crypto/elliptic: add constant-time, P-256 implementation.
On my 64-bit machine, despite being 32-bit code, fixed-base
multiplications are 7.1x faster and arbitary multiplications are 2.6x
faster.
It is difficult to review this change. However, the code is essentially
the same as code that has been open-sourced in Chromium. There it has
been successfully performing P-256 operations for several months on
many machines so the arithmetic of the code should be sound.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/10551044
diff --git a/src/pkg/crypto/elliptic/elliptic.go b/src/pkg/crypto/elliptic/elliptic.go
index 7a4ff66..ba673f8 100644
--- a/src/pkg/crypto/elliptic/elliptic.go
+++ b/src/pkg/crypto/elliptic/elliptic.go
@@ -322,7 +322,6 @@
}
var initonce sync.Once
-var p256 *CurveParams
var p384 *CurveParams
var p521 *CurveParams
@@ -333,17 +332,6 @@
initP521()
}
-func initP256() {
- // See FIPS 186-3, section D.2.3
- p256 = new(CurveParams)
- p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
- p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
- p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
- p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
- p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
- p256.BitSize = 256
-}
-
func initP384() {
// See FIPS 186-3, section D.2.4
p384 = new(CurveParams)
diff --git a/src/pkg/crypto/elliptic/elliptic_test.go b/src/pkg/crypto/elliptic/elliptic_test.go
index 58f9039..4dc27c9 100644
--- a/src/pkg/crypto/elliptic/elliptic_test.go
+++ b/src/pkg/crypto/elliptic/elliptic_test.go
@@ -322,6 +322,52 @@
}
}
+func TestP256BaseMult(t *testing.T) {
+ p256 := P256()
+ p256Generic := p256.Params()
+
+ scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1)
+ for _, e := range p224BaseMultTests {
+ k, _ := new(big.Int).SetString(e.k, 10)
+ scalars = append(scalars, k)
+ }
+ k := new(big.Int).SetInt64(1)
+ k.Lsh(k, 500)
+ scalars = append(scalars, k)
+
+ for i, k := range scalars {
+ x, y := p256.ScalarBaseMult(k.Bytes())
+ x2, y2 := p256Generic.ScalarBaseMult(k.Bytes())
+ if x.Cmp(x2) != 0 || y.Cmp(y2) != 0 {
+ t.Errorf("#%d: got (%x, %x), want (%x, %x)", i, x, y, x2, y2)
+ }
+
+ if testing.Short() && i > 5 {
+ break
+ }
+ }
+}
+
+func TestP256Mult(t *testing.T) {
+ p256 := P256()
+ p256Generic := p256.Params()
+
+ for i, e := range p224BaseMultTests {
+ x, _ := new(big.Int).SetString(e.x, 16)
+ y, _ := new(big.Int).SetString(e.y, 16)
+ k, _ := new(big.Int).SetString(e.k, 10)
+
+ xx, yy := p256.ScalarMult(x, y, k.Bytes())
+ xx2, yy2 := p256Generic.ScalarMult(x, y, k.Bytes())
+ if xx.Cmp(xx2) != 0 || yy.Cmp(yy2) != 0 {
+ t.Errorf("#%d: got (%x, %x), want (%x, %x)", i, xx, yy, xx2, yy2)
+ }
+ if testing.Short() && i > 5 {
+ break
+ }
+ }
+}
+
func TestInfinity(t *testing.T) {
tests := []struct {
name string
@@ -371,6 +417,17 @@
}
}
+func BenchmarkBaseMultP256(b *testing.B) {
+ b.ResetTimer()
+ p256 := P256()
+ e := p224BaseMultTests[25]
+ k, _ := new(big.Int).SetString(e.k, 10)
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ p256.ScalarBaseMult(k.Bytes())
+ }
+}
+
func TestMarshal(t *testing.T) {
p224 := P224()
_, x, y, err := GenerateKey(p224, rand.Reader)
diff --git a/src/pkg/crypto/elliptic/p256.go b/src/pkg/crypto/elliptic/p256.go
new file mode 100644
index 0000000..82be51e
--- /dev/null
+++ b/src/pkg/crypto/elliptic/p256.go
@@ -0,0 +1,1186 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+// This file contains a constant-time, 32-bit implementation of P256.
+
+import (
+ "math/big"
+)
+
+type p256Curve struct {
+ *CurveParams
+}
+
+var (
+ p256 p256Curve
+ // RInverse contains 1/R mod p - the inverse of the Montgomery constant
+ // (2**257).
+ p256RInverse *big.Int
+)
+
+func initP256() {
+ // See FIPS 186-3, section D.2.3
+ p256.CurveParams = new(CurveParams)
+ p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
+ p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
+ p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
+ p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
+ p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
+ p256.BitSize = 256
+
+ p256RInverse, _ = new(big.Int).SetString("7fffffff00000001fffffffe8000000100000000ffffffff0000000180000000", 16)
+}
+
+func (curve p256Curve) Params() *CurveParams {
+ return curve.CurveParams
+}
+
+// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
+// to out. If the scalar is equal or greater than the order of the group, it's
+// reduced modulo that order.
