| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements signed multi-precision integers. |
| |
| package big |
| |
| import ( |
| "fmt" |
| "io" |
| "math/rand" |
| "strings" |
| ) |
| |
| // An Int represents a signed multi-precision integer. |
| // The zero value for an Int represents the value 0. |
| // |
| // Operations always take pointer arguments (*Int) rather |
| // than Int values, and each unique Int value requires |
| // its own unique *Int pointer. To "copy" an Int value, |
| // an existing (or newly allocated) Int must be set to |
| // a new value using the Int.Set method; shallow copies |
| // of Ints are not supported and may lead to errors. |
| type Int struct { |
| neg bool // sign |
| abs nat // absolute value of the integer |
| } |
| |
| var intOne = &Int{false, natOne} |
| |
| // Sign returns: |
| // |
| // -1 if x < 0 |
| // 0 if x == 0 |
| // +1 if x > 0 |
| func (x *Int) Sign() int { |
| if len(x.abs) == 0 { |
| return 0 |
| } |
| if x.neg { |
| return -1 |
| } |
| return 1 |
| } |
| |
| // SetInt64 sets z to x and returns z. |
| func (z *Int) SetInt64(x int64) *Int { |
| neg := false |
| if x < 0 { |
| neg = true |
| x = -x |
| } |
| z.abs = z.abs.setUint64(uint64(x)) |
| z.neg = neg |
| return z |
| } |
| |
| // SetUint64 sets z to x and returns z. |
| func (z *Int) SetUint64(x uint64) *Int { |
| z.abs = z.abs.setUint64(x) |
| z.neg = false |
| return z |
| } |
| |
| // NewInt allocates and returns a new Int set to x. |
| func NewInt(x int64) *Int { |
| return new(Int).SetInt64(x) |
| } |
| |
| // Set sets z to x and returns z. |
| func (z *Int) Set(x *Int) *Int { |
| if z != x { |
| z.abs = z.abs.set(x.abs) |
| z.neg = x.neg |
| } |
| return z |
| } |
| |
| // Bits provides raw (unchecked but fast) access to x by returning its |
| // absolute value as a little-endian Word slice. The result and x share |
| // the same underlying array. |
| // Bits is intended to support implementation of missing low-level Int |
| // functionality outside this package; it should be avoided otherwise. |
| func (x *Int) Bits() []Word { |
| return x.abs |
| } |
| |
| // SetBits provides raw (unchecked but fast) access to z by setting its |
| // value to abs, interpreted as a little-endian Word slice, and returning |
| // z. The result and abs share the same underlying array. |
| // SetBits is intended to support implementation of missing low-level Int |
| // functionality outside this package; it should be avoided otherwise. |
| func (z *Int) SetBits(abs []Word) *Int { |
| z.abs = nat(abs).norm() |
| z.neg = false |
| return z |
| } |
| |
| // Abs sets z to |x| (the absolute value of x) and returns z. |
| func (z *Int) Abs(x *Int) *Int { |
| z.Set(x) |
| z.neg = false |
| return z |
| } |
| |
| // Neg sets z to -x and returns z. |
| func (z *Int) Neg(x *Int) *Int { |
| z.Set(x) |
| z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign |
| return z |
| } |
| |
| // Add sets z to the sum x+y and returns z. |
| func (z *Int) Add(x, y *Int) *Int { |
| neg := x.neg |
| if x.neg == y.neg { |
| // x + y == x + y |
| // (-x) + (-y) == -(x + y) |
| z.abs = z.abs.add(x.abs, y.abs) |
| } else { |
| // x + (-y) == x - y == -(y - x) |
| // (-x) + y == y - x == -(x - y) |
| if x.abs.cmp(y.abs) >= 0 { |
| z.abs = z.abs.sub(x.abs, y.abs) |
| } else { |
| neg = !neg |
| z.abs = z.abs.sub(y.abs, x.abs) |
| } |
| } |
| z.neg = len(z.abs) > 0 && neg // 0 has no sign |
| return z |
| } |
| |
| // Sub sets z to the difference x-y and returns z. |
| func (z *Int) Sub(x, y *Int) *Int { |
| neg := x.neg |
| if x.neg != y.neg { |
| // x - (-y) == x + y |
| // (-x) - y == -(x + y) |
| z.abs = z.abs.add(x.abs, y.abs) |
| } else { |
| // x - y == x - y == -(y - x) |
| // (-x) - (-y) == y - x == -(x - y) |
| if x.abs.cmp(y.abs) >= 0 { |
| z.abs = z.abs.sub(x.abs, y.abs) |
| } else { |
| neg = !neg |
| z.abs = z.abs.sub(y.abs, x.abs) |
| } |
| } |
| z.neg = len(z.abs) > 0 && neg // 0 has no sign |
| return z |
| } |
| |
| // Mul sets z to the product x*y and returns z. |
| func (z *Int) Mul(x, y *Int) *Int { |
| // x * y == x * y |
| // x * (-y) == -(x * y) |
| // (-x) * y == -(x * y) |
| // (-x) * (-y) == x * y |
