| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "bytes" |
| "fmt" |
| "html" |
| "math" |
| "os" |
| "strings" |
| |
| "cmd/compile/internal/ssa" |
| "cmd/internal/obj" |
| "cmd/internal/obj/x86" |
| ) |
| |
| // buildssa builds an SSA function |
| // and reports whether it should be used. |
| // Once the SSA implementation is complete, |
| // it will never return nil, and the bool can be removed. |
| func buildssa(fn *Node) (ssafn *ssa.Func, usessa bool) { |
| name := fn.Func.Nname.Sym.Name |
| usessa = strings.HasSuffix(name, "_ssa") || name == os.Getenv("GOSSAFUNC") |
| |
| if usessa { |
| fmt.Println("generating SSA for", name) |
| dumplist("buildssa-enter", fn.Func.Enter) |
| dumplist("buildssa-body", fn.Nbody) |
| } |
| |
| var s state |
| s.pushLine(fn.Lineno) |
| defer s.popLine() |
| |
| // TODO(khr): build config just once at the start of the compiler binary |
| |
| var e ssaExport |
| e.log = usessa |
| s.config = ssa.NewConfig(Thearch.Thestring, &e) |
| s.f = s.config.NewFunc() |
| s.f.Name = name |
| |
| if name == os.Getenv("GOSSAFUNC") { |
| // TODO: tempfile? it is handy to have the location |
| // of this file be stable, so you can just reload in the browser. |
| s.config.HTML = ssa.NewHTMLWriter("ssa.html", &s, name) |
| // TODO: generate and print a mapping from nodes to values and blocks |
| } |
| defer func() { |
| if !usessa { |
| s.config.HTML.Close() |
| } |
| }() |
| |
| // If SSA support for the function is incomplete, |
| // assume that any panics are due to violated |
| // invariants. Swallow them silently. |
| defer func() { |
| if err := recover(); err != nil { |
| if !e.unimplemented { |
| panic(err) |
| } |
| } |
| }() |
| |
| // We construct SSA using an algorithm similar to |
| // Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau |
| // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf |
| // TODO: check this comment |
| |
| // Allocate starting block |
| s.f.Entry = s.f.NewBlock(ssa.BlockPlain) |
| |
| // Allocate starting values |
| s.vars = map[*Node]*ssa.Value{} |
| s.labels = map[string]*ssaLabel{} |
| s.labeledNodes = map[*Node]*ssaLabel{} |
| s.startmem = s.entryNewValue0(ssa.OpArg, ssa.TypeMem) |
| s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead |
| s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR]) |
| |
| // Generate addresses of local declarations |
| s.decladdrs = map[*Node]*ssa.Value{} |
| for d := fn.Func.Dcl; d != nil; d = d.Next { |
| n := d.N |
| switch n.Class { |
| case PPARAM, PPARAMOUT: |
| aux := &ssa.ArgSymbol{Typ: n.Type, Node: n} |
| s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) |
| case PAUTO: |
| // processed at each use, to prevent Addr coming |
| // before the decl. |
| case PFUNC: |
| // local function - already handled by frontend |
| default: |
| str := "" |
| if n.Class&PHEAP != 0 { |
| str = ",heap" |
| } |
| s.Unimplementedf("local variable with class %s%s unimplemented", classnames[n.Class&^PHEAP], str) |
| } |
| } |
| // nodfp is a special argument which is the function's FP. |
| aux := &ssa.ArgSymbol{Typ: Types[TUINTPTR], Node: nodfp} |
| s.decladdrs[nodfp] = s.entryNewValue1A(ssa.OpAddr, Types[TUINTPTR], aux, s.sp) |
| |
| // Convert the AST-based IR to the SSA-based IR |
| s.startBlock(s.f.Entry) |
| s.stmtList(fn.Func.Enter) |
| s.stmtList(fn.Nbody) |
| |
| // fallthrough to exit |
| if s.curBlock != nil { |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockRet |
| b.Control = m |
| } |
| |
| // Check that we used all labels |
| for name, lab := range s.labels { |
| if !lab.used() && !lab.reported { |
| yyerrorl(int(lab.defNode.Lineno), "label %v defined and not used", name) |
| lab.reported = true |
| } |
| if lab.used() && !lab.defined() && !lab.reported { |
| yyerrorl(int(lab.useNode.Lineno), "label %v not defined", name) |
| lab.reported = true |
| } |
| } |
| |
| // Check any forward gotos. Non-forward gotos have already been checked. |
| for _, n := range s.fwdGotos { |
| lab := s.labels[n.Left.Sym.Name] |
| // If the label is undefined, we have already have printed an error. |
| if lab.defined() { |
| s.checkgoto(n, lab.defNode) |
| } |
| } |
| |
| if nerrors > 0 { |
| return nil, false |
| } |
| |
| // Link up variable uses to variable definitions |
| s.linkForwardReferences() |
| |
| // Main call to ssa package to compile function |
| ssa.Compile(s.f) |
| |
| // Calculate stats about what percentage of functions SSA handles. |
| if false { |
| fmt.Printf("SSA implemented: %t\n", !e.unimplemented) |
| } |
| |
| if e.unimplemented { |
| return nil, false |
| } |
| |
| // TODO: enable codegen more broadly once the codegen stabilizes |
| // and runtime support is in (gc maps, write barriers, etc.) |
| return s.f, usessa || localpkg.Name == os.Getenv("GOSSAPKG") |
| } |
| |
| type state struct { |
| // configuration (arch) information |
| config *ssa.Config |
| |
| // function we're building |
| f *ssa.Func |
| |
| // labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f |
| labels map[string]*ssaLabel |
| labeledNodes map[*Node]*ssaLabel |
| |
| // gotos that jump forward; required for deferred checkgoto calls |
| fwdGotos []*Node |
| |
| // unlabeled break and continue statement tracking |
| breakTo *ssa.Block // current target for plain break statement |
| continueTo *ssa.Block // current target for plain continue statement |
| |
| // current location where we're interpreting the AST |
| curBlock *ssa.Block |
| |
| // variable assignments in the current block (map from variable symbol to ssa value) |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| vars map[*Node]*ssa.Value |
| |
| // all defined variables at the end of each block. Indexed by block ID. |
| defvars []map[*Node]*ssa.Value |
| |
| // addresses of PPARAM and PPARAMOUT variables. |
| decladdrs map[*Node]*ssa.Value |
| |
| // starting values. Memory, frame pointer, and stack pointer |
| startmem *ssa.Value |
| sp *ssa.Value |
| sb *ssa.Value |
| |
| // line number stack. The current line number is top of stack |
| line []int32 |
| } |
| |
| type ssaLabel struct { |
| target *ssa.Block // block identified by this label |
| breakTarget *ssa.Block // block to break to in control flow node identified by this label |
| continueTarget *ssa.Block // block to continue to in control flow node identified by this label |
| defNode *Node // label definition Node (OLABEL) |
| // Label use Node (OGOTO, OBREAK, OCONTINUE). |
| // Used only for error detection and reporting. |
| // There might be multiple uses, but we only need to track one. |
| useNode *Node |
| reported bool // reported indicates whether an error has already been reported for this label |
| } |
| |
| // defined reports whether the label has a definition (OLABEL node). |
| func (l *ssaLabel) defined() bool { return l.defNode != nil } |
| |
| // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node). |
| func (l *ssaLabel) used() bool { return l.useNode != nil } |
| |
| // label returns the label associated with sym, creating it if necessary. |
| func (s *state) label(sym *Sym) *ssaLabel { |
| lab := s.labels[sym.Name] |
| if lab == nil { |
| lab = new(ssaLabel) |
| s.labels[sym.Name] = lab |
| } |
| return lab |
| } |
| |
| func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) } |
| func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(msg, args...) } |
| func (s *state) Unimplementedf(msg string, args ...interface{}) { s.config.Unimplementedf(msg, args...) } |
| |
| // dummy node for the memory variable |
| var memvar = Node{Op: ONAME, Sym: &Sym{Name: "mem"}} |
| |
| // startBlock sets the current block we're generating code in to b. |
| func (s *state) startBlock(b *ssa.Block) { |
| if s.curBlock != nil { |
| s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) |
| } |
| s.curBlock = b |
| s.vars = map[*Node]*ssa.Value{} |
| } |
| |
| // endBlock marks the end of generating code for the current block. |
| // Returns the (former) current block. Returns nil if there is no current |
| // block, i.e. if no code flows to the current execution point. |
| func (s *state) endBlock() *ssa.Block { |
| b := s.curBlock |
| if b == nil { |
| return nil |
| } |
| for len(s.defvars) <= int(b.ID) { |
| s.defvars = append(s.defvars, nil) |
| } |
| s.defvars[b.ID] = s.vars |
| s.curBlock = nil |
| s.vars = nil |
| b.Line = s.peekLine() |
| return b |
| } |
| |
| // pushLine pushes a line number on the line number stack. |
| func (s *state) pushLine(line int32) { |
| s.line = append(s.line, line) |
| } |
| |
| // popLine pops the top of the line number stack. |
| func (s *state) popLine() { |
| s.line = s.line[:len(s.line)-1] |
| } |
| |
| // peekLine peek the top of the line number stack. |
| func (s *state) peekLine() int32 { |
| return s.line[len(s.line)-1] |
| } |
| |
| func (s *state) Error(msg string, args ...interface{}) { |
| yyerrorl(int(s.peekLine()), msg, args...) |
| } |
| |
| // newValue0 adds a new value with no arguments to the current block. |
| func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.curBlock.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // newValue0A adds a new value with no arguments and an aux value to the current block. |
| func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.curBlock.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // newValue0I adds a new value with no arguments and an auxint value to the current block. |
| func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { |
| return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint) |
| } |
| |
| // newValue1 adds a new value with one argument to the current block. |
| func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // newValue1A adds a new value with one argument and an aux value to the current block. |
| func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // newValue1I adds a new value with one argument and an auxint value to the current block. |
| func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // newValue2 adds a new value with two arguments to the current block. |
| func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // newValue2I adds a new value with two arguments and an auxint value to the current block. |
| func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue3 adds a new value with three arguments to the current block. |
| func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2) |
| } |
| |
| // newValue3I adds a new value with three arguments and an auxint value to the current block. |
| func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2) |
| } |
| |
| // entryNewValue0 adds a new value with no arguments to the entry block. |
| func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.f.Entry.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. |
| func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block. |
| func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { |
| return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint) |
| } |
| |
| // entryNewValue1 adds a new value with one argument to the entry block. |
| func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. |
| func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg) |
| } |
| |
| // entryNewValue1A adds a new value with one argument and an aux value to the entry block. |
| func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // entryNewValue2 adds a new value with two arguments to the entry block. |
| func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // const* routines add a new const value to the entry block. |
| func (s *state) constBool(c bool) *ssa.Value { |