+func p256GetScalar(out *[32]byte, in []byte) {
+ n := new(big.Int).SetBytes(in)
+ var scalarBytes []byte
+
+ if n.Cmp(p256.N) >= 0 {
+ n.Mod(n, p256.N)
+ scalarBytes = n.Bytes()
+ } else {
+ scalarBytes = in
+ }
+
+ for i, v := range scalarBytes {
+ out[len(scalarBytes)-(1+i)] = v
+ }
+}
+
+func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
+ var scalarReversed [32]byte
+ p256GetScalar(&scalarReversed, scalar)
+
+ var x1, y1, z1 [p256Limbs]uint32
+ p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed)
+ return p256ToAffine(&x1, &y1, &z1)
+}
+
+func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
+ var scalarReversed [32]byte
+ p256GetScalar(&scalarReversed, scalar)
+
+ var px, py, x1, y1, z1 [p256Limbs]uint32
+ p256FromBig(&px, bigX)
+ p256FromBig(&py, bigY)
+ p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed)
+ return p256ToAffine(&x1, &y1, &z1)
+}
+
+// Field elements are represented as nine, unsigned 32-bit words.
+//
+// The value of an field element is:
+// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
+//
+// That is, each limb is alternately 29 or 28-bits wide in little-endian
+// order.
+//
+// This means that a field element hits 2**257, rather than 2**256 as we would
+// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes
+// problems when multiplying as terms end up one bit short of a limb which
+// would require much bit-shifting to correct.
+//
+// Finally, the values stored in a field element are in Montgomery form. So the
+// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is
+// 2**257.
+
+const (
+ p256Limbs = 9
+ bottom29Bits = 0x1fffffff
+)
+
+var (
+ // p256One is the number 1 as a field element.
+ p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0}
+ p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0}
+ // p256P is the prime modulus as a field element.
+ p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff}
+ // p2562P is the twice prime modulus as a field element.
+ p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff}
+)
+
+// p256Precomputed contains precomputed values to aid the calculation of scalar
+// multiples of the base point, G. It's actually two, equal length, tables
+// concatenated.
+//
+// The first table contains (x,y) field element pairs for 16 multiples of the
+// base point, G.
+//
+// Index | Index (binary) | Value
+// 0 | 0000 | 0G (all zeros, omitted)
+// 1 | 0001 | G
+// 2 | 0010 | 2**64G
+// 3 | 0011 | 2**64G + G
+// 4 | 0100 | 2**128G
+// 5 | 0101 | 2**128G + G
+// 6 | 0110 | 2**128G + 2**64G
+// 7 | 0111 | 2**128G + 2**64G + G
+// 8 | 1000 | 2**192G
+// 9 | 1001 | 2**192G + G
+// 10 | 1010 | 2**192G + 2**64G
+// 11 | 1011 | 2**192G + 2**64G + G
+// 12 | 1100 | 2**192G + 2**128G
+// 13 | 1101 | 2**192G + 2**128G + G
+// 14 | 1110 | 2**192G + 2**128G + 2**64G
+// 15 | 1111 | 2**192G + 2**128G + 2**64G + G
+//
+// The second table follows the same style, but the terms are 2**32G,
+// 2**96G, 2**160G, 2**224G.
+//
+// This is ~2KB of data.
+var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{
+ 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
+ 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
+ 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
+ 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
+ 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
+ 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
+ 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
+ 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
+ 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
+ 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
+ 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
+ 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
+ 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
+ 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
+ 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
+ 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
+ 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
+ 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
+ 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
+ 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
+ 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
+ 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
+ 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
+ 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
+ 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
+ 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
+ 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
+ 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
+ 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
+ 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
+ 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
+ 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
+ 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
+ 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
+ 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
+ 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
+ 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
+ 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
+ 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
+ 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
+ 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
+ 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
+ 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
+ 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
+ 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
+ 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
+ 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
+ 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
+ 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
+ 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
+ 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
+ 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
+ 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
+ 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
+ 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
+ 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
+ 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
+ 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
+ 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
+ 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
+}
+
+// Field element operations:
+
+// nonZeroToAllOnes returns:
+// 0xffffffff for 0 < x <= 2**31
+// 0 for x == 0 or x > 2**31.
+func nonZeroToAllOnes(x uint32) uint32 {
+ return ((x - 1) >> 31) - 1
+}
+
+// p256ReduceCarry adds a multiple of p in order to cancel |carry|,
+// which is a term at 2**257.
+//
+// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
+// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
+func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) {
+ carry_mask := nonZeroToAllOnes(carry)
+
+ inout[0] += carry << 1
+ inout[3] += 0x10000000 & carry_mask
+ // carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
+ // previous line therefore this doesn't underflow.
+ inout[3] -= carry << 11
+ inout[4] += (0x20000000 - 1) & carry_mask
+ inout[5] += (0x10000000 - 1) & carry_mask
+ inout[6] += (0x20000000 - 1) & carry_mask
+ inout[6] -= carry << 22
+ // This may underflow if carry is non-zero but, if so, we'll fix it in the
+ // next line.
+ inout[7] -= 1 & carry_mask
+ inout[7] += carry << 25
+}
+
+// p256Sum sets out = in+in2.
+//
+// On entry, in[i]+in2[i] must not overflow a 32-bit word.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
+func p256Sum(out, in, in2 *[p256Limbs]uint32) {
+ carry := uint32(0)
+ for i := 0; ; i++ {
+ out[i] = in[i] + in2[i]
+ out[i] += carry
+ carry = out[i] >> 29
+ out[i] &= bottom29Bits
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+
+ out[i] = in[i] + in2[i]
+ out[i] += carry
+ carry = out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+
+ p256ReduceCarry(out, carry)
+}
+
+const (
+ two30m2 = 1<<30 - 1<<2
+ two30p13m2 = 1<<30 + 1<<13 - 1<<2
+ two31m2 = 1<<31 - 1<<2
+ two31p24m2 = 1<<31 + 1<<24 - 1<<2
+ two30m27m2 = 1<<30 - 1<<27 - 1<<2
+)
+
+// p256Zero31 is 0 mod p.
