => (FMOVWload ptr mem)
(Load <t> ptr mem) && is64BitFloat(t) => (FMOVDload ptr mem)
// Stores
(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && !is32BitFloat(val.Type) => (MOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 && !is64BitFloat(val.Type) => (MOVDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && is32BitFloat(val.Type) => (FMOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 && is64BitFloat(val.Type) => (FMOVDstore ptr val mem)
// We need to fold MOVaddr into the LD/MOVDstore ops so that the live variable analysis
// knows what variables are being read/written by the ops.
(MOVBUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVBUload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVBload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVBload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVHUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVHUload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVHload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVHload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVWUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVWUload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVWload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVWload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVDload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVDload [off1+off2] {mergeSymTyped(sym1,sym2)} base mem)
(MOVBstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVBstore [off1+off2] {mergeSymTyped(sym1,sym2)} base val mem)
(MOVHstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVHstore [off1+off2] {mergeSymTyped(sym1,sym2)} base val mem)
(MOVWstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVWstore [off1+off2] {mergeSymTyped(sym1,sym2)} base val mem)
(MOVDstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOVDstore [off1+off2] {mergeSymTyped(sym1,sym2)} base val mem)
(MOVBstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
(MOVBstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVHstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
(MOVHstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVWstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
(MOVWstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVDstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
(MOVDstorezero [off1+off2] {mergeSymTyped(sym1,sym2)} ptr mem)
(MOVBUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVBUload [off1+int32(off2)] {sym} base mem)
(MOVBload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVBload [off1+int32(off2)] {sym} base mem)
(MOVHUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVHUload [off1+int32(off2)] {sym} base mem)
(MOVHload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVHload [off1+int32(off2)] {sym} base mem)
(MOVWUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVWUload [off1+int32(off2)] {sym} base mem)
(MOVWload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVWload [off1+int32(off2)] {sym} base mem)
(MOVDload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
(MOVDload [off1+int32(off2)] {sym} base mem)
(MOVBstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
(MOVBstore [off1+int32(off2)] {sym} base val mem)
(MOVHstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
(MOVHstore [off1+int32(off2)] {sym} base val mem)
(MOVWstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
(MOVWstore [off1+int32(off2)] {sym} base val mem)
(MOVDstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
(MOVDstore [off1+int32(off2)] {sym} base val mem)
(MOVBstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVBstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVHstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVHstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVWstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVWstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVDstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVDstorezero [off1+int32(off2)] {sym} ptr mem)
// Similarly, fold ADDI into MOVaddr to avoid confusing live variable analysis
// with OffPtr -> ADDI.
(ADDI [c] (MOVaddr [d] {s} x)) && is32Bit(c+int64(d)) => (MOVaddr [int32(c)+d] {s} x)
// Zeroing
// TODO: more optimized zeroing, including attempting to use aligned accesses.
(Zero [0] _ mem) => mem
(Zero [1] ptr mem) => (MOVBstore ptr (MOVBconst) mem)
(Zero [2] ptr mem) => (MOVHstore ptr (MOVHconst) mem)
(Zero [4] ptr mem) => (MOVWstore ptr (MOVWconst) mem)
(Zero [8] ptr mem) => (MOVDstore ptr (MOVDconst) mem)
// Generic zeroing uses a loop
(Zero [s] {t} ptr mem) =>
(LoweredZero [t.Alignment()]
ptr
(ADD <ptr.Type> ptr (MOVDconst [s-moveSize(t.Alignment(), config)]))
mem)
(Convert ...) => (MOVconvert ...)
// Checks
(IsNonNil p) => (NeqPtr (MOVDconst) p)
(IsInBounds ...) => (Less64U ...)
(IsSliceInBounds ...) => (Leq64U ...)
// Trivial lowering
(NilCheck ...) => (LoweredNilCheck ...)
(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
(GetCallerSP ...) => (LoweredGetCallerSP ...)
(GetCallerPC ...) => (LoweredGetCallerPC ...)
// Write barrier.