| return s.f.ConstBool(s.peekLine(), Types[TBOOL], c) |
| } |
| func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value { |
| return s.f.ConstInt8(s.peekLine(), t, c) |
| } |
| func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value { |
| return s.f.ConstInt16(s.peekLine(), t, c) |
| } |
| func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value { |
| return s.f.ConstInt32(s.peekLine(), t, c) |
| } |
| func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value { |
| return s.f.ConstInt64(s.peekLine(), t, c) |
| } |
| func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat32(s.peekLine(), t, c) |
| } |
| func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat64(s.peekLine(), t, c) |
| } |
| func (s *state) constIntPtr(t ssa.Type, c int64) *ssa.Value { |
| if s.config.PtrSize == 4 && int64(int32(c)) != c { |
| s.Fatalf("pointer constant too big %d", c) |
| } |
| return s.f.ConstIntPtr(s.peekLine(), t, c) |
| } |
| func (s *state) constInt(t ssa.Type, c int64) *ssa.Value { |
| if s.config.IntSize == 8 { |
| return s.constInt64(t, c) |
| } |
| if int64(int32(c)) != c { |
| s.Fatalf("integer constant too big %d", c) |
| } |
| return s.constInt32(t, int32(c)) |
| } |
| |
| // ssaStmtList converts the statement n to SSA and adds it to s. |
| func (s *state) stmtList(l *NodeList) { |
| for ; l != nil; l = l.Next { |
| s.stmt(l.N) |
| } |
| } |
| |
| // ssaStmt converts the statement n to SSA and adds it to s. |
| func (s *state) stmt(n *Node) { |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| |
| // If s.curBlock is nil, then we're about to generate dead code. |
| // We can't just short-circuit here, though, |
| // because we check labels and gotos as part of SSA generation. |
| // Provide a block for the dead code so that we don't have |
| // to add special cases everywhere else. |
| if s.curBlock == nil { |
| dead := s.f.NewBlock(ssa.BlockPlain) |
| s.startBlock(dead) |
| } |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| |
| case OBLOCK: |
| s.stmtList(n.List) |
| |
| // No-ops |
| case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: |
| |
| // Expression statements |
| case OCALLFUNC, OCALLMETH, OCALLINTER: |
| s.expr(n) |
| |
| case ODCL: |
| if n.Left.Class&PHEAP == 0 { |
| return |
| } |
| if compiling_runtime != 0 { |
| Fatalf("%v escapes to heap, not allowed in runtime.", n) |
| } |
| |
| // TODO: the old pass hides the details of PHEAP |
| // variables behind ONAME nodes. Figure out if it's better |
| // to rewrite the tree and make the heapaddr construct explicit |
| // or to keep this detail hidden behind the scenes. |
| palloc := prealloc[n.Left] |
| if palloc == nil { |
| palloc = callnew(n.Left.Type) |
| prealloc[n.Left] = palloc |
| } |
| r := s.expr(palloc) |
| s.assign(n.Left.Name.Heapaddr, r, false) |
| |
| case OLABEL: |
| sym := n.Left.Sym |
| |
| if isblanksym(sym) { |
| // Empty identifier is valid but useless. |
| // See issues 11589, 11593. |
| return |
| } |
| |
| lab := s.label(sym) |
| |
| // Associate label with its control flow node, if any |
| if ctl := n.Name.Defn; ctl != nil { |
| switch ctl.Op { |
| case OFOR, OSWITCH, OSELECT: |
| s.labeledNodes[ctl] = lab |
| } |
| } |
| |
| if !lab.defined() { |
| lab.defNode = n |
| } else { |
| s.Error("label %v already defined at %v", sym, Ctxt.Line(int(lab.defNode.Lineno))) |
| lab.reported = true |
| } |
| // The label might already have a target block via a goto. |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| |
| // go to that label (we pretend "label:" is preceded by "goto label") |
| b := s.endBlock() |
| b.AddEdgeTo(lab.target) |
| s.startBlock(lab.target) |
| |
| case OGOTO: |
| sym := n.Left.Sym |
| |
| lab := s.label(sym) |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| if !lab.used() { |
| lab.useNode = n |
| } |
| |
| if lab.defined() { |
| s.checkgoto(n, lab.defNode) |
| } else { |
| s.fwdGotos = append(s.fwdGotos, n) |
| } |
| |
| b := s.endBlock() |
| b.AddEdgeTo(lab.target) |
| |
| case OAS, OASWB: |
| // Check whether we can generate static data rather than code. |
| // If so, ignore n and defer data generation until codegen. |
| // Failure to do this causes writes to readonly symbols. |
| if gen_as_init(n, true) { |
| var data []*Node |
| if s.f.StaticData != nil { |
| data = s.f.StaticData.([]*Node) |
| } |
| s.f.StaticData = append(data, n) |
| return |
| } |
| var r *ssa.Value |
| if n.Right != nil { |
| r = s.expr(n.Right) |
| } |
| s.assign(n.Left, r, n.Op == OASWB) |
| |
| case OIF: |
| cond := s.expr(n.Left) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cond |
| b.Likely = ssa.BranchPrediction(n.Likely) // gc and ssa both use -1/0/+1 for likeliness |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| var bElse *ssa.Block |
| |
| if n.Rlist == nil { |
| b.AddEdgeTo(bThen) |
| b.AddEdgeTo(bEnd) |
| } else { |
| bElse = s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bThen) |
| b.AddEdgeTo(bElse) |
| } |
| |
| s.startBlock(bThen) |
| s.stmtList(n.Nbody) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| |
| if n.Rlist != nil { |
| s.startBlock(bElse) |
| s.stmtList(n.Rlist) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| } |
| s.startBlock(bEnd) |
| |
| case ORETURN: |
| s.stmtList(n.List) |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockRet |
| b.Control = m |
| case ORETJMP: |
| s.stmtList(n.List) |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockRetJmp |
| b.Aux = n.Left.Sym |
| b.Control = m |
| |
| case OCONTINUE, OBREAK: |
| var op string |
| var to *ssa.Block |
| switch n.Op { |
| case OCONTINUE: |
| op = "continue" |
| to = s.continueTo |
| case OBREAK: |
| op = "break" |
| to = s.breakTo |
| } |
| if n.Left == nil { |
| // plain break/continue |
| if to == nil { |
| s.Error("%s is not in a loop", op) |
| return |
| } |
| // nothing to do; "to" is already the correct target |
| } else { |
| // labeled break/continue; look up the target |
| sym := n.Left.Sym |
| lab := s.label(sym) |
| if !lab.used() { |
| lab.useNode = n.Left |
| } |
| if !lab.defined() { |
| s.Error("%s label not defined: %v", op, sym) |
| lab.reported = true |
| return |
| } |
| switch n.Op { |
| case OCONTINUE: |
| to = lab.continueTarget |
| case OBREAK: |
| to = lab.breakTarget |
| } |
| if to == nil { |
| // Valid label but not usable with a break/continue here, e.g.: |
| // for { |
| // continue abc |
| // } |
| // abc: |
| // for {} |
| s.Error("invalid %s label %v", op, sym) |
| lab.reported = true |
| return |
| } |
| } |
| |
| b := s.endBlock() |
| b.AddEdgeTo(to) |
| |
| case OFOR: |
| // OFOR: for Ninit; Left; Right { Nbody } |
| bCond := s.f.NewBlock(ssa.BlockPlain) |
| bBody := s.f.NewBlock(ssa.BlockPlain) |
| bIncr := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| // first, jump to condition test |
| b := s.endBlock() |
| b.AddEdgeTo(bCond) |
| |
| // generate code to test condition |
| s.startBlock(bCond) |
| var cond *ssa.Value |
| if n.Left != nil { |
| cond = s.expr(n.Left) |
| } else { |
| cond = s.constBool(true) |
| } |
| b = s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cond |
| b.Likely = ssa.BranchLikely |
| b.AddEdgeTo(bBody) |
| b.AddEdgeTo(bEnd) |
| |
| // set up for continue/break in body |
| prevContinue := s.continueTo |
| prevBreak := s.breakTo |
| s.continueTo = bIncr |
| s.breakTo = bEnd |
| lab := s.labeledNodes[n] |
| if lab != nil { |
| // labeled for loop |
| lab.continueTarget = bIncr |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body |
| s.startBlock(bBody) |
| s.stmtList(n.Nbody) |
| |
| // tear down continue/break |
| s.continueTo = prevContinue |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.continueTarget = nil |
| lab.breakTarget = nil |
| } |
| |
| // done with body, goto incr |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bIncr) |
| } |
| |
| // generate incr |
| s.startBlock(bIncr) |
| if n.Right != nil { |
| s.stmt(n.Right) |
| } |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bCond) |
| } |
| s.startBlock(bEnd) |
| |
| case OSWITCH, OSELECT: |
| // These have been mostly rewritten by the front end into their Nbody fields. |
| // Our main task is to correctly hook up any break statements. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| prevBreak := s.breakTo |
| s.breakTo = bEnd |
| lab := s.labeledNodes[n] |
| if lab != nil { |
| // labeled |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body code |
| s.stmtList(n.Nbody) |
| |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.breakTarget = nil |
| } |
| |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| s.startBlock(bEnd) |
| |
| case OVARKILL: |
| // Insert a varkill op to record that a variable is no longer live. |
| // We only care about liveness info at call sites, so putting the |
| // varkill in the store chain is enough to keep it correctly ordered |
| // with respect to call ops. |
| s.vars[&memvar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem()) |
| |
| case OPROC, ODEFER: |
| call := n.Left |
| fn := call.Left |
| if call.Op != OCALLFUNC { |
| s.Unimplementedf("defer/go of %s", opnames[call.Op]) |
| } |
| |
| // Run all argument assignments. The arg slots have already |
| // been offset by 2*widthptr. |
| s.stmtList(call.List) |
| |
| // Write argsize and closure (args to Newproc/Deferproc) |
| argsize := s.constInt32(Types[TUINT32], int32(fn.Type.Argwid)) |
| s.vars[&memvar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, s.sp, argsize, s.mem()) |
| closure := s.expr(fn) |
| addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), int64(Widthptr), s.sp) |
| s.vars[&memvar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem()) |
| |
| // Call deferproc or newproc |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| var op ssa.Op |
| switch n.Op { |
| case ODEFER: |
| op = ssa.OpDeferCall |
| case OPROC: |
| op = ssa.OpGoCall |
| } |
| r := s.newValue1(op, ssa.TypeMem, s.mem()) |
| r.AuxInt = fn.Type.Argwid + 2*int64(Widthptr) // total stack space used |
| s.vars[&memvar] = r |
| b := s.endBlock() |
| b.Kind = ssa.BlockCall |
| b.Control = r |
| b.AddEdgeTo(bNext) |
| s.startBlock(bNext) |
| |
| case OCHECKNIL: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| |
| default: |
| s.Unimplementedf("unhandled stmt %s", opnames[n.Op]) |
| } |
| } |
| |
| type opAndType struct { |
| op uint8 |
| etype uint8 |
| } |
| |
| var opToSSA = map[opAndType]ssa.Op{ |
| opAndType{OADD, TINT8}: ssa.OpAdd8, |
| opAndType{OADD, TUINT8}: ssa.OpAdd8, |
| opAndType{OADD, TINT16}: ssa.OpAdd16, |
| opAndType{OADD, TUINT16}: ssa.OpAdd16, |
| opAndType{OADD, TINT32}: ssa.OpAdd32, |
| opAndType{OADD, TUINT32}: ssa.OpAdd32, |
| opAndType{OADD, TPTR32}: ssa.OpAdd32, |
| opAndType{OADD, TINT64}: ssa.OpAdd64, |
| opAndType{OADD, TUINT64}: ssa.OpAdd64, |
| opAndType{OADD, TPTR64}: ssa.OpAdd64, |
| opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, |
| opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, |
| |
| opAndType{OSUB, TINT8}: ssa.OpSub8, |
| opAndType{OSUB, TUINT8}: ssa.OpSub8, |
| opAndType{OSUB, TINT16}: ssa.OpSub16, |
| opAndType{OSUB, TUINT16}: ssa.OpSub16, |
| opAndType{OSUB, TINT32}: ssa.OpSub32, |
| opAndType{OSUB, TUINT32}: ssa.OpSub32, |
| opAndType{OSUB, TINT64}: ssa.OpSub64, |
| opAndType{OSUB, TUINT64}: ssa.OpSub64, |
| opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, |
| opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, |
| |
| opAndType{ONOT, TBOOL}: ssa.OpNot, |
| |
| opAndType{OMINUS, TINT8}: ssa.OpNeg8, |
| opAndType{OMINUS, TUINT8}: ssa.OpNeg8, |
| opAndType{OMINUS, TINT16}: ssa.OpNeg16, |
| opAndType{OMINUS, TUINT16}: ssa.OpNeg16, |