| if x == y { |
| z.abs = z.abs.sqr(x.abs) |
| z.neg = false |
| return z |
| } |
| z.abs = z.abs.mul(x.abs, y.abs) |
| z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign |
| return z |
| } |
| |
| // MulRange sets z to the product of all integers |
| // in the range [a, b] inclusively and returns z. |
| // If a > b (empty range), the result is 1. |
| func (z *Int) MulRange(a, b int64) *Int { |
| switch { |
| case a > b: |
| return z.SetInt64(1) // empty range |
| case a <= 0 && b >= 0: |
| return z.SetInt64(0) // range includes 0 |
| } |
| // a <= b && (b < 0 || a > 0) |
| |
| neg := false |
| if a < 0 { |
| neg = (b-a)&1 == 0 |
| a, b = -b, -a |
| } |
| |
| z.abs = z.abs.mulRange(uint64(a), uint64(b)) |
| z.neg = neg |
| return z |
| } |
| |
| // Binomial sets z to the binomial coefficient of (n, k) and returns z. |
| func (z *Int) Binomial(n, k int64) *Int { |
| // reduce the number of multiplications by reducing k |
| if n/2 < k && k <= n { |
| k = n - k // Binomial(n, k) == Binomial(n, n-k) |
| } |
| var a, b Int |
| a.MulRange(n-k+1, n) |
| b.MulRange(1, k) |
| return z.Quo(&a, &b) |
| } |
| |
| // Quo sets z to the quotient x/y for y != 0 and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // Quo implements truncated division (like Go); see QuoRem for more details. |
| func (z *Int) Quo(x, y *Int) *Int { |
| z.abs, _ = z.abs.div(nil, x.abs, y.abs) |
| z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign |
| return z |
| } |
| |
| // Rem sets z to the remainder x%y for y != 0 and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // Rem implements truncated modulus (like Go); see QuoRem for more details. |
| func (z *Int) Rem(x, y *Int) *Int { |
| _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) |
| z.neg = len(z.abs) > 0 && x.neg // 0 has no sign |
| return z |
| } |
| |
| // QuoRem sets z to the quotient x/y and r to the remainder x%y |
| // and returns the pair (z, r) for y != 0. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // |
| // QuoRem implements T-division and modulus (like Go): |
| // |
| // q = x/y with the result truncated to zero |
| // r = x - y*q |
| // |
| // (See Daan Leijen, “Division and Modulus for Computer Scientists”.) |
| // See DivMod for Euclidean division and modulus (unlike Go). |
| func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { |
| z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) |
| z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign |
| return z, r |
| } |
| |
| // Div sets z to the quotient x/y for y != 0 and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // Div implements Euclidean division (unlike Go); see DivMod for more details. |
| func (z *Int) Div(x, y *Int) *Int { |
| y_neg := y.neg // z may be an alias for y |
| var r Int |
| z.QuoRem(x, y, &r) |
| if r.neg { |
| if y_neg { |
| z.Add(z, intOne) |
| } else { |
| z.Sub(z, intOne) |
| } |
| } |
| return z |
| } |
| |
| // Mod sets z to the modulus x%y for y != 0 and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. |
| func (z *Int) Mod(x, y *Int) *Int { |
| y0 := y // save y |
| if z == y || alias(z.abs, y.abs) { |
| y0 = new(Int).Set(y) |
| } |
| var q Int |
| q.QuoRem(x, y, z) |
| if z.neg { |
| if y0.neg { |
| z.Sub(z, y0) |
| } else { |
| z.Add(z, y0) |
| } |
| } |
| return z |
| } |
| |
| // DivMod sets z to the quotient x div y and m to the modulus x mod y |
| // and returns the pair (z, m) for y != 0. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| // |
| // DivMod implements Euclidean division and modulus (unlike Go): |
| // |
| // q = x div y such that |
| // m = x - y*q with 0 <= m < |y| |
| // |
| // (See Raymond T. Boute, “The Euclidean definition of the functions |
| // div and mod”. ACM Transactions on Programming Languages and |
| // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. |
| // ACM press.) |
| // See QuoRem for T-division and modulus (like Go). |
| func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { |
| y0 := y // save y |
| if z == y || alias(z.abs, y.abs) { |
| y0 = new(Int).Set(y) |
| } |
| z.QuoRem(x, y, m) |
| if m.neg { |
| if y0.neg { |
| z.Add(z, intOne) |
| m.Sub(m, y0) |