(WB ...) => (LoweredWB ...)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
// Moves
// TODO: more optimized moves, including attempting to use aligned accesses.
(Move [0] _ _ mem) => mem
(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
(Move [2] dst src mem) => (MOVHstore dst (MOVHload src mem) mem)
(Move [4] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
(Move [8] dst src mem) => (MOVDstore dst (MOVDload src mem) mem)
// Generic move uses a loop
(Move [s] {t} dst src mem) && (s <= 16 || logLargeCopy(v, s)) =>
(LoweredMove [t.Alignment()]
dst
src
(ADDI <src.Type> [s-moveSize(t.Alignment(), config)] src)
mem)
// Boolean ops; 0=false, 1=true
(AndB ...) => (AND ...)
(OrB ...) => (OR ...)
(EqB x y) => (SEQZ (XOR <typ.Bool> x y))
(NeqB ...) => (XOR ...)
(Not ...) => (SEQZ ...)
// Lowering pointer arithmetic
// TODO: Special handling for SP offsets, like ARM
(OffPtr [off] ptr:(SP)) && is32Bit(off) => (MOVaddr [int32(off)] ptr)
(OffPtr [off] ptr) && is32Bit(off) => (ADDI [off] ptr)
(OffPtr [off] ptr) => (ADD (MOVDconst [off]) ptr)
(Const8 ...) => (MOVBconst ...)
(Const16 ...) => (MOVHconst ...)
(Const32 ...) => (MOVWconst ...)
(Const64 ...) => (MOVDconst ...)
(Const32F [val]) => (FMVSX (MOVWconst [int32(math.Float32bits(val))]))
(Const64F [val]) => (FMVDX (MOVDconst [int64(math.Float64bits(val))]))
(ConstNil) => (MOVDconst [0])
(ConstBool [val]) => (MOVBconst [int8(b2i(val))])
// Convert 64 bit immediate to two 32 bit immediates, combine with add and shift.
// The lower 32 bit immediate will be treated as signed,
// so if it is negative, adjust for the borrow by incrementing the top half.
// We don't have to worry about overflow from the increment,
// because if the top half is all 1s, and int32(c) is negative,
// then the overall constant fits in an int32.
(MOVDconst <t> [c]) && !is32Bit(c) && int32(c) < 0 => (ADD (SLLI <t> [32] (MOVDconst [c>>32+1])) (MOVDconst [int64(int32(c))]))
(MOVDconst <t> [c]) && !is32Bit(c) && int32(c) >= 0 => (ADD (SLLI <t> [32] (MOVDconst [c>>32+0])) (MOVDconst [int64(int32(c))]))
(Addr {sym} base) => (MOVaddr {sym} [0] base)
(LocalAddr {sym} base _) => (MOVaddr {sym} base)
// Calls
(StaticCall ...) => (CALLstatic ...)
(ClosureCall ...) => (CALLclosure ...)
(InterCall ...) => (CALLinter ...)
// Atomic Intrinsics
(AtomicLoad8 ...) => (LoweredAtomicLoad8 ...)
(AtomicLoad32 ...) => (LoweredAtomicLoad32 ...)
(AtomicLoad64 ...) => (LoweredAtomicLoad64 ...)
(AtomicLoadPtr ...) => (LoweredAtomicLoad64 ...)
(AtomicStore8 ...) => (LoweredAtomicStore8 ...)
(AtomicStore32 ...) => (LoweredAtomicStore32 ...)
(AtomicStore64 ...) => (LoweredAtomicStore64 ...)
(AtomicStorePtrNoWB ...) => (LoweredAtomicStore64 ...)
(AtomicAdd32 ...) => (LoweredAtomicAdd32 ...)
(AtomicAdd64 ...) => (LoweredAtomicAdd64 ...)
(AtomicCompareAndSwap32 ...) => (LoweredAtomicCas32 ...)
(AtomicCompareAndSwap64 ...) => (LoweredAtomicCas64 ...)
(AtomicExchange32 ...) => (LoweredAtomicExchange32 ...)
(AtomicExchange64 ...) => (LoweredAtomicExchange64 ...)