| opAndType{OMINUS, TINT32}: ssa.OpNeg32, |
| opAndType{OMINUS, TUINT32}: ssa.OpNeg32, |
| opAndType{OMINUS, TINT64}: ssa.OpNeg64, |
| opAndType{OMINUS, TUINT64}: ssa.OpNeg64, |
| opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, |
| opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, |
| |
| opAndType{OCOM, TINT8}: ssa.OpCom8, |
| opAndType{OCOM, TUINT8}: ssa.OpCom8, |
| opAndType{OCOM, TINT16}: ssa.OpCom16, |
| opAndType{OCOM, TUINT16}: ssa.OpCom16, |
| opAndType{OCOM, TINT32}: ssa.OpCom32, |
| opAndType{OCOM, TUINT32}: ssa.OpCom32, |
| opAndType{OCOM, TINT64}: ssa.OpCom64, |
| opAndType{OCOM, TUINT64}: ssa.OpCom64, |
| |
| opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, |
| opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, |
| opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, |
| opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, |
| |
| opAndType{OMUL, TINT8}: ssa.OpMul8, |
| opAndType{OMUL, TUINT8}: ssa.OpMul8, |
| opAndType{OMUL, TINT16}: ssa.OpMul16, |
| opAndType{OMUL, TUINT16}: ssa.OpMul16, |
| opAndType{OMUL, TINT32}: ssa.OpMul32, |
| opAndType{OMUL, TUINT32}: ssa.OpMul32, |
| opAndType{OMUL, TINT64}: ssa.OpMul64, |
| opAndType{OMUL, TUINT64}: ssa.OpMul64, |
| opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, |
| opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, |
| |
| opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, |
| opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, |
| |
| opAndType{OHMUL, TINT8}: ssa.OpHmul8, |
| opAndType{OHMUL, TUINT8}: ssa.OpHmul8u, |
| opAndType{OHMUL, TINT16}: ssa.OpHmul16, |
| opAndType{OHMUL, TUINT16}: ssa.OpHmul16u, |
| opAndType{OHMUL, TINT32}: ssa.OpHmul32, |
| opAndType{OHMUL, TUINT32}: ssa.OpHmul32u, |
| |
| opAndType{ODIV, TINT8}: ssa.OpDiv8, |
| opAndType{ODIV, TUINT8}: ssa.OpDiv8u, |
| opAndType{ODIV, TINT16}: ssa.OpDiv16, |
| opAndType{ODIV, TUINT16}: ssa.OpDiv16u, |
| opAndType{ODIV, TINT32}: ssa.OpDiv32, |
| opAndType{ODIV, TUINT32}: ssa.OpDiv32u, |
| opAndType{ODIV, TINT64}: ssa.OpDiv64, |
| opAndType{ODIV, TUINT64}: ssa.OpDiv64u, |
| |
| opAndType{OMOD, TINT8}: ssa.OpMod8, |
| opAndType{OMOD, TUINT8}: ssa.OpMod8u, |
| opAndType{OMOD, TINT16}: ssa.OpMod16, |
| opAndType{OMOD, TUINT16}: ssa.OpMod16u, |
| opAndType{OMOD, TINT32}: ssa.OpMod32, |
| opAndType{OMOD, TUINT32}: ssa.OpMod32u, |
| opAndType{OMOD, TINT64}: ssa.OpMod64, |
| opAndType{OMOD, TUINT64}: ssa.OpMod64u, |
| |
| opAndType{OAND, TINT8}: ssa.OpAnd8, |
| opAndType{OAND, TUINT8}: ssa.OpAnd8, |
| opAndType{OAND, TINT16}: ssa.OpAnd16, |
| opAndType{OAND, TUINT16}: ssa.OpAnd16, |
| opAndType{OAND, TINT32}: ssa.OpAnd32, |
| opAndType{OAND, TUINT32}: ssa.OpAnd32, |
| opAndType{OAND, TINT64}: ssa.OpAnd64, |
| opAndType{OAND, TUINT64}: ssa.OpAnd64, |
| |
| opAndType{OOR, TINT8}: ssa.OpOr8, |
| opAndType{OOR, TUINT8}: ssa.OpOr8, |
| opAndType{OOR, TINT16}: ssa.OpOr16, |
| opAndType{OOR, TUINT16}: ssa.OpOr16, |
| opAndType{OOR, TINT32}: ssa.OpOr32, |
| opAndType{OOR, TUINT32}: ssa.OpOr32, |
| opAndType{OOR, TINT64}: ssa.OpOr64, |
| opAndType{OOR, TUINT64}: ssa.OpOr64, |
| |
| opAndType{OXOR, TINT8}: ssa.OpXor8, |
| opAndType{OXOR, TUINT8}: ssa.OpXor8, |
| opAndType{OXOR, TINT16}: ssa.OpXor16, |
| opAndType{OXOR, TUINT16}: ssa.OpXor16, |
| opAndType{OXOR, TINT32}: ssa.OpXor32, |
| opAndType{OXOR, TUINT32}: ssa.OpXor32, |
| opAndType{OXOR, TINT64}: ssa.OpXor64, |
| opAndType{OXOR, TUINT64}: ssa.OpXor64, |
| |
| opAndType{OEQ, TBOOL}: ssa.OpEq8, |
| opAndType{OEQ, TINT8}: ssa.OpEq8, |
| opAndType{OEQ, TUINT8}: ssa.OpEq8, |
| opAndType{OEQ, TINT16}: ssa.OpEq16, |
| opAndType{OEQ, TUINT16}: ssa.OpEq16, |
| opAndType{OEQ, TINT32}: ssa.OpEq32, |
| opAndType{OEQ, TUINT32}: ssa.OpEq32, |
| opAndType{OEQ, TINT64}: ssa.OpEq64, |
| opAndType{OEQ, TUINT64}: ssa.OpEq64, |
| opAndType{OEQ, TINTER}: ssa.OpEqFat, // e == nil only |
| opAndType{OEQ, TARRAY}: ssa.OpEqFat, // slice only; a == nil only |
| opAndType{OEQ, TFUNC}: ssa.OpEqPtr, |
| opAndType{OEQ, TMAP}: ssa.OpEqPtr, |
| opAndType{OEQ, TCHAN}: ssa.OpEqPtr, |
| opAndType{OEQ, TPTR64}: ssa.OpEqPtr, |
| opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, |
| opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, |
| opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, |
| opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, |
| |
| opAndType{ONE, TBOOL}: ssa.OpNeq8, |
| opAndType{ONE, TINT8}: ssa.OpNeq8, |
| opAndType{ONE, TUINT8}: ssa.OpNeq8, |
| opAndType{ONE, TINT16}: ssa.OpNeq16, |
| opAndType{ONE, TUINT16}: ssa.OpNeq16, |
| opAndType{ONE, TINT32}: ssa.OpNeq32, |
| opAndType{ONE, TUINT32}: ssa.OpNeq32, |
| opAndType{ONE, TINT64}: ssa.OpNeq64, |
| opAndType{ONE, TUINT64}: ssa.OpNeq64, |
| opAndType{ONE, TINTER}: ssa.OpNeqFat, // e != nil only |
| opAndType{ONE, TARRAY}: ssa.OpNeqFat, // slice only; a != nil only |
| opAndType{ONE, TFUNC}: ssa.OpNeqPtr, |
| opAndType{ONE, TMAP}: ssa.OpNeqPtr, |
| opAndType{ONE, TCHAN}: ssa.OpNeqPtr, |
| opAndType{ONE, TPTR64}: ssa.OpNeqPtr, |
| opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, |
| opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, |
| opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, |
| opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, |
| |
| opAndType{OLT, TINT8}: ssa.OpLess8, |
| opAndType{OLT, TUINT8}: ssa.OpLess8U, |
| opAndType{OLT, TINT16}: ssa.OpLess16, |
| opAndType{OLT, TUINT16}: ssa.OpLess16U, |
| opAndType{OLT, TINT32}: ssa.OpLess32, |
| opAndType{OLT, TUINT32}: ssa.OpLess32U, |
| opAndType{OLT, TINT64}: ssa.OpLess64, |
| opAndType{OLT, TUINT64}: ssa.OpLess64U, |
| opAndType{OLT, TFLOAT64}: ssa.OpLess64F, |
| opAndType{OLT, TFLOAT32}: ssa.OpLess32F, |
| |
| opAndType{OGT, TINT8}: ssa.OpGreater8, |
| opAndType{OGT, TUINT8}: ssa.OpGreater8U, |
| opAndType{OGT, TINT16}: ssa.OpGreater16, |
| opAndType{OGT, TUINT16}: ssa.OpGreater16U, |
| opAndType{OGT, TINT32}: ssa.OpGreater32, |
| opAndType{OGT, TUINT32}: ssa.OpGreater32U, |
| opAndType{OGT, TINT64}: ssa.OpGreater64, |
| opAndType{OGT, TUINT64}: ssa.OpGreater64U, |
| opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, |
| opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, |
| |
| opAndType{OLE, TINT8}: ssa.OpLeq8, |
| opAndType{OLE, TUINT8}: ssa.OpLeq8U, |
| opAndType{OLE, TINT16}: ssa.OpLeq16, |
| opAndType{OLE, TUINT16}: ssa.OpLeq16U, |
| opAndType{OLE, TINT32}: ssa.OpLeq32, |
| opAndType{OLE, TUINT32}: ssa.OpLeq32U, |
| opAndType{OLE, TINT64}: ssa.OpLeq64, |
| opAndType{OLE, TUINT64}: ssa.OpLeq64U, |
| opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, |
| opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, |
| |
| opAndType{OGE, TINT8}: ssa.OpGeq8, |
| opAndType{OGE, TUINT8}: ssa.OpGeq8U, |
| opAndType{OGE, TINT16}: ssa.OpGeq16, |
| opAndType{OGE, TUINT16}: ssa.OpGeq16U, |
| opAndType{OGE, TINT32}: ssa.OpGeq32, |
| opAndType{OGE, TUINT32}: ssa.OpGeq32U, |
| opAndType{OGE, TINT64}: ssa.OpGeq64, |
| opAndType{OGE, TUINT64}: ssa.OpGeq64U, |
| opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, |
| opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, |
| |
| opAndType{OLROT, TUINT8}: ssa.OpLrot8, |
| opAndType{OLROT, TUINT16}: ssa.OpLrot16, |
| opAndType{OLROT, TUINT32}: ssa.OpLrot32, |
| opAndType{OLROT, TUINT64}: ssa.OpLrot64, |
| |
| opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt, |
| } |
| |
| func (s *state) concreteEtype(t *Type) uint8 { |
| e := t.Etype |
| switch e { |
| default: |
| return e |
| case TINT: |
| if s.config.IntSize == 8 { |
| return TINT64 |
| } |
| return TINT32 |
| case TUINT: |
| if s.config.IntSize == 8 { |
| return TUINT64 |
| } |
| return TUINT32 |
| case TUINTPTR: |
| if s.config.PtrSize == 8 { |
| return TUINT64 |
| } |
| return TUINT32 |
| } |
| } |
| |
| func (s *state) ssaOp(op uint8, t *Type) ssa.Op { |
| etype := s.concreteEtype(t) |
| x, ok := opToSSA[opAndType{op, etype}] |
| if !ok { |
| s.Unimplementedf("unhandled binary op %s %s", opnames[op], Econv(int(etype), 0)) |
| } |
| return x |
| } |
| |
| func floatForComplex(t *Type) *Type { |
| if t.Size() == 8 { |
| return Types[TFLOAT32] |
| } else { |
| return Types[TFLOAT64] |
| } |
| } |
| |
| type opAndTwoTypes struct { |
| op uint8 |
| etype1 uint8 |
| etype2 uint8 |
| } |
| |
| type twoTypes struct { |
| etype1 uint8 |
| etype2 uint8 |
| } |
| |
| type twoOpsAndType struct { |
| op1 ssa.Op |
| op2 ssa.Op |
| intermediateType uint8 |
| } |
| |
| var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ |
| |
| twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, |
| |
| twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, |
| |
| twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, |
| twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, |
| |
| twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, |
| twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, |
| // unsigned |
| twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned |
| twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead |
| |
| twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned |
| twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead |
| |
| twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned |
| twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead |
| |
| twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned |
| twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead |
| |
| // float |
| twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, |
| twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64}, |
| twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32}, |
| twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, |
| } |
| |
| var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ |
| opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, |
| opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, |
| |
| opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, |
| opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, |
| |
| opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, |
| opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, |
| |
| opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, |
| opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, |
| |
| opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, |
| opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, |
| opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, |
| opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, |
| opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, |
| opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, |
| opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, |
| opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, |
| |
| opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, |
| opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, |
| opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, |
| opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, |
| opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, |
| opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, |
| opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, |
| opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, |
| |
| opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, |
| opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, |
| opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, |
| opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, |
| opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, |
| opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, |
| opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, |
| opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, |
| |
| opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, |
| opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, |
| opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, |
| opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, |
| opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, |
| opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, |
| opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, |
| opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, |
| } |
| |
| func (s *state) ssaShiftOp(op uint8, t *Type, u *Type) ssa.Op { |
| etype1 := s.concreteEtype(t) |
| etype2 := s.concreteEtype(u) |
| x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] |
| if !ok { |
| s.Unimplementedf("unhandled shift op %s etype=%s/%s", opnames[op], Econv(int(etype1), 0), Econv(int(etype2), 0)) |
| } |
| return x |
| } |
| |
| func (s *state) ssaRotateOp(op uint8, t *Type) ssa.Op { |
| etype1 := s.concreteEtype(t) |
| x, ok := opToSSA[opAndType{op, etype1}] |
| if !ok { |
| s.Unimplementedf("unhandled rotate op %s etype=%s", opnames[op], Econv(int(etype1), 0)) |
| } |
| return x |
| } |
| |
| // expr converts the expression n to ssa, adds it to s and returns the ssa result. |
| func (s *state) expr(n *Node) *ssa.Value { |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| case OCFUNC: |
| aux := &ssa.ExternSymbol{n.Type, n.Left.Sym} |
| return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) |
| case ONAME: |
| if n.Class == PFUNC { |
| // "value" of a function is the address of the function's closure |
| sym := funcsym(n.Sym) |
| aux := &ssa.ExternSymbol{n.Type, sym} |
| return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) |
| } |
| if canSSA(n) { |
| return s.variable(n, n.Type) |
| } |
| addr := s.addr(n) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| case OLITERAL: |
| switch n.Val().Ctype() { |
| case CTINT: |
| i := Mpgetfix(n.Val().U.(*Mpint)) |
| switch n.Type.Size() { |
| case 1: |
| return s.constInt8(n.Type, int8(i)) |
| case 2: |
| return s.constInt16(n.Type, int16(i)) |
| case 4: |
| return s.constInt32(n.Type, int32(i)) |
| case 8: |
| return s.constInt64(n.Type, i) |
| default: |
| s.Fatalf("bad integer size %d", n.Type.Size()) |
| return nil |
| } |
| case CTSTR: |
| return s.entryNewValue0A(ssa.OpConstString, n.Type, n.Val().U) |
| case CTBOOL: |
| return s.constBool(n.Val().U.(bool)) |
| case CTNIL: |
| t := n.Type |
| switch { |
| case t.IsSlice(): |
| return s.entryNewValue0(ssa.OpConstSlice, t) |
| case t.IsInterface(): |
| return s.entryNewValue0(ssa.OpConstInterface, t) |
| default: |
| return s.entryNewValue0(ssa.OpConstNil, t) |
| } |
| case CTFLT: |
| f := n.Val().U.(*Mpflt) |
| switch n.Type.Size() { |
| case 4: |
| // -0.0 literals need to be treated as if they were 0.0, adding 0.0 here |
| // accomplishes this while not affecting other values. |
| return s.constFloat32(n.Type, mpgetflt32(f)+0.0) |
| case 8: |
| return s.constFloat64(n.Type, mpgetflt(f)+0.0) |
| default: |
| s.Fatalf("bad float size %d", n.Type.Size()) |
| return nil |
| } |
| case CTCPLX: |
| c := n.Val().U.(*Mpcplx) |
| r := &c.Real |
| i := &c.Imag |
| switch n.Type.Size() { |
| case 8: |
| { |
| pt := Types[TFLOAT32] |
| // -0.0 literals need to be treated as if they were 0.0, adding 0.0 here |
| // accomplishes this while not affecting other values. |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.constFloat32(pt, mpgetflt32(r)+0.0), |
| s.constFloat32(pt, mpgetflt32(i)+0.0)) |
| } |
| case 16: |
| { |
| pt := Types[TFLOAT64] |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.constFloat64(pt, mpgetflt(r)+0.0), |
| s.constFloat64(pt, mpgetflt(i)+0.0)) |
| } |
| default: |
| s.Fatalf("bad float size %d", n.Type.Size()) |
| return nil |
| } |
| |
| default: |
| s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype()) |
| return nil |
| } |
| case OCONVNOP: |
| to := n.Type |
| from := n.Left.Type |
| |
| // Assume everything will work out, so set up our return value. |
| // Anything interesting that happens from here is a fatal. |
| x := s.expr(n.Left) |
| v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type |
| |
| // CONVNOP closure |
| if to.Etype == TFUNC && from.IsPtr() { |
| return v |
| } |
| |
| // named <--> unnamed type or typed <--> untyped const |
| if from.Etype == to.Etype { |
| return v |
| } |
| // unsafe.Pointer <--> *T |
| if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { |
| return v |
| } |
| |
| dowidth(from) |
| dowidth(to) |
| if from.Width != to.Width { |
| s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) |
| return nil |
| } |
| if etypesign(from.Etype) != etypesign(to.Etype) { |
| s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, Econv(int(from.Etype), 0), to, Econv(int(to.Etype), 0)) |
| return nil |
| } |
| |
| if flag_race != 0 { |
| s.Unimplementedf("questionable CONVNOP from race detector %v -> %v\n", from, to) |
| return nil |
| } |
| |
| if etypesign(from.Etype) == 0 { |
| s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) |
| return nil |
| } |
| |
| // integer, same width, same sign |
| return v |
| |
| case OCONV: |
| x := s.expr(n.Left) |
| ft := n.Left.Type // from type |
| tt := n.Type // to type |
| if ft.IsInteger() && tt.IsInteger() { |
| var op ssa.Op |
| if tt.Size() == ft.Size() { |
| op = ssa.OpCopy |
| } else if tt.Size() < ft.Size() { |
| // truncation |
| switch 10*ft.Size() + tt.Size() { |
| case 21: |
| op = ssa.OpTrunc16to8 |
| case 41: |
| op = ssa.OpTrunc32to8 |
| case 42: |
| op = ssa.OpTrunc32to16 |
| case 81: |
| op = ssa.OpTrunc64to8 |
| case 82: |
| op = ssa.OpTrunc64to16 |
| case 84: |
| op = ssa.OpTrunc64to32 |
| default: |
| s.Fatalf("weird integer truncation %s -> %s", ft, tt) |
| } |
| } else if ft.IsSigned() { |
| // sign extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpSignExt8to16 |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad integer sign extension %s -> %s", ft, tt) |
| } |
| } else { |
| // zero extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpZeroExt8to16 |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("weird integer sign extension %s -> %s", ft, tt) |
| } |
| } |
| return s.newValue1(op, n.Type, x) |
| } |
| |
| if ft.IsFloat() || tt.IsFloat() { |
| conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] |
| if !ok { |
| s.Fatalf("weird float conversion %s -> %s", ft, tt) |
| } |
| op1, op2, it := conv.op1, conv.op2, conv.intermediateType |
| |
| if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { |
| // normal case, not tripping over unsigned 64 |
| if op1 == ssa.OpCopy { |
| if op2 == ssa.OpCopy { |
| return x |
| } |
| return s.newValue1(op2, n.Type, x) |
| } |
| if op2 == ssa.OpCopy { |
| return s.newValue1(op1, n.Type, x) |
| } |
| return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x)) |
| } |
| // Tricky 64-bit unsigned cases. |
| if ft.IsInteger() { |
| // therefore tt is float32 or float64, and ft is also unsigned |
| if tt.Size() == 4 { |
| return s.uint64Tofloat32(n, x, ft, tt) |
| } |
| if tt.Size() == 8 { |
| return s.uint64Tofloat64(n, x, ft, tt) |
| } |
| s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt) |
| } |
| // therefore ft is float32 or float64, and tt is unsigned integer |
| if ft.Size() == 4 { |
| return s.float32ToUint64(n, x, ft, tt) |
| } |
| if ft.Size() == 8 { |
| return s.float64ToUint64(n, x, ft, tt) |
| } |
| s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt) |
| return nil |
| } |
| |
| if ft.IsComplex() && tt.IsComplex() { |
| var op ssa.Op |
| if ft.Size() == tt.Size() { |
| op = ssa.OpCopy |
| } else if ft.Size() == 8 && tt.Size() == 16 { |
| op = ssa.OpCvt32Fto64F |
| } else if ft.Size() == 16 && tt.Size() == 8 { |
| op = ssa.OpCvt64Fto32F |
| } else { |
| s.Fatalf("weird complex conversion %s -> %s", ft, tt) |
| } |
| ftp := floatForComplex(ft) |
| ttp := floatForComplex(tt) |
| return s.newValue2(ssa.OpComplexMake, tt, |
| s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), |
| s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) |
| } |
| |
| s.Unimplementedf("unhandled OCONV %s -> %s", Econv(int(n.Left.Type.Etype), 0), Econv(int(n.Type.Etype), 0)) |
| return nil |
| |
| // binary ops |
| case OLT, OEQ, ONE, OLE, OGE, OGT: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Left.Type.IsComplex() { |
| pt := floatForComplex(n.Left.Type) |
| op := s.ssaOp(OEQ, pt) |
| r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) |
| i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) |
| c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i) |
| switch n.Op { |
| case OEQ: |
| return c |
| case ONE: |
| return s.newValue1(ssa.OpNot, Types[TBOOL], c) |
| default: |
| s.Fatalf("ordered complex compare %s", opnames[n.Op]) |
| } |
| |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b) |
| case OMUL: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| pt := floatForComplex(n.Type) // Could be Float32 or Float64 |
| wt := Types[TFLOAT64] // Compute in Float64 to minimize cancellation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) |
| ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| |
| return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| |
| case ODIV: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| // TODO this is not executed because the front-end substitutes a runtime call. |
| // That probably ought to change; with modest optimization the widen/narrow |
| // conversions could all be elided in larger expression trees. |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| divop := ssa.OpDiv64F |
| pt := floatForComplex(n.Type) // Could be Float32 or Float64 |
| wt := Types[TFLOAT64] // Compute in Float64 to minimize cancellation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) |
| xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) |
| ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) |
| |
| // TODO not sure if this is best done in wide precision or narrow |
| // Double-rounding might be an issue. |
| // Note that the pre-SSA implementation does the entire calculation |
| // in wide format, so wide is compatible. |
| xreal = s.newValue2(divop, wt, xreal, denom) |
| ximag = s.newValue2(divop, wt, ximag, denom) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| |
| return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| case OADD, OSUB: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| pt := floatForComplex(n.Type) |
| op := s.ssaOp(n.Op, pt) |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), |
| s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| case OAND, OOR, OMOD, OHMUL, OXOR: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| case OLSH, ORSH: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) |
| case OLROT: |
| a := s.expr(n.Left) |
| i := n.Right.Int() |
| if i <= 0 || i >= n.Type.Size()*8 { |
| s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i) |
| } |
| return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a) |
| case OANDAND, OOROR: |
| // To implement OANDAND (and OOROR), we introduce a |
| // new temporary variable to hold the result. The |
| // variable is associated with the OANDAND node in the |
| // s.vars table (normally variables are only |
| // associated with ONAME nodes). We convert |
| // A && B |
| // to |
| // var = A |
| // if var { |
| // var = B |
| // } |
| // Using var in the subsequent block introduces the |
| // necessary phi variable. |
| el := s.expr(n.Left) |
| s.vars[n] = el |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = el |
| // In theory, we should set b.Likely here based on context. |