+var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2}
+
+// p256Diff sets out = in-in2.
+//
+// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Diff(out, in, in2 *[p256Limbs]uint32) {
+ var carry uint32
+
+ for i := 0; ; i++ {
+ out[i] = in[i] - in2[i]
+ out[i] += p256Zero31[i]
+ out[i] += carry
+ carry = out[i] >> 29
+ out[i] &= bottom29Bits
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+
+ out[i] = in[i] - in2[i]
+ out[i] += p256Zero31[i]
+ out[i] += carry
+ carry = out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+
+ p256ReduceCarry(out, carry)
+}
+
+// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with
+// the same 29,28,... bit positions as an field element.
+//
+// The values in field elements are in Montgomery form: x*R mod p where R =
+// 2**257. Since we just multiplied two Montgomery values together, the result
+// is x*y*R*R mod p. We wish to divide by R in order for the result also to be
+// in Montgomery form.
+//
+// On entry: tmp[i] < 2**64
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
+func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) {
+ // The following table may be helpful when reading this code:
+ //
+ // Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
+ // Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
+ // Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
+ // (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
+ var tmp2 [18]uint32
+ var carry, x, xMask uint32
+
+ // tmp contains 64-bit words with the same 29,28,29-bit positions as an
+ // field element. So the top of an element of tmp might overlap with
+ // another element two positions down. The following loop eliminates
+ // this overlap.
+ tmp2[0] = uint32(tmp[0]) & bottom29Bits
+
+ tmp2[1] = uint32(tmp[0]) >> 29
+ tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits
+ tmp2[1] += uint32(tmp[1]) & bottom28Bits
+ carry = tmp2[1] >> 28
+ tmp2[1] &= bottom28Bits
+
+ for i := 2; i < 17; i++ {
+ tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25
+ tmp2[i] += (uint32(tmp[i-1])) >> 28
+ tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits
+ tmp2[i] += uint32(tmp[i]) & bottom29Bits
+ tmp2[i] += carry
+ carry = tmp2[i] >> 29
+ tmp2[i] &= bottom29Bits
+
+ i++
+ if i == 17 {
+ break
+ }
+ tmp2[i] = uint32(tmp[i-2]>>32) >> 25
+ tmp2[i] += uint32(tmp[i-1]) >> 29
+ tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits
+ tmp2[i] += uint32(tmp[i]) & bottom28Bits
+ tmp2[i] += carry
+ carry = tmp2[i] >> 28
+ tmp2[i] &= bottom28Bits
+ }
+
+ tmp2[17] = uint32(tmp[15]>>32) >> 25
+ tmp2[17] += uint32(tmp[16]) >> 29
+ tmp2[17] += uint32(tmp[16]>>32) << 3
+ tmp2[17] += carry
+
+ // Montgomery elimination of terms:
+ //
+ // Since R is 2**257, we can divide by R with a bitwise shift if we can
+ // ensure that the right-most 257 bits are all zero. We can make that true
+ // by adding multiplies of p without affecting the value.
+ //
+ // So we eliminate limbs from right to left. Since the bottom 29 bits of p
+ // are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
+ // We can do that for 8 further limbs and then right shift to eliminate the
+ // extra factor of R.
+ for i := 0; ; i += 2 {
+ tmp2[i+1] += tmp2[i] >> 29
+ x = tmp2[i] & bottom29Bits
+ xMask = nonZeroToAllOnes(x)
+ tmp2[i] = 0
+
+ // The bounds calculations for this loop are tricky. Each iteration of
+ // the loop eliminates two words by adding values to words to their
+ // right.
+ //
+ // The following table contains the amounts added to each word (as an
+ // offset from the value of i at the top of the loop). The amounts are
+ // accounted for from the first and second half of the loop separately
+ // and are written as, for example, 28 to mean a value <2**28.
+ //
+ // Word: 3 4 5 6 7 8 9 10
+ // Added in top half: 28 11 29 21 29 28
+ // 28 29
+ // 29
+ // Added in bottom half: 29 10 28 21 28 28
+ // 29
+ //
+ // The value that is currently offset 7 will be offset 5 for the next
+ // iteration and then offset 3 for the iteration after that. Therefore
+ // the total value added will be the values added at 7, 5 and 3.
+ //
+ // The following table accumulates these values. The sums at the bottom
+ // are written as, for example, 29+28, to mean a value < 2**29+2**28.
+ //
+ // Word: 3 4 5 6 7 8 9 10 11 12 13
+ // 28 11 10 29 21 29 28 28 28 28 28
+ // 29 28 11 28 29 28 29 28 29 28
+ // 29 28 21 21 29 21 29 21
+ // 10 29 28 21 28 21 28
+ // 28 29 28 29 28 29 28
+ // 11 10 29 10 29 10
+ // 29 28 11 28 11
+ // 29 29
+ // --------------------------------------------
+ // 30+ 31+ 30+ 31+ 30+
+ // 28+ 29+ 28+ 29+ 21+
+ // 21+ 28+ 21+ 28+ 10
+ // 10 21+ 10 21+
+ // 11 11
+ //
+ // So the greatest amount is added to tmp2[10] and tmp2[12]. If
+ // tmp2[10/12] has an initial value of <2**29, then the maximum value
+ // will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
+ // as required.
+ tmp2[i+3] += (x << 10) & bottom28Bits
+ tmp2[i+4] += (x >> 18)
+
+ tmp2[i+6] += (x << 21) & bottom29Bits
+ tmp2[i+7] += x >> 8
+
+ // At position 200, which is the starting bit position for word 7, we
+ // have a factor of 0xf000000 = 2**28 - 2**24.