| } else { |
| z.Sub(z, intOne) |
| m.Add(m, y0) |
| } |
| } |
| return z, m |
| } |
| |
| // Cmp compares x and y and returns: |
| // |
| // -1 if x < y |
| // 0 if x == y |
| // +1 if x > y |
| func (x *Int) Cmp(y *Int) (r int) { |
| // x cmp y == x cmp y |
| // x cmp (-y) == x |
| // (-x) cmp y == y |
| // (-x) cmp (-y) == -(x cmp y) |
| switch { |
| case x == y: |
| // nothing to do |
| case x.neg == y.neg: |
| r = x.abs.cmp(y.abs) |
| if x.neg { |
| r = -r |
| } |
| case x.neg: |
| r = -1 |
| default: |
| r = 1 |
| } |
| return |
| } |
| |
| // CmpAbs compares the absolute values of x and y and returns: |
| // |
| // -1 if |x| < |y| |
| // 0 if |x| == |y| |
| // +1 if |x| > |y| |
| func (x *Int) CmpAbs(y *Int) int { |
| return x.abs.cmp(y.abs) |
| } |
| |
| // low32 returns the least significant 32 bits of x. |
| func low32(x nat) uint32 { |
| if len(x) == 0 { |
| return 0 |
| } |
| return uint32(x[0]) |
| } |
| |
| // low64 returns the least significant 64 bits of x. |
| func low64(x nat) uint64 { |
| if len(x) == 0 { |
| return 0 |
| } |
| v := uint64(x[0]) |
| if _W == 32 && len(x) > 1 { |
| return uint64(x[1])<<32 | v |
| } |
| return v |
| } |
| |
| // Int64 returns the int64 representation of x. |
| // If x cannot be represented in an int64, the result is undefined. |
| func (x *Int) Int64() int64 { |
| v := int64(low64(x.abs)) |
| if x.neg { |
| v = -v |
| } |
| return v |
| } |
| |
| // Uint64 returns the uint64 representation of x. |
| // If x cannot be represented in a uint64, the result is undefined. |
| func (x *Int) Uint64() uint64 { |
| return low64(x.abs) |
| } |
| |
| // IsInt64 reports whether x can be represented as an int64. |
| func (x *Int) IsInt64() bool { |
| if len(x.abs) <= 64/_W { |
| w := int64(low64(x.abs)) |
| return w >= 0 || x.neg && w == -w |
| } |
| return false |
| } |
| |
| // IsUint64 reports whether x can be represented as a uint64. |
| func (x *Int) IsUint64() bool { |
| return !x.neg && len(x.abs) <= 64/_W |
| } |
| |
| // SetString sets z to the value of s, interpreted in the given base, |
| // and returns z and a boolean indicating success. The entire string |
| // (not just a prefix) must be valid for success. If SetString fails, |
| // the value of z is undefined but the returned value is nil. |
| // |
| // The base argument must be 0 or a value between 2 and MaxBase. |
| // For base 0, the number prefix determines the actual base: A prefix of |
| // “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8, |
| // and “0x” or “0X” selects base 16. Otherwise, the selected base is 10 |
| // and no prefix is accepted. |
| // |
| // For bases <= 36, lower and upper case letters are considered the same: |
| // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. |
| // For bases > 36, the upper case letters 'A' to 'Z' represent the digit |
| // values 36 to 61. |
| // |
| // For base 0, an underscore character “_” may appear between a base |
| // prefix and an adjacent digit, and between successive digits; such |
| // underscores do not change the value of the number. |
| // Incorrect placement of underscores is reported as an error if there |
| // are no other errors. If base != 0, underscores are not recognized |
| // and act like any other character that is not a valid digit. |
| func (z *Int) SetString(s string, base int) (*Int, bool) { |
| return z.setFromScanner(strings.NewReader(s), base) |
| } |
| |
| // setFromScanner implements SetString given an io.ByteScanner. |
| // For documentation see comments of SetString. |
| func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) { |
| if _, _, err := z.scan(r, base); err != nil { |
| return nil, false |
| } |
| // entire content must have been consumed |
| if _, err := r.ReadByte(); err != io.EOF { |
| return nil, false |
| } |
| return z, true // err == io.EOF => scan consumed all content of r |
| } |
| |
| // SetBytes interprets buf as the bytes of a big-endian unsigned |
| // integer, sets z to that value, and returns z. |
| func (z *Int) SetBytes(buf []byte) *Int { |
| z.abs = z.abs.setBytes(buf) |
| z.neg = false |
| return z |
| } |
| |
| // Bytes returns the absolute value of x as a big-endian byte slice. |
