blob: db518dcc06c196a70a1890d90911cfc85228bdb6 [file] [log] [blame]
<codewalk title="First-Class Functions in Go">
<step title="Introduction" src="doc/codewalk/pig.go">
Go supports first class functions, higher-order functions, user-defined
function types, function literals, closures, and multiple return values.
<br/><br/>
This rich feature set supports a functional programming style in a strongly
typed language.
<br/><br/>
In this codewalk we will look at a simple program that simulates a dice game
called <a href="http://en.wikipedia.org/wiki/Pig_(dice)">Pig</a> and evaluates
basic strategies.
</step>
<step title="Game overview" src="doc/codewalk/pig.go:/\/\/ A score/,/thisTurn int\n}/">
Pig is a two-player game played with a 6-sided die. Each turn, you may roll or stay.
<ul>
<li> If you roll a 1, you lose all points for your turn and play passes to
your opponent. Any other roll adds its value to your turn score. </li>
<li> If you stay, your turn score is added to your total score, and play passes
to your opponent. </li>
</ul>
The first person to reach 100 total points wins.
<br/><br/>
The <code>score</code> type stores the scores of the current and opposing
players, in addition to the points accumulated during the current turn.
</step>
<step title="User-defined function types" src="doc/codewalk/pig.go:/\/\/ An action/,/bool\)/">
In Go, functions can be passed around just like any other value. A function's
type signature describes the types of its arguments and return values.
<br/><br/>
The <code>action</code> type is a function that takes a <code>score</code>
and returns the resulting <code>score</code> and whether the current turn is
over.
<br/><br/>
If the turn is over, the <code>player</code> and <code>opponent</code> fields
in the resulting <code>score</code> should be swapped, as it is now the other player's
turn.
</step>
<step title="Multiple return values" src="doc/codewalk/pig.go:/\/\/ roll returns/,/true\n}/">
Go functions can return multiple values.
<br/><br/>
The functions <code>roll</code> and <code>stay</code> each return a pair of
values. They also match the <code>action</code> type signature. These
<code>action</code> functions define the rules of Pig.
</step>
<step title="Higher-order functions" src="doc/codewalk/pig.go:/\/\/ A strategy/,/action\n/">
A function can use other functions as arguments and return values.
<br/><br/>
A <code>strategy</code> is a function that takes a <code>score</code> as input
and returns an <code>action</code> to perform. <br/>
(Remember, an <code>action</code> is itself a function.)
</step>
<step title="Function literals and closures" src="doc/codewalk/pig.go:/return func/,/return roll\n\t}/">
Anonymous functions can be declared in Go, as in this example. Function
literals are closures: they inherit the scope of the function in which they
are declared.
<br/><br/>
One basic strategy in Pig is to continue rolling until you have accumulated at
least k points in a turn, and then stay. The argument <code>k</code> is
enclosed by this function literal, which matches the <code>strategy</code> type
signature.
</step>
<step title="Simulating games" src="doc/codewalk/pig.go:/\/\/ play/,/currentPlayer\n}/">
We simulate a game of Pig by calling an <code>action</code> to update the
<code>score</code> until one player reaches 100 points. Each
<code>action</code> is selected by calling the <code>strategy</code> function
associated with the current player.
</step>
<step title="Simulating a tournament" src="doc/codewalk/pig.go:/\/\/ roundRobin/,/gamesPerStrategy\n}/">
The <code>roundRobin</code> function simulates a tournament and tallies wins.
Each strategy plays each other strategy <code>gamesPerSeries</code> times.
</step>
<step title="Variadic function declarations" src="doc/codewalk/pig.go:/\/\/ ratioS/,/string {/">
Variadic functions like <code>ratioString</code> take a variable number of
arguments. These arguments are available as a slice inside the function.
</step>
<step title="Simulation results" src="doc/codewalk/pig.go:/func main/,/\n}/">
The <code>main</code> function defines 100 basic strategies, simulates a round
robin tournament, and then prints the win/loss record of each strategy.
<br/><br/>
Among these strategies, staying at 25 is best, but the <a
href="http://www.google.com/search?q=optimal+play+pig">optimal strategy for
Pig</a> is much more complex.
</step>
</codewalk>