+ tmp2[i+7] += 0x10000000 & xMask
+ tmp2[i+8] += (x - 1) & xMask
+ tmp2[i+7] -= (x << 24) & bottom28Bits
+ tmp2[i+8] -= x >> 4
+
+ tmp2[i+8] += 0x20000000 & xMask
+ tmp2[i+8] -= x
+ tmp2[i+8] += (x << 28) & bottom29Bits
+ tmp2[i+9] += ((x >> 1) - 1) & xMask
+
+ if i+1 == p256Limbs {
+ break
+ }
+ tmp2[i+2] += tmp2[i+1] >> 28
+ x = tmp2[i+1] & bottom28Bits
+ xMask = nonZeroToAllOnes(x)
+ tmp2[i+1] = 0
+
+ tmp2[i+4] += (x << 11) & bottom29Bits
+ tmp2[i+5] += (x >> 18)
+
+ tmp2[i+7] += (x << 21) & bottom28Bits
+ tmp2[i+8] += x >> 7
+
+ // At position 199, which is the starting bit of the 8th word when
+ // dealing with a context starting on an odd word, we have a factor of
+ // 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
+ // word from i+1 is i+8.
+ tmp2[i+8] += 0x20000000 & xMask
+ tmp2[i+9] += (x - 1) & xMask
+ tmp2[i+8] -= (x << 25) & bottom29Bits
+ tmp2[i+9] -= x >> 4
+
+ tmp2[i+9] += 0x10000000 & xMask
+ tmp2[i+9] -= x
+ tmp2[i+10] += (x - 1) & xMask
+ }
+
+ // We merge the right shift with a carry chain. The words above 2**257 have
+ // widths of 28,29,... which we need to correct when copying them down.
+ carry = 0
+ for i := 0; i < 8; i++ {
+ // The maximum value of tmp2[i + 9] occurs on the first iteration and
+ // is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
+ // therefore safe.
+ out[i] = tmp2[i+9]
+ out[i] += carry
+ out[i] += (tmp2[i+10] << 28) & bottom29Bits
+ carry = out[i] >> 29
+ out[i] &= bottom29Bits
+
+ i++
+ out[i] = tmp2[i+9] >> 1
+ out[i] += carry
+ carry = out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+
+ out[8] = tmp2[17]
+ out[8] += carry
+ carry = out[8] >> 29
+ out[8] &= bottom29Bits
+
+ p256ReduceCarry(out, carry)
+}
+
+// p256Square sets out=in*in.
+//
+// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Square(out, in *[p256Limbs]uint32) {
+ var tmp [17]uint64
+
+ tmp[0] = uint64(in[0]) * uint64(in[0])
+ tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1)
+ tmp[2] = uint64(in[0])*(uint64(in[2])<<1) +
+ uint64(in[1])*(uint64(in[1])<<1)
+ tmp[3] = uint64(in[0])*(uint64(in[3])<<1) +
+ uint64(in[1])*(uint64(in[2])<<1)
+ tmp[4] = uint64(in[0])*(uint64(in[4])<<1) +
+ uint64(in[1])*(uint64(in[3])<<2) +
+ uint64(in[2])*uint64(in[2])
+ tmp[5] = uint64(in[0])*(uint64(in[5])<<1) +
+ uint64(in[1])*(uint64(in[4])<<1) +
+ uint64(in[2])*(uint64(in[3])<<1)
+ tmp[6] = uint64(in[0])*(uint64(in[6])<<1) +
+ uint64(in[1])*(uint64(in[5])<<2) +
+ uint64(in[2])*(uint64(in[4])<<1) +
+ uint64(in[3])*(uint64(in[3])<<1)
+ tmp[7] = uint64(in[0])*(uint64(in[7])<<1) +
+ uint64(in[1])*(uint64(in[6])<<1) +
+ uint64(in[2])*(uint64(in[5])<<1) +
+ uint64(in[3])*(uint64(in[4])<<1)
+ // tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
+ // which is < 2**64 as required.
+ tmp[8] = uint64(in[0])*(uint64(in[8])<<1) +
+ uint64(in[1])*(uint64(in[7])<<2) +
+ uint64(in[2])*(uint64(in[6])<<1) +
+ uint64(in[3])*(uint64(in[5])<<2) +
+ uint64(in[4])*uint64(in[4])
+ tmp[9] = uint64(in[1])*(uint64(in[8])<<1) +
+ uint64(in[2])*(uint64(in[7])<<1) +
+ uint64(in[3])*(uint64(in[6])<<1) +
+ uint64(in[4])*(uint64(in[5])<<1)
+ tmp[10] = uint64(in[2])*(uint64(in[8])<<1) +
+ uint64(in[3])*(uint64(in[7])<<2) +
+ uint64(in[4])*(uint64(in[6])<<1) +
+ uint64(in[5])*(uint64(in[5])<<1)
+ tmp[11] = uint64(in[3])*(uint64(in[8])<<1) +
+ uint64(in[4])*(uint64(in[7])<<1) +
+ uint64(in[5])*(uint64(in[6])<<1)
+ tmp[12] = uint64(in[4])*(uint64(in[8])<<1) +
+ uint64(in[5])*(uint64(in[7])<<2) +
+ uint64(in[6])*uint64(in[6])
+ tmp[13] = uint64(in[5])*(uint64(in[8])<<1) +
+ uint64(in[6])*(uint64(in[7])<<1)
+ tmp[14] = uint64(in[6])*(uint64(in[8])<<1) +
+ uint64(in[7])*(uint64(in[7])<<1)
+ tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1)
+ tmp[16] = uint64(in[8]) * uint64(in[8])
+
+ p256ReduceDegree(out, tmp)
+}
+
+// p256Mul sets out=in*in2.