| // |
| // To use a fixed length slice, or a preallocated one, use FillBytes. |
| func (x *Int) Bytes() []byte { |
| buf := make([]byte, len(x.abs)*_S) |
| return buf[x.abs.bytes(buf):] |
| } |
| |
| // FillBytes sets buf to the absolute value of x, storing it as a zero-extended |
| // big-endian byte slice, and returns buf. |
| // |
| // If the absolute value of x doesn't fit in buf, FillBytes will panic. |
| func (x *Int) FillBytes(buf []byte) []byte { |
| // Clear whole buffer. (This gets optimized into a memclr.) |
| for i := range buf { |
| buf[i] = 0 |
| } |
| x.abs.bytes(buf) |
| return buf |
| } |
| |
| // BitLen returns the length of the absolute value of x in bits. |
| // The bit length of 0 is 0. |
| func (x *Int) BitLen() int { |
| return x.abs.bitLen() |
| } |
| |
| // TrailingZeroBits returns the number of consecutive least significant zero |
| // bits of |x|. |
| func (x *Int) TrailingZeroBits() uint { |
| return x.abs.trailingZeroBits() |
| } |
| |
| // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. |
| // If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0, |
| // and x and m are not relatively prime, z is unchanged and nil is returned. |
| // |
| // Modular exponentiation of inputs of a particular size is not a |
| // cryptographically constant-time operation. |
| func (z *Int) Exp(x, y, m *Int) *Int { |
| // See Knuth, volume 2, section 4.6.3. |
| xWords := x.abs |
| if y.neg { |
| if m == nil || len(m.abs) == 0 { |
| return z.SetInt64(1) |
| } |
| // for y < 0: x**y mod m == (x**(-1))**|y| mod m |
| inverse := new(Int).ModInverse(x, m) |
| if inverse == nil { |
| return nil |
| } |
| xWords = inverse.abs |
| } |
| yWords := y.abs |
| |
| var mWords nat |
| if m != nil { |
| mWords = m.abs // m.abs may be nil for m == 0 |
| } |
| |
| z.abs = z.abs.expNN(xWords, yWords, mWords) |
| z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign |
| if z.neg && len(mWords) > 0 { |
| // make modulus result positive |
| z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| |
| z.neg = false |
| } |
| |
| return z |
| } |
| |
| // GCD sets z to the greatest common divisor of a and b and returns z. |
| // If x or y are not nil, GCD sets their value such that z = a*x + b*y. |
| // |
| // a and b may be positive, zero or negative. (Before Go 1.14 both had |
| // to be > 0.) Regardless of the signs of a and b, z is always >= 0. |
| // |
| // If a == b == 0, GCD sets z = x = y = 0. |
| // |
| // If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1. |
| // |
| // If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0. |
| func (z *Int) GCD(x, y, a, b *Int) *Int { |
| if len(a.abs) == 0 || len(b.abs) == 0 { |
| lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg |
| if lenA == 0 { |
| z.Set(b) |
| } else { |
| z.Set(a) |
| } |
| z.neg = false |
| if x != nil { |
| if lenA == 0 { |
| x.SetUint64(0) |
| } else { |
| x.SetUint64(1) |
| x.neg = negA |
| } |
| } |
| if y != nil { |
| if lenB == 0 { |
| y.SetUint64(0) |
| } else { |
| y.SetUint64(1) |
| y.neg = negB |
| } |
| } |
| return z |
| } |
| |
| return z.lehmerGCD(x, y, a, b) |
| } |
| |
| // lehmerSimulate attempts to simulate several Euclidean update steps |
| // using the leading digits of A and B. It returns u0, u1, v0, v1 |
| // such that A and B can be updated as: |
| // |
| // A = u0*A + v0*B |
| // B = u1*A + v1*B |
| // |
| // Requirements: A >= B and len(B.abs) >= 2 |
| // Since we are calculating with full words to avoid overflow, |
| // we use 'even' to track the sign of the cosequences. |
| // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 |
| // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0 |
| func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) { |
| // initialize the digits |
| var a1, a2, u2, v2 Word |
| |
| m := len(B.abs) // m >= 2 |
| n := len(A.abs) // n >= m >= 2 |
| |
| // extract the top Word of bits from A and B |
| h := nlz(A.abs[n-1]) |
| a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h) |
| // B may have implicit zero words in the high bits if the lengths differ |
| switch { |
| case n == m: |
| a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h) |