| // However, gc only gives us likeliness hints |
| // in a single place, for plain OIF statements, |
| // and passing around context is finnicky, so don't bother for now. |
| |
| bRight := s.f.NewBlock(ssa.BlockPlain) |
| bResult := s.f.NewBlock(ssa.BlockPlain) |
| if n.Op == OANDAND { |
| b.AddEdgeTo(bRight) |
| b.AddEdgeTo(bResult) |
| } else if n.Op == OOROR { |
| b.AddEdgeTo(bResult) |
| b.AddEdgeTo(bRight) |
| } |
| |
| s.startBlock(bRight) |
| er := s.expr(n.Right) |
| s.vars[n] = er |
| |
| b = s.endBlock() |
| b.AddEdgeTo(bResult) |
| |
| s.startBlock(bResult) |
| return s.variable(n, Types[TBOOL]) |
| case OCOMPLEX: |
| r := s.expr(n.Left) |
| i := s.expr(n.Right) |
| return s.newValue2(ssa.OpComplexMake, n.Type, r, i) |
| |
| // unary ops |
| case OMINUS: |
| a := s.expr(n.Left) |
| if n.Type.IsComplex() { |
| tp := floatForComplex(n.Type) |
| negop := s.ssaOp(n.Op, tp) |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) |
| } |
| return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) |
| case ONOT, OCOM, OSQRT: |
| a := s.expr(n.Left) |
| return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) |
| case OIMAG, OREAL: |
| a := s.expr(n.Left) |
| return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) |
| case OPLUS: |
| return s.expr(n.Left) |
| |
| case OADDR: |
| return s.addr(n.Left) |
| |
| case OINDREG: |
| if int(n.Reg) != Thearch.REGSP { |
| s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n) |
| return nil |
| } |
| addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| |
| case OIND: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case ODOT: |
| v := s.expr(n.Left) |
| return s.newValue1I(ssa.OpStructSelect, n.Type, n.Xoffset, v) |
| |
| case ODOTPTR: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| p = s.newValue2(ssa.OpAddPtr, p.Type, p, s.constIntPtr(Types[TUINTPTR], n.Xoffset)) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case OINDEX: |
| if n.Left.Type.Bound >= 0 { // array or string |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i) |
| if n.Left.Type.IsString() { |
| if !n.Bounded { |
| len := s.newValue1(ssa.OpStringLen, Types[TINT], a) |
| s.boundsCheck(i, len) |
| } |
| ptrtyp := Ptrto(Types[TUINT8]) |
| ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) |
| ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) |
| return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem()) |
| } else { |
| if !n.Bounded { |
| len := s.constInt(Types[TINT], n.Left.Type.Bound) |
| s.boundsCheck(i, len) |
| } |
| return s.newValue2(ssa.OpArrayIndex, n.Left.Type.Type, a, i) |
| } |
| } else { // slice |
| p := s.addr(n) |
| return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem()) |
| } |
| |
| case OLEN, OCAP: |
| switch { |
| case n.Left.Type.IsSlice(): |
| op := ssa.OpSliceLen |
| if n.Op == OCAP { |
| op = ssa.OpSliceCap |
| } |
| return s.newValue1(op, Types[TINT], s.expr(n.Left)) |
| case n.Left.Type.IsString(): // string; not reachable for OCAP |
| return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left)) |
| case n.Left.Type.IsMap(), n.Left.Type.IsChan(): |
| return s.referenceTypeBuiltin(n, s.expr(n.Left)) |
| default: // array |
| return s.constInt(Types[TINT], n.Left.Type.Bound) |
| } |
| |
| case OSPTR: |
| a := s.expr(n.Left) |
| if n.Left.Type.IsSlice() { |
| return s.newValue1(ssa.OpSlicePtr, n.Type, a) |
| } else { |
| return s.newValue1(ssa.OpStringPtr, n.Type, a) |
| } |
| |
| case OITAB: |
| a := s.expr(n.Left) |
| return s.newValue1(ssa.OpITab, n.Type, a) |
| |
| case OEFACE: |
| tab := s.expr(n.Left) |
| data := s.expr(n.Right) |
| return s.newValue2(ssa.OpIMake, n.Type, tab, data) |
| |
| case OSLICESTR: |
| // Evaluate the string once. |
| str := s.expr(n.Left) |
| ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), str) |
| len := s.newValue1(ssa.OpStringLen, Types[TINT], str) |
| zero := s.constInt(Types[TINT], 0) |
| |
| // Evaluate the slice indexes. |
| var low, high *ssa.Value |
| if n.Right.Left == nil { |
| low = zero |
| } else { |
| low = s.extendIndex(s.expr(n.Right.Left)) |
| } |
| if n.Right.Right == nil { |
| high = len |
| } else { |
| high = s.extendIndex(s.expr(n.Right.Right)) |
| } |
| |
| // Panic if slice indices are not in bounds. |
| s.sliceBoundsCheck(low, high) |
| s.sliceBoundsCheck(high, len) |
| |
| // Generate the following code assuming that indexes are in bounds. |
| // The conditional is to make sure that we don't generate a string |
| // that points to the next object in memory. |
| // rlen = (SubPtr high low) |
| // p = ptr |
| // if rlen != 0 { |
| // p = (AddPtr ptr low) |
| // } |
| // result = (StringMake p size) |
| rlen := s.newValue2(ssa.OpSubPtr, Types[TINT], high, low) |
| |
| // Use n as the "variable" for p. |
| s.vars[n] = ptr |
| |
| // Generate code to test the resulting slice length. |
| var cmp *ssa.Value |
| if s.config.IntSize == 8 { |
| cmp = s.newValue2(ssa.OpNeq64, Types[TBOOL], rlen, zero) |
| } else { |
| cmp = s.newValue2(ssa.OpNeq32, Types[TBOOL], rlen, zero) |
| } |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Likely = ssa.BranchLikely |
| b.Control = cmp |
| |
| // Generate code for non-zero length slice case. |
| nz := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(nz) |
| s.startBlock(nz) |
| s.vars[n] = s.newValue2(ssa.OpAddPtr, Ptrto(Types[TUINT8]), ptr, low) |
| s.endBlock() |
| |
| // All done. |
| merge := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(merge) |
| nz.AddEdgeTo(merge) |
| s.startBlock(merge) |
| return s.newValue2(ssa.OpStringMake, Types[TSTRING], s.variable(n, Ptrto(Types[TUINT8])), rlen) |
| |
| case OCALLFUNC, OCALLMETH: |
| left := n.Left |
| static := left.Op == ONAME && left.Class == PFUNC |
| |
| if n.Op == OCALLMETH { |
| // Rewrite to an OCALLFUNC: (p.f)(...) becomes (f)(p, ...) |
| // Take care not to modify the original AST. |
| if left.Op != ODOTMETH { |
| Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", left) |
| } |
| |
| newLeft := *left.Right |
| newLeft.Type = left.Type |
| if newLeft.Op == ONAME { |
| newLeft.Class = PFUNC |
| } |
| left = &newLeft |
| static = true |
| } |
| |
| // evaluate closure |
| var closure *ssa.Value |
| if !static { |
| closure = s.expr(left) |
| } |
| |
| // run all argument assignments |
| s.stmtList(n.List) |
| |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| var call *ssa.Value |
| if static { |
| call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, left.Sym, s.mem()) |
| } else { |
| entry := s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem()) |
| call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, entry, closure, s.mem()) |
| } |
| dowidth(left.Type) |
| call.AuxInt = left.Type.Argwid // call operations carry the argsize of the callee along with them |
| s.vars[&memvar] = call |
| b := s.endBlock() |
| b.Kind = ssa.BlockCall |
| b.Control = call |
| b.AddEdgeTo(bNext) |
| |
| // read result from stack at the start of the fallthrough block |
| s.startBlock(bNext) |
| var titer Iter |
| fp := Structfirst(&titer, Getoutarg(left.Type)) |
| if fp == nil { |
| // CALLFUNC has no return value. Continue with the next statement. |
| return nil |
| } |
| a := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp) |
| return s.newValue2(ssa.OpLoad, fp.Type, a, call) |
| |
| case OGETG: |
| return s.newValue0(ssa.OpGetG, n.Type) |
| |
| default: |
| s.Unimplementedf("unhandled expr %s", opnames[n.Op]) |
| return nil |
| } |
| } |
| |
| func (s *state) assign(left *Node, right *ssa.Value, wb bool) { |
| if left.Op == ONAME && isblank(left) { |
| return |
| } |
| // TODO: do write barrier |
| // if wb |
| t := left.Type |
| dowidth(t) |
| if right == nil { |
| // right == nil means use the zero value of the assigned type. |
| if !canSSA(left) { |
| // if we can't ssa this memory, treat it as just zeroing out the backing memory |
| addr := s.addr(left) |
| if left.Op == ONAME { |
| s.vars[&memvar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem()) |
| } |
| s.vars[&memvar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem()) |
| return |
| } |
| right = s.zeroVal(t) |
| } |
| if left.Op == ONAME && canSSA(left) { |
| // Update variable assignment. |
| s.vars[left] = right |
| return |
| } |
| // not ssa-able. Treat as a store. |
| addr := s.addr(left) |
| if left.Op == ONAME { |
| s.vars[&memvar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem()) |
| } |
| s.vars[&memvar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem()) |
| } |
| |
| // zeroVal returns the zero value for type t. |
| func (s *state) zeroVal(t *Type) *ssa.Value { |
| switch { |
| case t.IsInteger(): |
| switch t.Size() { |
| case 1: |
| return s.constInt8(t, 0) |
| case 2: |
| return s.constInt16(t, 0) |
| case 4: |
| return s.constInt32(t, 0) |
| case 8: |
| return s.constInt64(t, 0) |
| default: |
| s.Fatalf("bad sized integer type %s", t) |
| } |
| case t.IsFloat(): |
| switch t.Size() { |
| case 4: |
| return s.constFloat32(t, 0) |
| case 8: |
| return s.constFloat64(t, 0) |
| default: |
| s.Fatalf("bad sized float type %s", t) |
| } |
| case t.IsComplex(): |
| switch t.Size() { |
| case 8: |
| z := s.constFloat32(Types[TFLOAT32], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| case 16: |
| z := s.constFloat64(Types[TFLOAT64], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| default: |
| s.Fatalf("bad sized complex type %s", t) |
| } |
| |
| case t.IsString(): |
| return s.entryNewValue0A(ssa.OpConstString, t, "") |
| case t.IsPtr(): |
| return s.entryNewValue0(ssa.OpConstNil, t) |
| case t.IsBoolean(): |
| return s.constBool(false) |
| case t.IsInterface(): |
| return s.entryNewValue0(ssa.OpConstInterface, t) |
| case t.IsSlice(): |
| return s.entryNewValue0(ssa.OpConstSlice, t) |
| } |
| s.Unimplementedf("zero for type %v not implemented", t) |
| return nil |
| } |
| |
| // etypesign returns the signed-ness of e, for integer/pointer etypes. |
| // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. |
| func etypesign(e uint8) int8 { |
| switch e { |
| case TINT8, TINT16, TINT32, TINT64, TINT: |
| return -1 |
| case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: |
| return +1 |
| } |
| return 0 |
| } |
| |
| // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. |
| // The value that the returned Value represents is guaranteed to be non-nil. |
| func (s *state) addr(n *Node) *ssa.Value { |
| switch n.Op { |
| case ONAME: |
| switch n.Class { |
| case PEXTERN: |
| // global variable |
| aux := &ssa.ExternSymbol{n.Type, n.Sym} |
| v := s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) |
| // TODO: Make OpAddr use AuxInt as well as Aux. |
| if n.Xoffset != 0 { |
| v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) |
| } |
| return v |
| case PPARAM, PPARAMOUT: |
| // parameter/result slot or local variable |
| v := s.decladdrs[n] |
| if v == nil { |
| if flag_race != 0 && n.String() == ".fp" { |
| s.Unimplementedf("race detector mishandles nodfp") |
| } |
| s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) |
| } |
| return v |
| case PAUTO: |
| // We need to regenerate the address of autos |
| // at every use. This prevents LEA instructions |
| // from occurring before the corresponding VarDef |
| // op and confusing the liveness analysis into thinking |
| // the variable is live at function entry. |
| // TODO: I'm not sure if this really works or we're just |
| // getting lucky. We might need a real dependency edge |
| // between vardef and addr ops. |
| aux := &ssa.AutoSymbol{Typ: n.Type, Node: n} |
| return s.newValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) |
