| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file provides Go implementations of elementary multi-precision |
| // arithmetic operations on word vectors. Needed for platforms without |
| // assembly implementations of these routines. |
| |
| package big |
| |
| import "unsafe" |
| |
| type Word uintptr |
| |
| const ( |
| _S = uintptr(unsafe.Sizeof(Word(0))) // TODO(gri) should Sizeof return a uintptr? |
| _logW = (0x650 >> _S) & 7 |
| _W = 1 << _logW |
| _B = 1 << _W |
| _M = _B - 1 |
| _W2 = _W / 2 |
| _B2 = 1 << _W2 |
| _M2 = _B2 - 1 |
| ) |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Elementary operations on words |
| // |
| // These operations are used by the vector operations below. |
| |
| // z1<<_W + z0 = x+y+c, with c == 0 or 1 |
| func addWW_g(x, y, c Word) (z1, z0 Word) { |
| yc := y + c |
| z0 = x + yc |
| if z0 < x || yc < y { |
| z1 = 1 |
| } |
| return |
| } |
| |
| |
| // z1<<_W + z0 = x-y-c, with c == 0 or 1 |
| func subWW_g(x, y, c Word) (z1, z0 Word) { |
| yc := y + c |
| z0 = x - yc |
| if z0 > x || yc < y { |
| z1 = 1 |
| } |
| return |
| } |
| |
| |
| // z1<<_W + z0 = x*y |
| func mulWW_g(x, y Word) (z1, z0 Word) { |
| // Split x and y into 2 halfWords each, multiply |
| // the halfWords separately while avoiding overflow, |
| // and return the product as 2 Words. |
| |
| if x < y { |
| x, y = y, x |
| } |
| |
| if x < _B2 { |
| // y < _B2 because y <= x |
| // sub-digits of x and y are (0, x) and (0, y) |
| // z = z[0] = x*y |
| z0 = x * y |
| return |
| } |
| |
| if y < _B2 { |
| // sub-digits of x and y are (x1, x0) and (0, y) |
| // x = (x1*_B2 + x0) |
| // y = (y1*_B2 + y0) |
| x1, x0 := x>>_W2, x&_M2 |
| |
| // x*y = t2*_B2*_B2 + t1*_B2 + t0 |
| t0 := x0 * y |
| t1 := x1 * y |
| |
| // compute result digits but avoid overflow |
| // z = z[1]*_B + z[0] = x*y |
| z0 = t1<<_W2 + t0 |
| z1 = (t1 + t0>>_W2) >> _W2 |
| return |
| } |
| |
| // general case |
| // sub-digits of x and y are (x1, x0) and (y1, y0) |
| // x = (x1*_B2 + x0) |
| // y = (y1*_B2 + y0) |
| x1, x0 := x>>_W2, x&_M2 |
| y1, y0 := y>>_W2, y&_M2 |
| |
| // x*y = t2*_B2*_B2 + t1*_B2 + t0 |
| t0 := x0 * y0 |
| // t1 := x1*y0 + x0*y1; |
| var c Word |
| t1 := x1 * y0 |
| t1a := t1 |
| t1 += x0 * y1 |
| if t1 < t1a { |
| c++ |
| } |
| t2 := x1*y1 + c*_B2 |
| |
| // compute result digits but avoid overflow |
| // z = z[1]*_B + z[0] = x*y |
| // This may overflow, but that's ok because we also sum t1 and t0 above |
| // and we take care of the overflow there. |
| z0 = t1<<_W2 + t0 |
| |
| // z1 = t2 + (t1 + t0>>_W2)>>_W2; |
| var c3 Word |
| z1 = t1 + t0>>_W2 |
| if z1 < t1 { |
| c3++ |
| } |
| z1 >>= _W2 |
| z1 += c3 * _B2 |
| z1 += t2 |
| return |
| } |
| |
| |
| // z1<<_W + z0 = x*y + c |
| func mulAddWWW_g(x, y, c Word) (z1, z0 Word) { |
| // Split x and y into 2 halfWords each, multiply |
| // the halfWords separately while avoiding overflow, |
| // and return the product as 2 Words. |