| case n == m+1: |
| a2 = B.abs[n-2] >> (_W - h) |
| default: |
| a2 = 0 |
| } |
| |
| // Since we are calculating with full words to avoid overflow, |
| // we use 'even' to track the sign of the cosequences. |
| // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 |
| // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0 |
| // The first iteration starts with k=1 (odd). |
| even = false |
| // variables to track the cosequences |
| u0, u1, u2 = 0, 1, 0 |
| v0, v1, v2 = 0, 0, 1 |
| |
| // Calculate the quotient and cosequences using Collins' stopping condition. |
| // Note that overflow of a Word is not possible when computing the remainder |
| // sequence and cosequences since the cosequence size is bounded by the input size. |
| // See section 4.2 of Jebelean for details. |
| for a2 >= v2 && a1-a2 >= v1+v2 { |
| q, r := a1/a2, a1%a2 |
| a1, a2 = a2, r |
| u0, u1, u2 = u1, u2, u1+q*u2 |
| v0, v1, v2 = v1, v2, v1+q*v2 |
| even = !even |
| } |
| return |
| } |
| |
| // lehmerUpdate updates the inputs A and B such that: |
| // |
| // A = u0*A + v0*B |
| // B = u1*A + v1*B |
| // |
| // where the signs of u0, u1, v0, v1 are given by even |
| // For even == true: u0, v1 >= 0 && u1, v0 <= 0 |
| // For even == false: u0, v1 <= 0 && u1, v0 >= 0 |
| // q, r, s, t are temporary variables to avoid allocations in the multiplication |
| func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) { |
| |
| t.abs = t.abs.setWord(u0) |
| s.abs = s.abs.setWord(v0) |
| t.neg = !even |
| s.neg = even |
| |
| t.Mul(A, t) |
| s.Mul(B, s) |
| |
| r.abs = r.abs.setWord(u1) |
| q.abs = q.abs.setWord(v1) |
| r.neg = even |
| q.neg = !even |
| |
| r.Mul(A, r) |
| q.Mul(B, q) |
| |
| A.Add(t, s) |
| B.Add(r, q) |
| } |
| |
| // euclidUpdate performs a single step of the Euclidean GCD algorithm |
| // if extended is true, it also updates the cosequence Ua, Ub |
| func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) { |
| q, r = q.QuoRem(A, B, r) |
| |
| *A, *B, *r = *B, *r, *A |
| |
| if extended { |
| // Ua, Ub = Ub, Ua - q*Ub |
| t.Set(Ub) |
| s.Mul(Ub, q) |
| Ub.Sub(Ua, s) |
| Ua.Set(t) |
| } |
| } |
| |
| // lehmerGCD sets z to the greatest common divisor of a and b, |
| // which both must be != 0, and returns z. |
| // If x or y are not nil, their values are set such that z = a*x + b*y. |
| // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L. |
| // This implementation uses the improved condition by Collins requiring only one |
| // quotient and avoiding the possibility of single Word overflow. |
| // See Jebelean, "Improving the multiprecision Euclidean algorithm", |
| // Design and Implementation of Symbolic Computation Systems, pp 45-58. |
| // The cosequences are updated according to Algorithm 10.45 from |
| // Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192. |
| func (z *Int) lehmerGCD(x, y, a, b *Int) *Int { |
| var A, B, Ua, Ub *Int |
| |
| A = new(Int).Abs(a) |
| B = new(Int).Abs(b) |
| |
| extended := x != nil || y != nil |
| |
| if extended { |
| // Ua (Ub) tracks how many times input a has been accumulated into A (B). |
| Ua = new(Int).SetInt64(1) |
| Ub = new(Int) |
| } |
| |
| // temp variables for multiprecision update |
| q := new(Int) |
| r := new(Int) |
| s := new(Int) |
| t := new(Int) |
| |
| // ensure A >= B |
| if A.abs.cmp(B.abs) < 0 { |
| A, B = B, A |
| Ub, Ua = Ua, Ub |
| } |
| |
| // loop invariant A >= B |
| for len(B.abs) > 1 { |
| // Attempt to calculate in single-precision using leading words of A and B. |
| u0, u1, v0, v1, even := lehmerSimulate(A, B) |
| |
| // multiprecision Step |
| if v0 != 0 { |
| // Simulate the effect of the single-precision steps using the cosequences. |
| // A = u0*A + v0*B |
| // B = u1*A + v1*B |
| lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even) |
| |
| if extended { |
| // Ua = u0*Ua + v0*Ub |
| // Ub = u1*Ua + v1*Ub |
| lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even) |
| } |
| |
| } else { |
| // Single-digit calculations failed to simulate any quotients. |
| // Do a standard Euclidean step. |
| euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) |
| } |
| } |
| |
| if len(B.abs) > 0 { |