+//
+// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
+// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Mul(out, in, in2 *[p256Limbs]uint32) {
+ var tmp [17]uint64
+
+ tmp[0] = uint64(in[0]) * uint64(in2[0])
+ tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) +
+ uint64(in[1])*(uint64(in2[0])<<0)
+ tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) +
+ uint64(in[1])*(uint64(in2[1])<<1) +
+ uint64(in[2])*(uint64(in2[0])<<0)
+ tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) +
+ uint64(in[1])*(uint64(in2[2])<<0) +
+ uint64(in[2])*(uint64(in2[1])<<0) +
+ uint64(in[3])*(uint64(in2[0])<<0)
+ tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) +
+ uint64(in[1])*(uint64(in2[3])<<1) +
+ uint64(in[2])*(uint64(in2[2])<<0) +
+ uint64(in[3])*(uint64(in2[1])<<1) +
+ uint64(in[4])*(uint64(in2[0])<<0)
+ tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) +
+ uint64(in[1])*(uint64(in2[4])<<0) +
+ uint64(in[2])*(uint64(in2[3])<<0) +
+ uint64(in[3])*(uint64(in2[2])<<0) +
+ uint64(in[4])*(uint64(in2[1])<<0) +
+ uint64(in[5])*(uint64(in2[0])<<0)
+ tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) +
+ uint64(in[1])*(uint64(in2[5])<<1) +
+ uint64(in[2])*(uint64(in2[4])<<0) +
+ uint64(in[3])*(uint64(in2[3])<<1) +
+ uint64(in[4])*(uint64(in2[2])<<0) +
+ uint64(in[5])*(uint64(in2[1])<<1) +
+ uint64(in[6])*(uint64(in2[0])<<0)
+ tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) +
+ uint64(in[1])*(uint64(in2[6])<<0) +
+ uint64(in[2])*(uint64(in2[5])<<0) +
+ uint64(in[3])*(uint64(in2[4])<<0) +
+ uint64(in[4])*(uint64(in2[3])<<0) +
+ uint64(in[5])*(uint64(in2[2])<<0) +
+ uint64(in[6])*(uint64(in2[1])<<0) +
+ uint64(in[7])*(uint64(in2[0])<<0)
+ // tmp[8] has the greatest value but doesn't overflow. See logic in
+ // p256Square.
+ tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) +
+ uint64(in[1])*(uint64(in2[7])<<1) +
+ uint64(in[2])*(uint64(in2[6])<<0) +
+ uint64(in[3])*(uint64(in2[5])<<1) +
+ uint64(in[4])*(uint64(in2[4])<<0) +
+ uint64(in[5])*(uint64(in2[3])<<1) +
+ uint64(in[6])*(uint64(in2[2])<<0) +
+ uint64(in[7])*(uint64(in2[1])<<1) +
+ uint64(in[8])*(uint64(in2[0])<<0)
+ tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) +
+ uint64(in[2])*(uint64(in2[7])<<0) +
+ uint64(in[3])*(uint64(in2[6])<<0) +
+ uint64(in[4])*(uint64(in2[5])<<0) +
+ uint64(in[5])*(uint64(in2[4])<<0) +
+ uint64(in[6])*(uint64(in2[3])<<0) +
+ uint64(in[7])*(uint64(in2[2])<<0) +
+ uint64(in[8])*(uint64(in2[1])<<0)
+ tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) +
+ uint64(in[3])*(uint64(in2[7])<<1) +
+ uint64(in[4])*(uint64(in2[6])<<0) +
+ uint64(in[5])*(uint64(in2[5])<<1) +
+ uint64(in[6])*(uint64(in2[4])<<0) +
+ uint64(in[7])*(uint64(in2[3])<<1) +
+ uint64(in[8])*(uint64(in2[2])<<0)
+ tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) +
+ uint64(in[4])*(uint64(in2[7])<<0) +
+ uint64(in[5])*(uint64(in2[6])<<0) +
+ uint64(in[6])*(uint64(in2[5])<<0) +
+ uint64(in[7])*(uint64(in2[4])<<0) +
+ uint64(in[8])*(uint64(in2[3])<<0)
+ tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) +
+ uint64(in[5])*(uint64(in2[7])<<1) +
+ uint64(in[6])*(uint64(in2[6])<<0) +
+ uint64(in[7])*(uint64(in2[5])<<1) +
+ uint64(in[8])*(uint64(in2[4])<<0)
+ tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) +
+ uint64(in[6])*(uint64(in2[7])<<0) +
+ uint64(in[7])*(uint64(in2[6])<<0) +
+ uint64(in[8])*(uint64(in2[5])<<0)
+ tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) +
+ uint64(in[7])*(uint64(in2[7])<<1) +
+ uint64(in[8])*(uint64(in2[6])<<0)
+ tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) +
+ uint64(in[8])*(uint64(in2[7])<<0)
+ tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0)
+
+ p256ReduceDegree(out, tmp)
+}
+
+func p256Assign(out, in *[p256Limbs]uint32) {
+ *out = *in
+}
+
+// p256Invert calculates |out| = |in|^{-1}
+//
+// Based on Fermat's Little Theorem:
+// a^p = a (mod p)
+// a^{p-1} = 1 (mod p)
+// a^{p-2} = a^{-1} (mod p)
+func p256Invert(out, in *[p256Limbs]uint32) {
+ var ftmp, ftmp2 [p256Limbs]uint32
+
+ // each e_I will hold |in|^{2^I - 1}
+ var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32
+
+ p256Square(&ftmp, in) // 2^1
+ p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0
+ p256Assign(&e2, &ftmp)
+ p256Square(&ftmp, &ftmp) // 2^3 - 2^1
+ p256Square(&ftmp, &ftmp) // 2^4 - 2^2
+ p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0
+ p256Assign(&e4, &ftmp)
+ p256Square(&ftmp, &ftmp) // 2^5 - 2^1