| case PAUTO | PHEAP, PPARAMREF: |
| return s.expr(n.Name.Heapaddr) |
| default: |
| s.Unimplementedf("variable address class %v not implemented", n.Class) |
| return nil |
| } |
| case OINDREG: |
| // indirect off a register |
| // used for storing/loading arguments/returns to/from callees |
| if int(n.Reg) != Thearch.REGSP { |
| s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n) |
| return nil |
| } |
| return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp) |
| case OINDEX: |
| if n.Left.Type.IsSlice() { |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i) |
| len := s.newValue1(ssa.OpSliceLen, Types[TUINTPTR], a) |
| if !n.Bounded { |
| s.boundsCheck(i, len) |
| } |
| p := s.newValue1(ssa.OpSlicePtr, Ptrto(n.Left.Type.Type), a) |
| return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), p, i) |
| } else { // array |
| a := s.addr(n.Left) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i) |
| len := s.constInt(Types[TINT], n.Left.Type.Bound) |
| if !n.Bounded { |
| s.boundsCheck(i, len) |
| } |
| return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), a, i) |
| } |
| case OIND: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| return p |
| case ODOT: |
| p := s.addr(n.Left) |
| return s.newValue2(ssa.OpAddPtr, p.Type, p, s.constIntPtr(Types[TUINTPTR], n.Xoffset)) |
| case ODOTPTR: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| return s.newValue2(ssa.OpAddPtr, p.Type, p, s.constIntPtr(Types[TUINTPTR], n.Xoffset)) |
| default: |
| s.Unimplementedf("unhandled addr %v", Oconv(int(n.Op), 0)) |
| return nil |
| } |
| } |
| |
| // canSSA reports whether n is SSA-able. |
| // n must be an ONAME. |
| func canSSA(n *Node) bool { |
| if n.Op != ONAME { |
| return false |
| } |
| if n.Addrtaken { |
| return false |
| } |
| if n.Class&PHEAP != 0 { |
| return false |
| } |
| switch n.Class { |
| case PEXTERN, PPARAMOUT, PPARAMREF: |
| return false |
| } |
| if n.Class == PPARAM && n.String() == ".this" { |
| // wrappers generated by genwrapper need to update |
| // the .this pointer in place. |
| return false |
| } |
| return canSSAType(n.Type) |
| // TODO: try to make more variables SSAable? |
| } |
| |
| // canSSA reports whether variables of type t are SSA-able. |
| func canSSAType(t *Type) bool { |
| dowidth(t) |
| if t.Width > int64(4*Widthptr) { |
| // 4*Widthptr is an arbitrary constant. We want it |
| // to be at least 3*Widthptr so slices can be registerized. |
| // Too big and we'll introduce too much register pressure. |
| return false |
| } |
| switch t.Etype { |
| case TARRAY: |
| if Isslice(t) { |
| return true |
| } |
| // We can't do arrays because dynamic indexing is |
| // not supported on SSA variables. |
| // TODO: maybe allow if length is <=1? All indexes |
| // are constant? Might be good for the arrays |
| // introduced by the compiler for variadic functions. |
| return false |
| case TSTRUCT: |
| if countfield(t) > 4 { |
| // 4 is an arbitrary constant. Same reasoning |
| // as above, lots of small fields would waste |
| // register space needed by other values. |
| return false |
| } |
| for t1 := t.Type; t1 != nil; t1 = t1.Down { |
| if !canSSAType(t1.Type) { |
| return false |
| } |
| } |
| return false // until it is implemented |
| //return true |
| default: |
| return true |
| } |
| } |
| |
| // nilCheck generates nil pointer checking code. |
| // Starts a new block on return, unless nil checks are disabled. |
| // Used only for automatically inserted nil checks, |
| // not for user code like 'x != nil'. |
| func (s *state) nilCheck(ptr *ssa.Value) { |
| if Disable_checknil != 0 { |
| return |
| } |
| c := s.newValue1(ssa.OpIsNonNil, Types[TBOOL], ptr) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = c |
| b.Likely = ssa.BranchLikely |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| bPanic := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| s.startBlock(bPanic) |
| // TODO: implicit nil checks somehow? |
| chk := s.newValue2(ssa.OpPanicNilCheck, ssa.TypeMem, ptr, s.mem()) |
| s.endBlock() |
| bPanic.Kind = ssa.BlockExit |
| bPanic.Control = chk |
| s.startBlock(bNext) |
| } |
| |
| // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. |
| // Starts a new block on return. |
| func (s *state) boundsCheck(idx, len *ssa.Value) { |
| if Debug['B'] != 0 { |
| return |
| } |
| // TODO: convert index to full width? |
| // TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero. |
| |
| // bounds check |
| cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len) |
| s.check(cmp, ssa.OpPanicIndexCheck) |
| } |
| |
| // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. |
| // Starts a new block on return. |
| func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { |
| if Debug['B'] != 0 { |
| return |
| } |
| // TODO: convert index to full width? |
| // TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero. |
| |
| // bounds check |
| cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len) |
| s.check(cmp, ssa.OpPanicSliceCheck) |
| } |
| |
| // If cmp (a bool) is true, panic using the given op. |
| func (s *state) check(cmp *ssa.Value, panicOp ssa.Op) { |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cmp |
| b.Likely = ssa.BranchLikely |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| bPanic := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| s.startBlock(bPanic) |
| // The panic check takes/returns memory to ensure that the right |
| // memory state is observed if the panic happens. |
| chk := s.newValue1(panicOp, ssa.TypeMem, s.mem()) |
| s.endBlock() |
| bPanic.Kind = ssa.BlockExit |
| bPanic.Control = chk |
| s.startBlock(bNext) |
| } |
| |
| type u2fcvtTab struct { |
| geq, cvt2F, and, rsh, or, add ssa.Op |
| one func(*state, ssa.Type, int64) *ssa.Value |
| } |
| |
| var u64_f64 u2fcvtTab = u2fcvtTab{ |
| geq: ssa.OpGeq64, |
| cvt2F: ssa.OpCvt64to64F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd64F, |
| one: (*state).constInt64, |
| } |
| |
| var u64_f32 u2fcvtTab = u2fcvtTab{ |
| geq: ssa.OpGeq64, |
| cvt2F: ssa.OpCvt64to32F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd32F, |
| one: (*state).constInt64, |
| } |
| |
| // Excess generality on a machine with 64-bit integer registers. |
| // Not used on AMD64. |
| var u32_f32 u2fcvtTab = u2fcvtTab{ |
| geq: ssa.OpGeq32, |
| cvt2F: ssa.OpCvt32to32F, |
| and: ssa.OpAnd32, |
| rsh: ssa.OpRsh32Ux32, |
| or: ssa.OpOr32, |
| add: ssa.OpAdd32F, |
| one: func(s *state, t ssa.Type, x int64) *ssa.Value { |
| return s.constInt32(t, int32(x)) |
| }, |
| } |
| |
| func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uintTofloat(&u64_f64, n, x, ft, tt) |
| } |
| |
| func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uintTofloat(&u64_f32, n, x, ft, tt) |
| } |
| |
| func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| // if x >= 0 { |
| // result = (floatY) x |
| // } else { |
| // y = uintX(x) ; y = x & 1 |
| // z = uintX(x) ; z = z >> 1 |
| // z = z >> 1 |
| // z = z | y |
| // result = floatY(z) |
| // result = result + result |
| // } |
| // |
| // Code borrowed from old code generator. |
| // What's going on: large 64-bit "unsigned" looks like |
| // negative number to hardware's integer-to-float |
| // conversion. However, because the mantissa is only |
| // 63 bits, we don't need the LSB, so instead we do an |
| // unsigned right shift (divide by two), convert, and |
| // double. However, before we do that, we need to be |
| // sure that we do not lose a "1" if that made the |
| // difference in the resulting rounding. Therefore, we |
| // preserve it, and OR (not ADD) it back in. The case |
| // that matters is when the eleven discarded bits are |
| // equal to 10000000001; that rounds up, and the 1 cannot |
| // be lost else it would round down if the LSB of the |
| // candidate mantissa is 0. |
| cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft)) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cmp |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2F, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| one := cvttab.one(s, ft, 1) |
| y := s.newValue2(cvttab.and, ft, x, one) |
| z := s.newValue2(cvttab.rsh, ft, x, one) |
| z = s.newValue2(cvttab.or, ft, z, y) |
| a := s.newValue1(cvttab.cvt2F, tt, z) |
| a1 := s.newValue2(cvttab.add, tt, a, a) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type) |
| } |
| |
| // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. |
| func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { |
| if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { |
| s.Fatalf("node must be a map or a channel") |
| } |
| // if n == nil { |
| // return 0 |
| // } else { |
| // // len |
| // return *((*int)n) |
| // // cap |
| // return *(((*int)n)+1) |
| // } |
| lenType := n.Type |
| nilValue := s.newValue0(ssa.OpConstNil, Types[TUINTPTR]) |
| cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cmp |
| b.Likely = ssa.BranchUnlikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| // length/capacity of a nil map/chan is zero |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| s.vars[n] = s.zeroVal(lenType) |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| if n.Op == OLEN { |
| // length is stored in the first word for map/chan |
| s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) |
| } else if n.Op == OCAP { |
| // capacity is stored in the second word for chan |
| sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) |
| s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) |
| } else { |
| s.Fatalf("op must be OLEN or OCAP") |
| } |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, lenType) |
| } |
| |
| type f2uCvtTab struct { |
| ltf, cvt2U, subf ssa.Op |
| value func(*state, ssa.Type, float64) *ssa.Value |
| } |
| |
| var f32_u64 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess32F, |
| cvt2U: ssa.OpCvt32Fto64, |
| subf: ssa.OpSub32F, |
| value: (*state).constFloat32, |
| } |
| |
| var f64_u64 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess64F, |
| cvt2U: ssa.OpCvt64Fto64, |
| subf: ssa.OpSub64F, |
| value: (*state).constFloat64, |
| } |
| |
| func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f32_u64, n, x, ft, tt) |
| } |
| func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f64_u64, n, x, ft, tt) |
| } |
| |
| func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| // if x < 9223372036854775808.0 { |
| // result = uintY(x) |
| // } else { |
| // y = x - 9223372036854775808.0 |
| // z = uintY(y) |
| // result = z | -9223372036854775808 |
| // } |
| twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0) |
| cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cmp |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2U, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| y := s.newValue2(cvttab.subf, ft, x, twoToThe63) |
| y = s.newValue1(cvttab.cvt2U, tt, y) |
| z := s.constInt64(tt, -9223372036854775808) |
| a1 := s.newValue2(ssa.OpOr64, tt, y, z) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type) |
| } |
| |
| // checkgoto checks that a goto from from to to does not |
| // jump into a block or jump over variable declarations. |
| // It is a copy of checkgoto in the pre-SSA backend, |
| // modified only for line number handling. |
| // TODO: document how this works and why it is designed the way it is. |
| func (s *state) checkgoto(from *Node, to *Node) { |
| if from.Sym == to.Sym { |
| return |
| } |
| |
| nf := 0 |
| for fs := from.Sym; fs != nil; fs = fs.Link { |
| nf++ |
| } |
| nt := 0 |
| for fs := to.Sym; fs != nil; fs = fs.Link { |
| nt++ |
| } |
| fs := from.Sym |
| for ; nf > nt; nf-- { |
| fs = fs.Link |