| // extended Euclidean algorithm base case if B is a single Word |
| if len(A.abs) > 1 { |
| // A is longer than a single Word, so one update is needed. |
| euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) |
| } |
| if len(B.abs) > 0 { |
| // A and B are both a single Word. |
| aWord, bWord := A.abs[0], B.abs[0] |
| if extended { |
| var ua, ub, va, vb Word |
| ua, ub = 1, 0 |
| va, vb = 0, 1 |
| even := true |
| for bWord != 0 { |
| q, r := aWord/bWord, aWord%bWord |
| aWord, bWord = bWord, r |
| ua, ub = ub, ua+q*ub |
| va, vb = vb, va+q*vb |
| even = !even |
| } |
| |
| t.abs = t.abs.setWord(ua) |
| s.abs = s.abs.setWord(va) |
| t.neg = !even |
| s.neg = even |
| |
| t.Mul(Ua, t) |
| s.Mul(Ub, s) |
| |
| Ua.Add(t, s) |
| } else { |
| for bWord != 0 { |
| aWord, bWord = bWord, aWord%bWord |
| } |
| } |
| A.abs[0] = aWord |
| } |
| } |
| negA := a.neg |
| if y != nil { |
| // avoid aliasing b needed in the division below |
| if y == b { |
| B.Set(b) |
| } else { |
| B = b |
| } |
| // y = (z - a*x)/b |
| y.Mul(a, Ua) // y can safely alias a |
| if negA { |
| y.neg = !y.neg |
| } |
| y.Sub(A, y) |
| y.Div(y, B) |
| } |
| |
| if x != nil { |
| *x = *Ua |
| if negA { |
| x.neg = !x.neg |
| } |
| } |
| |
| *z = *A |
| |
| return z |
| } |
| |
| // Rand sets z to a pseudo-random number in [0, n) and returns z. |
| // |
| // As this uses the math/rand package, it must not be used for |
| // security-sensitive work. Use crypto/rand.Int instead. |
| func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { |
| z.neg = false |
| if n.neg || len(n.abs) == 0 { |
| z.abs = nil |
| return z |
| } |
| z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) |
| return z |
| } |
| |
| // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ |
| // and returns z. If g and n are not relatively prime, g has no multiplicative |
| // inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value |
| // is nil. |
| func (z *Int) ModInverse(g, n *Int) *Int { |
| // GCD expects parameters a and b to be > 0. |
| if n.neg { |
| var n2 Int |
| n = n2.Neg(n) |
| } |
| if g.neg { |
| var g2 Int |
| g = g2.Mod(g, n) |
| } |
| var d, x Int |
| d.GCD(&x, nil, g, n) |
| |
| // if and only if d==1, g and n are relatively prime |
| if d.Cmp(intOne) != 0 { |
| return nil |
| } |
| |
| // x and y are such that g*x + n*y = 1, therefore x is the inverse element, |
| // but it may be negative, so convert to the range 0 <= z < |n| |
| if x.neg { |
| z.Add(&x, n) |
| } else { |
| z.Set(&x) |
| } |
| return z |
| } |
| |
| // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. |
| // The y argument must be an odd integer. |
| func Jacobi(x, y *Int) int { |
| if len(y.abs) == 0 || y.abs[0]&1 == 0 { |
| panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y)) |
| } |
| |
| // We use the formulation described in chapter 2, section 2.4, |
| // "The Yacas Book of Algorithms": |
| // http://yacas.sourceforge.net/Algo.book.pdf |
| |
| var a, b, c Int |
| a.Set(x) |
| b.Set(y) |
| j := 1 |
| |
| if b.neg { |
| if a.neg { |
| j = -1 |
| } |
| b.neg = false |
| } |
| |
| for { |
| if b.Cmp(intOne) == 0 { |
| return j |
| } |
| if len(a.abs) == 0 { |
| return 0 |
| } |
| a.Mod(&a, &b) |
| if len(a.abs) == 0 { |
| return 0 |
| } |
| // a > 0 |
| |
| // handle factors of 2 in 'a' |
| s := a.abs.trailingZeroBits() |
| if s&1 != 0 { |
| bmod8 := b.abs[0] & 7 |
| if bmod8 == 3 || bmod8 == 5 { |
| j = -j |
| } |
| } |
| c.Rsh(&a, s) // a = 2^s*c |
| |
| // swap numerator and denominator |
| if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { |
| j = -j |
| } |
| a.Set(&b) |
| b.Set(&c) |
| } |
| } |
| |
| // modSqrt3Mod4 uses the identity |
| // |
| // (a^((p+1)/4))^2 mod p |
| // == u^(p+1) mod p |
| // == u^2 mod p |
| // |
| // to calculate the square root of any quadratic residue mod p quickly for 3 |
| // mod 4 primes. |
| func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int { |
| e := new(Int).Add(p, intOne) // e = p + 1 |
| e.Rsh(e, 2) // e = (p + 1) / 4 |
| z.Exp(x, e, p) // z = x^e mod p |
| return z |
| } |
| |
| // modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p |
| // |
| // alpha == (2*a)^((p-5)/8) mod p |