+ p256Square(&ftmp, &ftmp) // 2^6 - 2^2
+ p256Square(&ftmp, &ftmp) // 2^7 - 2^3
+ p256Square(&ftmp, &ftmp) // 2^8 - 2^4
+ p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0
+ p256Assign(&e8, &ftmp)
+ for i := 0; i < 8; i++ {
+ p256Square(&ftmp, &ftmp)
+ } // 2^16 - 2^8
+ p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0
+ p256Assign(&e16, &ftmp)
+ for i := 0; i < 16; i++ {
+ p256Square(&ftmp, &ftmp)
+ } // 2^32 - 2^16
+ p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0
+ p256Assign(&e32, &ftmp)
+ for i := 0; i < 32; i++ {
+ p256Square(&ftmp, &ftmp)
+ } // 2^64 - 2^32
+ p256Assign(&e64, &ftmp)
+ p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0
+ for i := 0; i < 192; i++ {
+ p256Square(&ftmp, &ftmp)
+ } // 2^256 - 2^224 + 2^192
+
+ p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0
+ for i := 0; i < 16; i++ {
+ p256Square(&ftmp2, &ftmp2)
+ } // 2^80 - 2^16
+ p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0
+ for i := 0; i < 8; i++ {
+ p256Square(&ftmp2, &ftmp2)
+ } // 2^88 - 2^8
+ p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0
+ for i := 0; i < 4; i++ {
+ p256Square(&ftmp2, &ftmp2)
+ } // 2^92 - 2^4
+ p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0
+ p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1
+ p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2
+ p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0
+ p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1
+ p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2
+ p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3
+
+ p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3
+}
+
+// p256Scalar3 sets out=3*out.
+//
+// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Scalar3(out *[p256Limbs]uint32) {
+ var carry uint32
+
+ for i := 0; ; i++ {
+ out[i] *= 3
+ out[i] += carry
+ carry = out[i] >> 29
+ out[i] &= bottom29Bits
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+
+ out[i] *= 3
+ out[i] += carry
+ carry = out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+
+ p256ReduceCarry(out, carry)
+}
+
+// p256Scalar4 sets out=4*out.
+//
+// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Scalar4(out *[p256Limbs]uint32) {
+ var carry, nextCarry uint32
+
+ for i := 0; ; i++ {
+ nextCarry = out[i] >> 27
+ out[i] <<= 2
+ out[i] &= bottom29Bits
+ out[i] += carry
+ carry = nextCarry + (out[i] >> 29)
+ out[i] &= bottom29Bits
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+ nextCarry = out[i] >> 26
+ out[i] <<= 2
+ out[i] &= bottom28Bits
+ out[i] += carry
+ carry = nextCarry + (out[i] >> 28)
+ out[i] &= bottom28Bits
+ }
+
+ p256ReduceCarry(out, carry)
+}
+
+// p256Scalar8 sets out=8*out.
+//
+// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
+func p256Scalar8(out *[p256Limbs]uint32) {
+ var carry, nextCarry uint32
+
+ for i := 0; ; i++ {
+ nextCarry = out[i] >> 26
+ out[i] <<= 3
+ out[i] &= bottom29Bits
+ out[i] += carry
+ carry = nextCarry + (out[i] >> 29)
+ out[i] &= bottom29Bits
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+ nextCarry = out[i] >> 25
+ out[i] <<= 3
+ out[i] &= bottom28Bits
+ out[i] += carry
+ carry = nextCarry + (out[i] >> 28)
+ out[i] &= bottom28Bits
+ }
+
+ p256ReduceCarry(out, carry)
+}
+
+// Group operations:
+//
+// Elements of the elliptic curve group are represented in Jacobian
+// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
+// Jacobian form.
+
+// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}.
+//
+// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
+func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) {
+ var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32
+
+ p256Square(&delta, z)
+ p256Square(&gamma, y)
+ p256Mul(&beta, x, &gamma)
+
+ p256Sum(&tmp, x, &delta)
+ p256Diff(&tmp2, x, &delta)
+ p256Mul(&alpha, &tmp, &tmp2)
+ p256Scalar3(&alpha)
+
+ p256Sum(&tmp, y, z)
+ p256Square(&tmp, &tmp)
+ p256Diff(&tmp, &tmp, &gamma)
+ p256Diff(zOut, &tmp, &delta)
+
+ p256Scalar4(&beta)
+ p256Square(xOut, &alpha)
+ p256Diff(xOut, xOut, &beta)
+ p256Diff(xOut, xOut, &beta)
+
+ p256Diff(&tmp, &beta, xOut)
+ p256Mul(&tmp, &alpha, &tmp)
+ p256Square(&tmp2, &gamma)
+ p256Scalar8(&tmp2)
+ p256Diff(yOut, &tmp, &tmp2)
+}
+
+// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}.
+// (i.e. the second point is affine.)
+//
+// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+//
+// Note that this function does not handle P+P, infinity+P nor P+infinity
+// correctly.