| |
| // TODO(gri) Should implement special cases for faster execution. |
| |
| // general case |
| // sub-digits of x, y, and c are (x1, x0), (y1, y0), (c1, c0) |
| // x = (x1*_B2 + x0) |
| // y = (y1*_B2 + y0) |
| x1, x0 := x>>_W2, x&_M2 |
| y1, y0 := y>>_W2, y&_M2 |
| c1, c0 := c>>_W2, c&_M2 |
| |
| // x*y + c = t2*_B2*_B2 + t1*_B2 + t0 |
| // (1<<32-1)^2 == 1<<64 - 1<<33 + 1, so there's space to add c0 in here. |
| t0 := x0*y0 + c0 |
| |
| // t1 := x1*y0 + x0*y1 + c1; |
| var c2 Word // extra carry |
| t1 := x1*y0 + c1 |
| t1a := t1 |
| t1 += x0 * y1 |
| if t1 < t1a { // If the number got smaller then we overflowed. |
| c2++ |
| } |
| |
| t2 := x1*y1 + c2*_B2 |
| |
| // compute result digits but avoid overflow |
| // z = z[1]*_B + z[0] = x*y |
| // z0 = t1<<_W2 + t0; |
| // This may overflow, but that's ok because we also sum t1 and t0 below |
| // and we take care of the overflow there. |
| z0 = t1<<_W2 + t0 |
| |
| var c3 Word |
| z1 = t1 + t0>>_W2 |
| if z1 < t1 { |
| c3++ |
| } |
| z1 >>= _W2 |
| z1 += t2 + c3*_B2 |
| |
| return |
| } |
| |
| |
| // q = (x1<<_W + x0 - r)/y |
| // The most significant bit of y must be 1. |
| func divStep(x1, x0, y Word) (q, r Word) { |
| d1, d0 := y>>_W2, y&_M2 |
| q1, r1 := x1/d1, x1%d1 |
| m := q1 * d0 |
| r1 = r1*_B2 | x0>>_W2 |
| if r1 < m { |
| q1-- |
| r1 += y |
| if r1 >= y && r1 < m { |
| q1-- |
| r1 += y |
| } |
| } |
| r1 -= m |
| |
| r0 := r1 % d1 |
| q0 := r1 / d1 |
| m = q0 * d0 |
| r0 = r0*_B2 | x0&_M2 |
| if r0 < m { |
| q0-- |
| r0 += y |
| if r0 >= y && r0 < m { |
| q0-- |
| r0 += y |
| } |
| } |
| r0 -= m |
| |
| q = q1*_B2 | q0 |
| r = r0 |
| return |
| } |
| |
| |
| // Number of leading zeros in x. |
| func leadingZeros(x Word) (n uint) { |
| if x == 0 { |
| return _W |
| } |
| for x&(1<<(_W-1)) == 0 { |
| n++ |
| x <<= 1 |
| } |
| return |
| } |
| |
| |
| // q = (x1<<_W + x0 - r)/y |
| func divWW_g(x1, x0, y Word) (q, r Word) { |
| if x1 == 0 { |
| q, r = x0/y, x0%y |
| return |
| } |
| |
| var q0, q1 Word |
| z := leadingZeros(y) |
| if y > x1 { |
| if z != 0 { |
| y <<= z |
| x1 = (x1 << z) | (x0 >> (_W - z)) |
| x0 <<= z |
| } |
| q0, x0 = divStep(x1, x0, y) |
| q1 = 0 |
| } else { |
| if z == 0 { |
| x1 -= y |
| q1 = 1 |
| } else { |
| z1 := _W - z |
| y <<= z |
| x2 := x1 >> z1 |
| x1 = (x1 << z) | (x0 >> z1) |
| x0 <<= z |
| q1, x1 = divStep(x2, x1, y) |
| } |
| |
| q0, x0 = divStep(x1, x0, y) |
| } |
| |
| r = x0 >> z |
| |
| if q1 != 0 { |
| panic("div out of range") |
| } |
| |
| return q0, r |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Elementary operations on vectors |
| |
| // All higher-level functions use these elementary vector operations. |
| // The function pointers f are initialized with default implementations |
| // f_g, written in Go for portability. The corresponding assembly routines |
| // f_s should be installed if they exist. |
| var ( |