| } |
| if fs != to.Sym { |
| // decide what to complain about. |
| // prefer to complain about 'into block' over declarations, |
| // so scan backward to find most recent block or else dcl. |
| var block *Sym |
| |
| var dcl *Sym |
| ts := to.Sym |
| for ; nt > nf; nt-- { |
| if ts.Pkg == nil { |
| block = ts |
| } else { |
| dcl = ts |
| } |
| ts = ts.Link |
| } |
| |
| for ts != fs { |
| if ts.Pkg == nil { |
| block = ts |
| } else { |
| dcl = ts |
| } |
| ts = ts.Link |
| fs = fs.Link |
| } |
| |
| lno := int(from.Left.Lineno) |
| if block != nil { |
| yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, Ctxt.Line(int(block.Lastlineno))) |
| } else { |
| yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, Ctxt.Line(int(dcl.Lastlineno))) |
| } |
| } |
| } |
| |
| // variable returns the value of a variable at the current location. |
| func (s *state) variable(name *Node, t ssa.Type) *ssa.Value { |
| v := s.vars[name] |
| if v == nil { |
| // TODO: get type? Take Sym as arg? |
| v = s.newValue0A(ssa.OpFwdRef, t, name) |
| s.vars[name] = v |
| } |
| return v |
| } |
| |
| func (s *state) mem() *ssa.Value { |
| return s.variable(&memvar, ssa.TypeMem) |
| } |
| |
| func (s *state) linkForwardReferences() { |
| // Build ssa graph. Each variable on its first use in a basic block |
| // leaves a FwdRef in that block representing the incoming value |
| // of that variable. This function links that ref up with possible definitions, |
| // inserting Phi values as needed. This is essentially the algorithm |
| // described by Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau: |
| // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf |
| for _, b := range s.f.Blocks { |
| for _, v := range b.Values { |
| if v.Op != ssa.OpFwdRef { |
| continue |
| } |
| name := v.Aux.(*Node) |
| v.Op = ssa.OpCopy |
| v.Aux = nil |
| v.SetArgs1(s.lookupVarIncoming(b, v.Type, name)) |
| } |
| } |
| } |
| |
| // lookupVarIncoming finds the variable's value at the start of block b. |
| func (s *state) lookupVarIncoming(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value { |
| // TODO(khr): have lookupVarIncoming overwrite the fwdRef or copy it |
| // will be used in, instead of having the result used in a copy value. |
| if b == s.f.Entry { |
| if name == &memvar { |
| return s.startmem |
| } |
| // variable is live at the entry block. Load it. |
| addr := s.decladdrs[name] |
| if addr == nil { |
| // TODO: closure args reach here. |
| s.Unimplementedf("unhandled closure arg") |
| } |
| if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok { |
| s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name) |
| } |
| return s.entryNewValue2(ssa.OpLoad, t, addr, s.startmem) |
| } |
| var vals []*ssa.Value |
| for _, p := range b.Preds { |
| vals = append(vals, s.lookupVarOutgoing(p, t, name)) |
| } |
| if len(vals) == 0 { |
| // This block is dead; we have no predecessors and we're not the entry block. |
| // It doesn't matter what we use here as long as it is well-formed, |
| // so use the default/zero value. |
| if name == &memvar { |
| return s.startmem |
| } |
| return s.zeroVal(name.Type) |
| } |
| v0 := vals[0] |
| for i := 1; i < len(vals); i++ { |
| if vals[i] != v0 { |
| // need a phi value |
| v := b.NewValue0(s.peekLine(), ssa.OpPhi, t) |
| v.AddArgs(vals...) |
| return v |
| } |
| } |
| return v0 |
| } |
| |
| // lookupVarOutgoing finds the variable's value at the end of block b. |
| func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value { |
| m := s.defvars[b.ID] |
| if v, ok := m[name]; ok { |
| return v |
| } |
| // The variable is not defined by b and we haven't |
| // looked it up yet. Generate v, a copy value which |
| // will be the outgoing value of the variable. Then |
| // look up w, the incoming value of the variable. |
| // Make v = copy(w). We need the extra copy to |
| // prevent infinite recursion when looking up the |
| // incoming value of the variable. |
| v := b.NewValue0(s.peekLine(), ssa.OpCopy, t) |
| m[name] = v |
| v.AddArg(s.lookupVarIncoming(b, t, name)) |
| return v |
| } |
| |
| // TODO: the above mutually recursive functions can lead to very deep stacks. Fix that. |
| |
| // an unresolved branch |
| type branch struct { |
| p *obj.Prog // branch instruction |
| b *ssa.Block // target |
| } |
| |
| type genState struct { |
| // branches remembers all the branch instructions we've seen |
| // and where they would like to go. |
| branches []branch |
| |
| // bstart remembers where each block starts (indexed by block ID) |
| bstart []*obj.Prog |
| |
| // deferBranches remembers all the defer branches we've seen. |
| deferBranches []*obj.Prog |
| |
| // deferTarget remembers the (last) deferreturn call site. |
| deferTarget *obj.Prog |
| } |
| |
| // genssa appends entries to ptxt for each instruction in f. |
| // gcargs and gclocals are filled in with pointer maps for the frame. |
| func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) { |
| var s genState |
| |
| e := f.Config.Frontend().(*ssaExport) |
| // We're about to emit a bunch of Progs. |
| // Since the only way to get here is to explicitly request it, |
| // just fail on unimplemented instead of trying to unwind our mess. |
| e.mustImplement = true |
| |
| // Remember where each block starts. |
| s.bstart = make([]*obj.Prog, f.NumBlocks()) |
| |
| var valueProgs map[*obj.Prog]*ssa.Value |
| var blockProgs map[*obj.Prog]*ssa.Block |
| const logProgs = true |
| if logProgs { |
| valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues()) |
| blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) |
| f.Logf("genssa %s\n", f.Name) |
| blockProgs[Pc] = f.Blocks[0] |
| } |
| |
| // Emit basic blocks |
| for i, b := range f.Blocks { |
| s.bstart[b.ID] = Pc |
| // Emit values in block |
| for _, v := range b.Values { |
| x := Pc |
| s.genValue(v) |
| if logProgs { |
| for ; x != Pc; x = x.Link { |
| valueProgs[x] = v |
| } |
| } |
| } |
| // Emit control flow instructions for block |
| var next *ssa.Block |
| if i < len(f.Blocks)-1 { |
| next = f.Blocks[i+1] |
| } |
| x := Pc |
| s.genBlock(b, next) |
| if logProgs { |
| for ; x != Pc; x = x.Link { |
| blockProgs[x] = b |
| } |
| } |
| } |
| |
| // Resolve branches |
| for _, br := range s.branches { |
| br.p.To.Val = s.bstart[br.b.ID] |
| } |
| if s.deferBranches != nil && s.deferTarget == nil { |
| // This can happen when the function has a defer but |
| // no return (because it has an infinite loop). |
| s.deferReturn() |
| Prog(obj.ARET) |
| } |
| for _, p := range s.deferBranches { |
| p.To.Val = s.deferTarget |
| } |
| |
| if logProgs { |
| for p := ptxt; p != nil; p = p.Link { |
| var s string |
| if v, ok := valueProgs[p]; ok { |
| s = v.String() |
| } else if b, ok := blockProgs[p]; ok { |
| s = b.String() |
| } else { |
| s = " " // most value and branch strings are 2-3 characters long |
| } |
| f.Logf("%s\t%s\n", s, p) |
| } |
| if f.Config.HTML != nil { |
| saved := ptxt.Ctxt.LineHist.PrintFilenameOnly |
| ptxt.Ctxt.LineHist.PrintFilenameOnly = true |
| var buf bytes.Buffer |
| buf.WriteString("<code>") |
| buf.WriteString("<dl class=\"ssa-gen\">") |
| for p := ptxt; p != nil; p = p.Link { |
| buf.WriteString("<dt class=\"ssa-prog-src\">") |
| if v, ok := valueProgs[p]; ok { |
| buf.WriteString(v.HTML()) |
| } else if b, ok := blockProgs[p]; ok { |
| buf.WriteString(b.HTML()) |
| } |
| buf.WriteString("</dt>") |
| buf.WriteString("<dd class=\"ssa-prog\">") |
| buf.WriteString(html.EscapeString(p.String())) |
| buf.WriteString("</dd>") |
| buf.WriteString("</li>") |
| } |
| buf.WriteString("</dl>") |
| buf.WriteString("</code>") |
| f.Config.HTML.WriteColumn("genssa", buf.String()) |
| ptxt.Ctxt.LineHist.PrintFilenameOnly = saved |
| } |
| } |
| |
| // Emit static data |
| if f.StaticData != nil { |
| for _, n := range f.StaticData.([]*Node) { |
| if !gen_as_init(n, false) { |
| Fatalf("non-static data marked as static: %v\n\n", n, f) |
| } |
| } |
| } |
| |
| // Allocate stack frame |
| allocauto(ptxt) |
| |
| // Generate gc bitmaps. |
| liveness(Curfn, ptxt, gcargs, gclocals) |
| gcsymdup(gcargs) |
| gcsymdup(gclocals) |
| |
| // Add frame prologue. Zero ambiguously live variables. |
| Thearch.Defframe(ptxt) |
| if Debug['f'] != 0 { |
| frame(0) |
| } |
| |
| // Remove leftover instrumentation from the instruction stream. |
| removevardef(ptxt) |
| |
| f.Config.HTML.Close() |
| } |
| |
| // opregreg emits instructions for |
| // dest := dest(To) op src(From) |
| // and also returns the created obj.Prog so it |
| // may be further adjusted (offset, scale, etc). |
| func opregreg(op int, dest, src int16) *obj.Prog { |
| p := Prog(op) |
| p.From.Type = obj.TYPE_REG |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = dest |
| p.From.Reg = src |
| return p |
| } |
| |
| func (s *genState) genValue(v *ssa.Value) { |
| lineno = v.Line |
| switch v.Op { |
| case ssa.OpAMD64ADDQ: |
| // TODO: use addq instead of leaq if target is in the right register. |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64ADDL: |
| p := Prog(x86.ALEAL) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64ADDW: |
| p := Prog(x86.ALEAW) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| // 2-address opcode arithmetic, symmetric |
| case ssa.OpAMD64ADDB, ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD, |
| ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL, ssa.OpAMD64ANDW, ssa.OpAMD64ANDB, |
| ssa.OpAMD64ORQ, ssa.OpAMD64ORL, ssa.OpAMD64ORW, ssa.OpAMD64ORB, |
| ssa.OpAMD64XORQ, ssa.OpAMD64XORL, ssa.OpAMD64XORW, ssa.OpAMD64XORB, |
| ssa.OpAMD64MULQ, ssa.OpAMD64MULL, ssa.OpAMD64MULW, ssa.OpAMD64MULB, |
| ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64PXOR: |
| r := regnum(v) |
| x := regnum(v.Args[0]) |
| y := regnum(v.Args[1]) |
| if x != r && y != r { |
| opregreg(regMoveByTypeAMD64(v.Type), r, x) |
| x = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| if x == r { |
| p.From.Reg = y |
| } else { |
| p.From.Reg = x |
| } |
| // 2-address opcode arithmetic, not symmetric |
| case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL, ssa.OpAMD64SUBW, ssa.OpAMD64SUBB: |
| r := regnum(v) |
| x := regnum(v.Args[0]) |
| y := regnum(v.Args[1]) |
| var neg bool |
| if y == r { |
| // compute -(y-x) instead |
| x, y = y, x |
| neg = true |
| } |
| if x != r { |
| opregreg(regMoveByTypeAMD64(v.Type), r, x) |
| } |
| opregreg(v.Op.Asm(), r, y) |
| |
| if neg { |
| p := Prog(x86.ANEGQ) // TODO: use correct size? This is mostly a hack until regalloc does 2-address correctly |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } |
| case ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD: |
| r := regnum(v) |
| x := regnum(v.Args[0]) |
| y := regnum(v.Args[1]) |
| if y == r && x != r { |
| // r/y := x op r/y, need to preserve x and rewrite to |
| // r/y := r/y op x15 |
| x15 := int16(x86.REG_X15) |
| // register move y to x15 |
| // register move x to y |
| // rename y with x15 |
| opregreg(regMoveByTypeAMD64(v.Type), x15, y) |
| opregreg(regMoveByTypeAMD64(v.Type), r, x) |
| y = x15 |
| } else if x != r { |
| opregreg(regMoveByTypeAMD64(v.Type), r, x) |
| } |
| opregreg(v.Op.Asm(), r, y) |
| |
| case ssa.OpAMD64DIVQ, ssa.OpAMD64DIVL, ssa.OpAMD64DIVW, |
| ssa.OpAMD64DIVQU, ssa.OpAMD64DIVLU, ssa.OpAMD64DIVWU, |
| ssa.OpAMD64MODQ, ssa.OpAMD64MODL, ssa.OpAMD64MODW, |
| ssa.OpAMD64MODQU, ssa.OpAMD64MODLU, ssa.OpAMD64MODWU: |
| |
| // Arg[0] is already in AX as it's the only register we allow |
| // and AX is the only output |
| x := regnum(v.Args[1]) |
| |
| // CPU faults upon signed overflow, which occurs when most |
| // negative int is divided by -1. |