+func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) {
+ var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
+
+ p256Square(&z1z1, z1)
+ p256Sum(&tmp, z1, z1)
+
+ p256Mul(&u2, x2, &z1z1)
+ p256Mul(&z1z1z1, z1, &z1z1)
+ p256Mul(&s2, y2, &z1z1z1)
+ p256Diff(&h, &u2, x1)
+ p256Sum(&i, &h, &h)
+ p256Square(&i, &i)
+ p256Mul(&j, &h, &i)
+ p256Diff(&r, &s2, y1)
+ p256Sum(&r, &r, &r)
+ p256Mul(&v, x1, &i)
+
+ p256Mul(zOut, &tmp, &h)
+ p256Square(&rr, &r)
+ p256Diff(xOut, &rr, &j)
+ p256Diff(xOut, xOut, &v)
+ p256Diff(xOut, xOut, &v)
+
+ p256Diff(&tmp, &v, xOut)
+ p256Mul(yOut, &tmp, &r)
+ p256Mul(&tmp, y1, &j)
+ p256Diff(yOut, yOut, &tmp)
+ p256Diff(yOut, yOut, &tmp)
+}
+
+// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}.
+//
+// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
+//
+// Note that this function does not handle P+P, infinity+P nor P+infinity
+// correctly.
+func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) {
+ var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
+
+ p256Square(&z1z1, z1)
+ p256Square(&z2z2, z2)
+ p256Mul(&u1, x1, &z2z2)
+
+ p256Sum(&tmp, z1, z2)
+ p256Square(&tmp, &tmp)
+ p256Diff(&tmp, &tmp, &z1z1)
+ p256Diff(&tmp, &tmp, &z2z2)
+
+ p256Mul(&z2z2z2, z2, &z2z2)
+ p256Mul(&s1, y1, &z2z2z2)
+
+ p256Mul(&u2, x2, &z1z1)
+ p256Mul(&z1z1z1, z1, &z1z1)
+ p256Mul(&s2, y2, &z1z1z1)
+ p256Diff(&h, &u2, &u1)
+ p256Sum(&i, &h, &h)
+ p256Square(&i, &i)
+ p256Mul(&j, &h, &i)
+ p256Diff(&r, &s2, &s1)
+ p256Sum(&r, &r, &r)
+ p256Mul(&v, &u1, &i)
+
+ p256Mul(zOut, &tmp, &h)
+ p256Square(&rr, &r)
+ p256Diff(xOut, &rr, &j)
+ p256Diff(xOut, xOut, &v)
+ p256Diff(xOut, xOut, &v)
+
+ p256Diff(&tmp, &v, xOut)
+ p256Mul(yOut, &tmp, &r)
+ p256Mul(&tmp, &s1, &j)
+ p256Diff(yOut, yOut, &tmp)
+ p256Diff(yOut, yOut, &tmp)
+}
+
+// p256CopyConditional sets out=in if mask = 0xffffffff in constant time.
+//
+// On entry: mask is either 0 or 0xffffffff.
+func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) {
+ for i := 0; i < p256Limbs; i++ {
+ tmp := mask & (in[i] ^ out[i])
+ out[i] ^= tmp
+ }
+}
+
+// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
+// On entry: index < 16, table[0] must be zero.
+func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) {
+ for i := range xOut {
+ xOut[i] = 0
+ }
+ for i := range yOut {
+ yOut[i] = 0
+ }
+
+ for i := uint32(1); i < 16; i++ {
+ mask := i ^ index
+ mask |= mask >> 2
+ mask |= mask >> 1
+ mask &= 1
+ mask--
+ for j := range xOut {
+ xOut[j] |= table[0] & mask
+ table = table[1:]
+ }
+ for j := range yOut {
+ yOut[j] |= table[0] & mask
+ table = table[1:]
+ }
+ }
+}
+
+// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of
+// table.
+// On entry: index < 16, table[0] must be zero.
+func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) {
+ for i := range xOut {
+ xOut[i] = 0
+ }
+ for i := range yOut {
+ yOut[i] = 0
+ }
+ for i := range zOut {
+ zOut[i] = 0
+ }
+
+ // The implicit value at index 0 is all zero. We don't need to perform that
+ // iteration of the loop because we already set out_* to zero.
+ for i := uint32(1); i < 16; i++ {
+ mask := i ^ index
+ mask |= mask >> 2
+ mask |= mask >> 1
+ mask &= 1
+ mask--
+ for j := range xOut {
+ xOut[j] |= table[i][0][j] & mask
+ }
+ for j := range yOut {
+ yOut[j] |= table[i][1][j] & mask
+ }
+ for j := range zOut {
+ zOut[j] |= table[i][2][j] & mask
+ }
+ }
+}
+
+// p256GetBit returns the bit'th bit of scalar.
+func p256GetBit(scalar *[32]uint8, bit uint) uint32 {
+ return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1)
+}
+
+// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a
+// little-endian number. Note that the value of scalar must be less than the
+// order of the group.
+func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) {
+ nIsInfinityMask := ^uint32(0)
+ var pIsNoninfiniteMask, mask, tableOffset uint32
+ var px, py, tx, ty, tz [p256Limbs]uint32
+
+ for i := range xOut {
+ xOut[i] = 0
+ }
+ for i := range yOut {
+ yOut[i] = 0
+ }
+ for i := range zOut {
+ zOut[i] = 0
+ }
+
+ // The loop adds bits at positions 0, 64, 128 and 192, followed by
+ // positions 32,96,160 and 224 and does this 32 times.