| // addVV sets z and returns c such that z+c = x+y. |
| addVV func(z, x, y *Word, n int) (c Word) = addVV_g |
| |
| // subVV sets z and returns c such that z-c = x-y. |
| subVV func(z, x, y *Word, n int) (c Word) = subVV_g |
| |
| // addVW sets z and returns c such that z+c = x-y. |
| addVW func(z, x *Word, y Word, n int) (c Word) = addVW_g |
| |
| // subVW sets z and returns c such that z-c = x-y. |
| subVW func(z, x *Word, y Word, n int) (c Word) = subVW_g |
| |
| // mulAddVWW sets z and returns c such that z+c = x*y + r. |
| mulAddVWW func(z, x *Word, y, r Word, n int) (c Word) = mulAddVWW_g |
| |
| // addMulVVW sets z and returns c such that z+c = z + x*y. |
| addMulVVW func(z, x *Word, y Word, n int) (c Word) = addMulVVW_g |
| |
| // divWVW sets z and returns r such that z-r = (xn<<(n*_W) + x) / y. |
| divWVW func(z *Word, xn Word, x *Word, y Word, n int) (r Word) = divWVW_g |
| ) |
| |
| |
| func init() { |
| // Uncomment to use generic routines. |
| //return; |
| |
| // Install assembly routines. |
| addVV = addVV_s |
| subVV = subVV_s |
| addVW = addVW_s |
| subVW = subVW_s |
| mulAddVWW = mulAddVWW_s |
| addMulVVW = addMulVVW_s |
| divWVW = divWVW_s |
| } |
| |
| |
| func (p *Word) at(i int) *Word { |
| return (*Word)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + uintptr(i)*_S)) |
| } |
| |
| |
| func addVV_s(z, x, y *Word, n int) (c Word) |
| func addVV_g(z, x, y *Word, n int) (c Word) { |
| for i := 0; i < n; i++ { |
| c, *z.at(i) = addWW_g(*x.at(i), *y.at(i), c) |
| } |
| return |
| } |
| |
| |
| func subVV_s(z, x, y *Word, n int) (c Word) |
| func subVV_g(z, x, y *Word, n int) (c Word) { |
| for i := 0; i < n; i++ { |
| c, *z.at(i) = subWW_g(*x.at(i), *y.at(i), c) |
| } |
| return |
| } |
| |
| |
| func addVW_s(z, x *Word, y Word, n int) (c Word) |
| func addVW_g(z, x *Word, y Word, n int) (c Word) { |
| c = y |
| for i := 0; i < n; i++ { |
| c, *z.at(i) = addWW_g(*x.at(i), c, 0) |
| } |
| return |
| } |
| |
| |
| func subVW_s(z, x *Word, y Word, n int) (c Word) |
| func subVW_g(z, x *Word, y Word, n int) (c Word) { |
| c = y |
| for i := 0; i < n; i++ { |
| c, *z.at(i) = subWW_g(*x.at(i), c, 0) |
| } |
| return |
| } |
| |
| |
| func mulAddVWW_s(z, x *Word, y, r Word, n int) (c Word) |
| func mulAddVWW_g(z, x *Word, y, r Word, n int) (c Word) { |
| c = r |
| for i := 0; i < n; i++ { |
| c, *z.at(i) = mulAddWWW_g(*x.at(i), y, c) |
| } |
| return |
| } |
| |
| |
| func addMulVVW_s(z, x *Word, y Word, n int) (c Word) |
| func addMulVVW_g(z, x *Word, y Word, n int) (c Word) { |
| for i := 0; i < n; i++ { |
| z1, z0 := mulAddWWW_g(*x.at(i), y, *z.at(i)) |
| c, *z.at(i) = addWW_g(z0, c, 0) |
| c += z1 |
| } |
| return |
| } |
| |
| |
| func divWVW_s(z *Word, xn Word, x *Word, y Word, n int) (r Word) |
| func divWVW_g(z *Word, xn Word, x *Word, y Word, n int) (r Word) { |
| r = xn |
| for i := n - 1; i >= 0; i-- { |
| *z.at(i), r = divWW_g(r, *x.at(i), y) |
| } |
| return |
| } |