| // beta == 2*a*alpha^2 mod p is a square root of -1 |
| // b == a*alpha*(beta-1) mod p is a square root of a |
| // |
| // to calculate the square root of any quadratic residue mod p quickly for 5 |
| // mod 8 primes. |
| func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int { |
| // p == 5 mod 8 implies p = e*8 + 5 |
| // e is the quotient and 5 the remainder on division by 8 |
| e := new(Int).Rsh(p, 3) // e = (p - 5) / 8 |
| tx := new(Int).Lsh(x, 1) // tx = 2*x |
| alpha := new(Int).Exp(tx, e, p) |
| beta := new(Int).Mul(alpha, alpha) |
| beta.Mod(beta, p) |
| beta.Mul(beta, tx) |
| beta.Mod(beta, p) |
| beta.Sub(beta, intOne) |
| beta.Mul(beta, x) |
| beta.Mod(beta, p) |
| beta.Mul(beta, alpha) |
| z.Mod(beta, p) |
| return z |
| } |
| |
| // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square |
| // root of a quadratic residue modulo any prime. |
| func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int { |
| // Break p-1 into s*2^e such that s is odd. |
| var s Int |
| s.Sub(p, intOne) |
| e := s.abs.trailingZeroBits() |
| s.Rsh(&s, e) |
| |
| // find some non-square n |
| var n Int |
| n.SetInt64(2) |
| for Jacobi(&n, p) != -1 { |
| n.Add(&n, intOne) |
| } |
| |
| // Core of the Tonelli-Shanks algorithm. Follows the description in |
| // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra |
| // Brown: |
| // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf |
| var y, b, g, t Int |
| y.Add(&s, intOne) |
| y.Rsh(&y, 1) |
| y.Exp(x, &y, p) // y = x^((s+1)/2) |
| b.Exp(x, &s, p) // b = x^s |
| g.Exp(&n, &s, p) // g = n^s |
| r := e |
| for { |
| // find the least m such that ord_p(b) = 2^m |
| var m uint |
| t.Set(&b) |
| for t.Cmp(intOne) != 0 { |
| t.Mul(&t, &t).Mod(&t, p) |
| m++ |
| } |
| |
| if m == 0 { |
| return z.Set(&y) |
| } |
| |
| t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) |
| // t = g^(2^(r-m-1)) mod p |
| g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p |
| y.Mul(&y, &t).Mod(&y, p) |
| b.Mul(&b, &g).Mod(&b, p) |
| r = m |
| } |
| } |
| |
| // ModSqrt sets z to a square root of x mod p if such a square root exists, and |
| // returns z. The modulus p must be an odd prime. If x is not a square mod p, |
| // ModSqrt leaves z unchanged and returns nil. This function panics if p is |
| // not an odd integer. |
| func (z *Int) ModSqrt(x, p *Int) *Int { |
| switch Jacobi(x, p) { |
| case -1: |
| return nil // x is not a square mod p |
| case 0: |
| return z.SetInt64(0) // sqrt(0) mod p = 0 |
| case 1: |
| break |
| } |
| if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p |
| x = new(Int).Mod(x, p) |
| } |
| |
| switch { |
| case p.abs[0]%4 == 3: |
| // Check whether p is 3 mod 4, and if so, use the faster algorithm. |
| return z.modSqrt3Mod4Prime(x, p) |
| case p.abs[0]%8 == 5: |
| // Check whether p is 5 mod 8, use Atkin's algorithm. |
| return z.modSqrt5Mod8Prime(x, p) |
| default: |
| // Otherwise, use Tonelli-Shanks. |
| return z.modSqrtTonelliShanks(x, p) |
| } |
| } |
| |
| // Lsh sets z = x << n and returns z. |
| func (z *Int) Lsh(x *Int, n uint) *Int { |
| z.abs = z.abs.shl(x.abs, n) |
| z.neg = x.neg |
| return z |
| } |
| |
| // Rsh sets z = x >> n and returns z. |
| func (z *Int) Rsh(x *Int, n uint) *Int { |
| if x.neg { |
| // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) |
| t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 |
| t = t.shr(t, n) |
| z.abs = t.add(t, natOne) |
| z.neg = true // z cannot be zero if x is negative |
| return z |
| } |
| |
| z.abs = z.abs.shr(x.abs, n) |
| z.neg = false |
| return z |
| } |
| |
| // Bit returns the value of the i'th bit of x. That is, it |
| // returns (x>>i)&1. The bit index i must be >= 0. |
| func (x *Int) Bit(i int) uint { |
| if i == 0 { |
| // optimization for common case: odd/even test of x |
| if len(x.abs) > 0 { |
| return uint(x.abs[0] & 1) // bit 0 is same for -x |
| } |
| return 0 |
| } |
| if i < 0 { |
| panic("negative bit index") |
| } |
| if x.neg { |
| t := nat(nil).sub(x.abs, natOne) |
| return t.bit(uint(i)) ^ 1 |
| } |
| |
| return x.abs.bit(uint(i)) |
| } |
| |
| // SetBit sets z to x, with x's i'th bit set to b (0 or 1). |