+ for i := uint(0); i < 32; i++ {
+ if i != 0 {
+ p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
+ }
+ tableOffset = 0
+ for j := uint(0); j <= 32; j += 32 {
+ bit0 := p256GetBit(scalar, 31-i+j)
+ bit1 := p256GetBit(scalar, 95-i+j)
+ bit2 := p256GetBit(scalar, 159-i+j)
+ bit3 := p256GetBit(scalar, 223-i+j)
+ index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3)
+
+ p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index)
+ tableOffset += 30 * p256Limbs
+
+ // Since scalar is less than the order of the group, we know that
+ // {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle
+ // below.
+ p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py)
+ // The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero
+ // (a.k.a. the point at infinity). We handle that situation by
+ // copying the point from the table.
+ p256CopyConditional(xOut, &px, nIsInfinityMask)
+ p256CopyConditional(yOut, &py, nIsInfinityMask)
+ p256CopyConditional(zOut, &p256One, nIsInfinityMask)
+
+ // Equally, the result is also wrong if the point from the table is
+ // zero, which happens when the index is zero. We handle that by
+ // only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0.
+ pIsNoninfiniteMask = nonZeroToAllOnes(index)
+ mask = pIsNoninfiniteMask & ^nIsInfinityMask
+ p256CopyConditional(xOut, &tx, mask)
+ p256CopyConditional(yOut, &ty, mask)
+ p256CopyConditional(zOut, &tz, mask)
+ // If p was not zero, then n is now non-zero.
+ nIsInfinityMask &= ^pIsNoninfiniteMask
+ }
+ }
+}
+
+// p256PointToAffine converts a Jacobian point to an affine point. If the input
+// is the point at infinity then it returns (0, 0) in constant time.
+func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) {
+ var zInv, zInvSq [p256Limbs]uint32
+
+ p256Invert(&zInv, z)
+ p256Square(&zInvSq, &zInv)
+ p256Mul(xOut, x, &zInvSq)
+ p256Mul(&zInv, &zInv, &zInvSq)
+ p256Mul(yOut, y, &zInv)
+}
+
+// p256ToAffine returns a pair of *big.Int containing the affine representation
+// of {x,y,z}.
+func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) {
+ var xx, yy [p256Limbs]uint32
+ p256PointToAffine(&xx, &yy, x, y, z)
+ return p256ToBig(&xx), p256ToBig(&yy)
+}
+
+// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}.
+func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) {
+ var px, py, pz, tx, ty, tz [p256Limbs]uint32
+ var precomp [16][3][p256Limbs]uint32
+ var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32
+
+ // We precompute 0,1,2,... times {x,y}.
+ precomp[1][0] = *x
+ precomp[1][1] = *y
+ precomp[1][2] = p256One
+
+ for i := 2; i < 16; i += 2 {
+ p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2])
+ p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y)
+ }
+
+ for i := range xOut {
+ xOut[i] = 0
+ }
+ for i := range yOut {
+ yOut[i] = 0
+ }
+ for i := range zOut {
+ zOut[i] = 0
+ }
+ nIsInfinityMask = ^uint32(0)
+
+ // We add in a window of four bits each iteration and do this 64 times.
+ for i := 0; i < 64; i++ {
+ if i != 0 {
+ p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
+ p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
+ p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
+ p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
+ }
+
+ index = uint32(scalar[31-i/2])
+ if (i & 1) == 1 {
+ index &= 15
+ } else {
+ index >>= 4
+ }
+
+ // See the comments in scalarBaseMult about handling infinities.
+ p256SelectJacobianPoint(&px, &py, &pz, &precomp, index)
+ p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz)
+ p256CopyConditional(xOut, &px, nIsInfinityMask)
+ p256CopyConditional(yOut, &py, nIsInfinityMask)
+ p256CopyConditional(zOut, &pz, nIsInfinityMask)
+
+ pIsNoninfiniteMask = nonZeroToAllOnes(index)
+ mask = pIsNoninfiniteMask & ^nIsInfinityMask
+ p256CopyConditional(xOut, &tx, mask)
+ p256CopyConditional(yOut, &ty, mask)
+ p256CopyConditional(zOut, &tz, mask)
+ nIsInfinityMask &= ^pIsNoninfiniteMask
+ }
+}
+
+// p256FromBig sets out = R*in.
+func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
+ tmp := new(big.Int).Lsh(in, 257)
+ tmp.Mod(tmp, p256.P)
+
+ for i := 0; i < p256Limbs; i++ {
+ if bits := tmp.Bits(); len(bits) > 0 {
+ out[i] = uint32(bits[0]) & bottom29Bits
+ } else {
+ out[i] = 0
+ }
+ tmp.Rsh(tmp, 29)
+
+ i++
+ if i == p256Limbs {
+ break
+ }
+
+ if bits := tmp.Bits(); len(bits) > 0 {
+ out[i] = uint32(bits[0]) & bottom28Bits
+ } else {
+ out[i] = 0
+ }
+ tmp.Rsh(tmp, 28)
+ }
+}
+
+// p256ToBig returns a *big.Int containing the value of in.
+func p256ToBig(in *[p256Limbs]uint32) *big.Int {
+ result, tmp := new(big.Int), new(big.Int)
+
+ result.SetInt64(int64(in[p256Limbs-1]))
+ for i := p256Limbs - 2; i >= 0; i-- {
+ if (i & 1) == 0 {
+ result.Lsh(result, 29)
+ } else {
+ result.Lsh(result, 28)
+ }
+ tmp.SetInt64(int64(in[i]))
+ result.Add(result, tmp)
+ }
+
+ result.Mul(result, p256RInverse)
+ result.Mod(result, p256.P)
+ return result
+}