// Conditional branches
(If cond yes no) => (BNEZ cond yes no)
// Optimizations
// Absorb SEQZ/SNEZ into branch.
(BEQZ (SEQZ x) yes no) => (BNEZ x yes no)
(BEQZ (SNEZ x) yes no) => (BEQZ x yes no)
(BNEZ (SEQZ x) yes no) => (BEQZ x yes no)
(BNEZ (SNEZ x) yes no) => (BNEZ x yes no)
// Convert BEQZ/BNEZ into more optimal branch conditions.
(BEQZ (SUB x y) yes no) => (BEQ x y yes no)
(BNEZ (SUB x y) yes no) => (BNE x y yes no)
(BEQZ (SLT x y) yes no) => (BGE x y yes no)
(BNEZ (SLT x y) yes no) => (BLT x y yes no)
(BEQZ (SLTU x y) yes no) => (BGEU x y yes no)
(BNEZ (SLTU x y) yes no) => (BLTU x y yes no)
// Convert branch with zero to BEQZ/BNEZ.
(BEQ (MOVDconst [0]) cond yes no) => (BEQZ cond yes no)
(BEQ cond (MOVDconst [0]) yes no) => (BEQZ cond yes no)
(BNE (MOVDconst [0]) cond yes no) => (BNEZ cond yes no)
(BNE cond (MOVDconst [0]) yes no) => (BNEZ cond yes no)
// Store zero
(MOVBstore [off] {sym} ptr (MOVBconst [0]) mem) => (MOVBstorezero [off] {sym} ptr mem)
(MOVHstore [off] {sym} ptr (MOVHconst [0]) mem) => (MOVHstorezero [off] {sym} ptr mem)
(MOVWstore [off] {sym} ptr (MOVWconst [0]) mem) => (MOVWstorezero [off] {sym} ptr mem)
(MOVDstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVDstorezero [off] {sym} ptr mem)
// Fold constant into immediate instructions where possible.
(ADD (MOVBconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVHconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVWconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVDconst [val]) x) && is32Bit(val) => (ADDI [val] x)
(AND (MOVBconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVHconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVWconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVDconst [val]) x) && is32Bit(val) => (ANDI [val] x)
(OR (MOVBconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVHconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVWconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVDconst [val]) x) && is32Bit(val) => (ORI [val] x)
(XOR (MOVBconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVHconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVWconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVDconst [val]) x) && is32Bit(val) => (XORI [val] x)
(SLL x (MOVBconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVHconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVWconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVDconst [val])) => (SLLI [int64(val&63)] x)
(SRL x (MOVBconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVHconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVWconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVDconst [val])) => (SRLI [int64(val&63)] x)
(SRA x (MOVBconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVHconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVWconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVDconst [val])) => (SRAI [int64(val&63)] x)
// Convert subtraction of a const into ADDI with negative immediate, where possible.
(SUB x (MOVBconst [val])) => (ADDI [-int64(val)] x)
(SUB x (MOVHconst [val])) => (ADDI [-int64(val)] x)
(SUB x (MOVWconst [val])) && is32Bit(-int64(val)) => (ADDI [-int64(val)] x)
(SUB x (MOVDconst [val])) && is32Bit(-val) => (ADDI [-val] x)
// Subtraction of zero.
(SUB x (MOVBconst [0])) => x
(SUB x (MOVHconst [0])) => x
(SUB x (MOVWconst [0])) => x
(SUB x (MOVDconst [0])) => x
// Subtraction of zero with sign extension.
(SUBW x (MOVWconst [0])) => (ADDIW [0] x)
// Subtraction from zero.
(SUB (MOVBconst [0]) x) => (NEG x)
(SUB (MOVHconst [0]) x) => (NEG x)
(SUB (MOVWconst [0]) x) => (NEG x)
(SUB (MOVDconst [0]) x) => (NEG x)
// Subtraction from zero with sign extension.
(SUBW (MOVDconst [0]) x) => (NEGW x)
// Addition of zero.
(ADDI [0] x) => x