| // That is, if b is 1 SetBit sets z = x | (1 << i); |
| // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, |
| // SetBit will panic. |
| func (z *Int) SetBit(x *Int, i int, b uint) *Int { |
| if i < 0 { |
| panic("negative bit index") |
| } |
| if x.neg { |
| t := z.abs.sub(x.abs, natOne) |
| t = t.setBit(t, uint(i), b^1) |
| z.abs = t.add(t, natOne) |
| z.neg = len(z.abs) > 0 |
| return z |
| } |
| z.abs = z.abs.setBit(x.abs, uint(i), b) |
| z.neg = false |
| return z |
| } |
| |
| // And sets z = x & y and returns z. |
| func (z *Int) And(x, y *Int) *Int { |
| if x.neg == y.neg { |
| if x.neg { |
| // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) |
| x1 := nat(nil).sub(x.abs, natOne) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.add(z.abs.or(x1, y1), natOne) |
| z.neg = true // z cannot be zero if x and y are negative |
| return z |
| } |
| |
| // x & y == x & y |
| z.abs = z.abs.and(x.abs, y.abs) |
| z.neg = false |
| return z |
| } |
| |
| // x.neg != y.neg |
| if x.neg { |
| x, y = y, x // & is symmetric |
| } |
| |
| // x & (-y) == x & ^(y-1) == x &^ (y-1) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.andNot(x.abs, y1) |
| z.neg = false |
| return z |
| } |
| |
| // AndNot sets z = x &^ y and returns z. |
| func (z *Int) AndNot(x, y *Int) *Int { |
| if x.neg == y.neg { |
| if x.neg { |
| // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) |
| x1 := nat(nil).sub(x.abs, natOne) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.andNot(y1, x1) |
| z.neg = false |
| return z |
| } |
| |
| // x &^ y == x &^ y |
| z.abs = z.abs.andNot(x.abs, y.abs) |
| z.neg = false |
| return z |
| } |
| |
| if x.neg { |
| // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) |
| x1 := nat(nil).sub(x.abs, natOne) |
| z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) |
| z.neg = true // z cannot be zero if x is negative and y is positive |
| return z |
| } |
| |
| // x &^ (-y) == x &^ ^(y-1) == x & (y-1) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.and(x.abs, y1) |
| z.neg = false |
| return z |
| } |
| |
| // Or sets z = x | y and returns z. |
| func (z *Int) Or(x, y *Int) *Int { |
| if x.neg == y.neg { |
| if x.neg { |
| // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) |
| x1 := nat(nil).sub(x.abs, natOne) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.add(z.abs.and(x1, y1), natOne) |
| z.neg = true // z cannot be zero if x and y are negative |
| return z |
| } |
| |
| // x | y == x | y |
| z.abs = z.abs.or(x.abs, y.abs) |
| z.neg = false |
| return z |
| } |
| |
| // x.neg != y.neg |
| if x.neg { |
| x, y = y, x // | is symmetric |
| } |
| |
| // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) |
| z.neg = true // z cannot be zero if one of x or y is negative |
| return z |
| } |
| |
| // Xor sets z = x ^ y and returns z. |
| func (z *Int) Xor(x, y *Int) *Int { |
| if x.neg == y.neg { |
| if x.neg { |
| // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) |
| x1 := nat(nil).sub(x.abs, natOne) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.xor(x1, y1) |
| z.neg = false |
| return z |
| } |
| |
| // x ^ y == x ^ y |
| z.abs = z.abs.xor(x.abs, y.abs) |
| z.neg = false |
| return z |
| } |
| |
| // x.neg != y.neg |
| if x.neg { |
| x, y = y, x // ^ is symmetric |
| } |
| |
| // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) |
| y1 := nat(nil).sub(y.abs, natOne) |
| z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) |
| z.neg = true // z cannot be zero if only one of x or y is negative |
| return z |
| } |
| |
| // Not sets z = ^x and returns z. |
| func (z *Int) Not(x *Int) *Int { |
| if x.neg { |
| // ^(-x) == ^(^(x-1)) == x-1 |
| z.abs = z.abs.sub(x.abs, natOne) |
| z.neg = false |
| return z |
| } |
| |
| // ^x == -x-1 == -(x+1) |
| z.abs = z.abs.add(x.abs, natOne) |
| z.neg = true // z cannot be zero if x is positive |
| return z |
| } |
| |
| // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. |
| // It panics if x is negative. |
| func (z *Int) Sqrt(x *Int) *Int { |
| if x.neg { |
| panic("square root of negative number") |
| } |
| z.neg = false |
| z.abs = z.abs.sqrt(x.abs) |
| return z |
| } |