| var j *obj.Prog |
| if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL || |
| v.Op == ssa.OpAMD64DIVW || v.Op == ssa.OpAMD64MODQ || |
| v.Op == ssa.OpAMD64MODL || v.Op == ssa.OpAMD64MODW { |
| |
| var c *obj.Prog |
| switch v.Op { |
| case ssa.OpAMD64DIVQ, ssa.OpAMD64MODQ: |
| c = Prog(x86.ACMPQ) |
| j = Prog(x86.AJEQ) |
| // go ahead and sign extend to save doing it later |
| Prog(x86.ACQO) |
| |
| case ssa.OpAMD64DIVL, ssa.OpAMD64MODL: |
| c = Prog(x86.ACMPL) |
| j = Prog(x86.AJEQ) |
| Prog(x86.ACDQ) |
| |
| case ssa.OpAMD64DIVW, ssa.OpAMD64MODW: |
| c = Prog(x86.ACMPW) |
| j = Prog(x86.AJEQ) |
| Prog(x86.ACWD) |
| } |
| c.From.Type = obj.TYPE_REG |
| c.From.Reg = x |
| c.To.Type = obj.TYPE_CONST |
| c.To.Offset = -1 |
| |
| j.To.Type = obj.TYPE_BRANCH |
| |
| } |
| |
| // for unsigned ints, we sign extend by setting DX = 0 |
| // signed ints were sign extended above |
| if v.Op == ssa.OpAMD64DIVQU || v.Op == ssa.OpAMD64MODQU || |
| v.Op == ssa.OpAMD64DIVLU || v.Op == ssa.OpAMD64MODLU || |
| v.Op == ssa.OpAMD64DIVWU || v.Op == ssa.OpAMD64MODWU { |
| c := Prog(x86.AXORQ) |
| c.From.Type = obj.TYPE_REG |
| c.From.Reg = x86.REG_DX |
| c.To.Type = obj.TYPE_REG |
| c.To.Reg = x86.REG_DX |
| } |
| |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| |
| // signed division, rest of the check for -1 case |
| if j != nil { |
| j2 := Prog(obj.AJMP) |
| j2.To.Type = obj.TYPE_BRANCH |
| |
| var n *obj.Prog |
| if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL || |
| v.Op == ssa.OpAMD64DIVW { |
| // n * -1 = -n |
| n = Prog(x86.ANEGQ) |
| n.To.Type = obj.TYPE_REG |
| n.To.Reg = x86.REG_AX |
| } else { |
| // n % -1 == 0 |
| n = Prog(x86.AXORQ) |
| n.From.Type = obj.TYPE_REG |
| n.From.Reg = x86.REG_DX |
| n.To.Type = obj.TYPE_REG |
| n.To.Reg = x86.REG_DX |
| } |
| |
| j.To.Val = n |
| j2.To.Val = Pc |
| } |
| |
| case ssa.OpAMD64HMULL, ssa.OpAMD64HMULW, ssa.OpAMD64HMULB, |
| ssa.OpAMD64HMULLU, ssa.OpAMD64HMULWU, ssa.OpAMD64HMULBU: |
| // the frontend rewrites constant division by 8/16/32 bit integers into |
| // HMUL by a constant |
| |
| // Arg[0] is already in AX as it's the only register we allow |
| // and DX is the only output we care about (the high bits) |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[1]) |
| |
| // IMULB puts the high portion in AH instead of DL, |
| // so move it to DL for consistency |
| if v.Type.Size() == 1 { |
| m := Prog(x86.AMOVB) |
| m.From.Type = obj.TYPE_REG |
| m.From.Reg = x86.REG_AH |
| m.To.Type = obj.TYPE_REG |
| m.To.Reg = x86.REG_DX |
| } |
| |
| case ssa.OpAMD64SHLQ, ssa.OpAMD64SHLL, ssa.OpAMD64SHLW, ssa.OpAMD64SHLB, |
| ssa.OpAMD64SHRQ, ssa.OpAMD64SHRL, ssa.OpAMD64SHRW, ssa.OpAMD64SHRB, |
| ssa.OpAMD64SARQ, ssa.OpAMD64SARL, ssa.OpAMD64SARW, ssa.OpAMD64SARB: |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| if r == x86.REG_CX { |
| v.Fatalf("can't implement %s, target and shift both in CX", v.LongString()) |
| } |
| p := Prog(regMoveAMD64(v.Type.Size())) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[1]) // should be CX |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64ADDQconst, ssa.OpAMD64ADDLconst, ssa.OpAMD64ADDWconst: |
| // TODO: use addq instead of leaq if target is in the right register. |
| var asm int |
| switch v.Op { |
| case ssa.OpAMD64ADDQconst: |
| asm = x86.ALEAQ |
| case ssa.OpAMD64ADDLconst: |
| asm = x86.ALEAL |
| case ssa.OpAMD64ADDWconst: |
| asm = x86.ALEAW |
| } |
| p := Prog(asm) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MULQconst, ssa.OpAMD64MULLconst, ssa.OpAMD64MULWconst, ssa.OpAMD64MULBconst: |
| r := regnum(v) |
| x := regnum(v.Args[0]) |
| if r != x { |
| p := Prog(regMoveAMD64(v.Type.Size())) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| // TODO: Teach doasm to compile the three-address multiply imul $c, r1, r2 |
| // instead of using the MOVQ above. |
| //p.From3 = new(obj.Addr) |
| //p.From3.Type = obj.TYPE_REG |
| //p.From3.Reg = regnum(v.Args[0]) |
| case ssa.OpAMD64ADDBconst, |
| ssa.OpAMD64ANDQconst, ssa.OpAMD64ANDLconst, ssa.OpAMD64ANDWconst, ssa.OpAMD64ANDBconst, |
| ssa.OpAMD64ORQconst, ssa.OpAMD64ORLconst, ssa.OpAMD64ORWconst, ssa.OpAMD64ORBconst, |
| ssa.OpAMD64XORQconst, ssa.OpAMD64XORLconst, ssa.OpAMD64XORWconst, ssa.OpAMD64XORBconst, |
| ssa.OpAMD64SUBQconst, ssa.OpAMD64SUBLconst, ssa.OpAMD64SUBWconst, ssa.OpAMD64SUBBconst, |
| ssa.OpAMD64SHLQconst, ssa.OpAMD64SHLLconst, ssa.OpAMD64SHLWconst, ssa.OpAMD64SHLBconst, |
| ssa.OpAMD64SHRQconst, ssa.OpAMD64SHRLconst, ssa.OpAMD64SHRWconst, ssa.OpAMD64SHRBconst, |
| ssa.OpAMD64SARQconst, ssa.OpAMD64SARLconst, ssa.OpAMD64SARWconst, ssa.OpAMD64SARBconst, |
| ssa.OpAMD64ROLQconst, ssa.OpAMD64ROLLconst, ssa.OpAMD64ROLWconst, ssa.OpAMD64ROLBconst: |
| // This code compensates for the fact that the register allocator |
| // doesn't understand 2-address instructions yet. TODO: fix that. |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| p := Prog(regMoveAMD64(v.Type.Size())) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64SBBQcarrymask, ssa.OpAMD64SBBLcarrymask: |
| r := regnum(v) |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = r |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64LEAQ1, ssa.OpAMD64LEAQ2, ssa.OpAMD64LEAQ4, ssa.OpAMD64LEAQ8: |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| switch v.Op { |
| case ssa.OpAMD64LEAQ1: |
| p.From.Scale = 1 |
| case ssa.OpAMD64LEAQ2: |
| p.From.Scale = 2 |
| case ssa.OpAMD64LEAQ4: |
| p.From.Scale = 4 |
| case ssa.OpAMD64LEAQ8: |
| p.From.Scale = 8 |
| } |
| p.From.Index = regnum(v.Args[1]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64LEAQ: |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB, |
| ssa.OpAMD64TESTQ, ssa.OpAMD64TESTL, ssa.OpAMD64TESTW, ssa.OpAMD64TESTB: |
| opregreg(v.Op.Asm(), regnum(v.Args[1]), regnum(v.Args[0])) |
| case ssa.OpAMD64UCOMISS, ssa.OpAMD64UCOMISD: |
| // Go assembler has swapped operands for UCOMISx relative to CMP, |
| // must account for that right here. |
| opregreg(v.Op.Asm(), regnum(v.Args[0]), regnum(v.Args[1])) |
| case ssa.OpAMD64CMPQconst, ssa.OpAMD64CMPLconst, ssa.OpAMD64CMPWconst, ssa.OpAMD64CMPBconst, |
| ssa.OpAMD64TESTQconst, ssa.OpAMD64TESTLconst, ssa.OpAMD64TESTWconst, ssa.OpAMD64TESTBconst: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_CONST |
| p.To.Offset = v.AuxInt |
| case ssa.OpAMD64MOVBconst, ssa.OpAMD64MOVWconst, ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst: |
| x := regnum(v) |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_CONST |
| var i int64 |
| switch v.Op { |
| case ssa.OpAMD64MOVBconst: |
| i = int64(int8(v.AuxInt)) |
| case ssa.OpAMD64MOVWconst: |
| i = int64(int16(v.AuxInt)) |
| case ssa.OpAMD64MOVLconst: |
| i = int64(int32(v.AuxInt)) |
| case ssa.OpAMD64MOVQconst: |
| i = v.AuxInt |
| } |
| p.From.Offset = i |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = x |
| case ssa.OpAMD64MOVSSconst, ssa.OpAMD64MOVSDconst: |
| x := regnum(v) |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_FCONST |
| p.From.Val = math.Float64frombits(uint64(v.AuxInt)) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = x |
| case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload, ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVBQZXload: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.From.Scale = 8 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVSSloadidx4: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.From.Scale = 4 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum(v.Args[0]) |
| addAux(&p.To, v) |
| case ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[2]) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum(v.Args[0]) |
| p.To.Scale = 8 |
| p.To.Index = regnum(v.Args[1]) |
| addAux(&p.To, v) |
| case ssa.OpAMD64MOVSSstoreidx4: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[2]) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum(v.Args[0]) |
| p.To.Scale = 4 |
| p.To.Index = regnum(v.Args[1]) |
| addAux(&p.To, v) |
| case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX, |
| ssa.OpAMD64CVTSL2SS, ssa.OpAMD64CVTSL2SD, ssa.OpAMD64CVTSQ2SS, ssa.OpAMD64CVTSQ2SD, |
| ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ, |
| ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS: |
| opregreg(v.Op.Asm(), regnum(v), regnum(v.Args[0])) |
| case ssa.OpAMD64MOVXzero: |
| nb := v.AuxInt |
| offset := int64(0) |
| reg := regnum(v.Args[0]) |
| for nb >= 8 { |
| nb, offset = movZero(x86.AMOVQ, 8, nb, offset, reg) |
| } |
| for nb >= 4 { |
| nb, offset = movZero(x86.AMOVL, 4, nb, offset, reg) |
| } |
| for nb >= 2 { |
| nb, offset = movZero(x86.AMOVW, 2, nb, offset, reg) |
| } |
| for nb >= 1 { |
| nb, offset = movZero(x86.AMOVB, 1, nb, offset, reg) |
| } |
| case ssa.OpCopy: // TODO: lower to MOVQ earlier? |
| if v.Type.IsMemory() { |
| return |
| } |
| x := regnum(v.Args[0]) |
| y := regnum(v) |
| if x != y { |
| opregreg(regMoveByTypeAMD64(v.Type), y, x) |
| } |
| case ssa.OpLoadReg: |
| if v.Type.IsFlags() { |
| v.Unimplementedf("load flags not implemented: %v", v.LongString()) |
| return |
| } |
| p := Prog(movSizeByType(v.Type)) |
| n := autoVar(v.Args[0]) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Name = obj.NAME_AUTO |
| p.From.Node = n |
| p.From.Sym = Linksym(n.Sym) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| |
| case ssa.OpStoreReg: |
| if v.Type.IsFlags() { |
| v.Unimplementedf("store flags not implemented: %v", v.LongString()) |
| return |
| } |
| p := Prog(movSizeByType(v.Type)) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| n := autoVar(v) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_AUTO |
| p.To.Node = n |
| p.To.Sym = Linksym(n.Sym) |
| case ssa.OpPhi: |
| // just check to make sure regalloc and stackalloc did it right |
| if v.Type.IsMemory() { |
| return |
| } |
| f := v.Block.Func |
| loc := f.RegAlloc[v.ID] |
| for _, a := range v.Args { |
| if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? |
| v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func) |
| } |
| } |
| case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64, ssa.OpConstString, ssa.OpConstNil, ssa.OpConstBool, |
| ssa.OpConst32F, ssa.OpConst64F: |
| if v.Block.Func.RegAlloc[v.ID] != nil { |
| v.Fatalf("const value %v shouldn't have a location", v) |
| } |
| |
| case ssa.OpArg: |
| // memory arg needs no code |
| // TODO: check that only mem arg goes here. |
| case ssa.OpAMD64LoweredPanicNilCheck: |
| if Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers |
| Warnl(int(v.Line), "generated nil check") |
| } |
| // Write to memory address 0. It doesn't matter what we write; use AX. |
| // Input 0 is the pointer we just checked, use it as the destination. |
| r := regnum(v.Args[0]) |
| q := Prog(x86.AMOVL) |
| q.From.Type = obj.TYPE_REG |
| q.From.Reg = x86.REG_AX |
| q.To.Type = obj.TYPE_MEM |
| q.To.Reg = r |
| Prog(obj.AUNDEF) // tell plive.go that we never reach here |
| case ssa.OpAMD64LoweredPanicIndexCheck: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(Panicindex.Sym) |
| Prog(obj.AUNDEF) |
| case ssa.OpAMD64LoweredPanicSliceCheck: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(panicslice.Sym) |
| Prog(obj.AUNDEF) |
| case ssa.OpAMD64LoweredGetG: |
| r := regnum(v) |
| // See the comments in cmd/internal/obj/x86/obj6.go |
| // near CanUse1InsnTLS for a detailed explanation of these instructions. |
| if x86.CanUse1InsnTLS(Ctxt) { |
| // MOVQ (TLS), r |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = x86.REG_TLS |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } else { |
| // MOVQ TLS, r |
| // MOVQ (r)(TLS*1), r |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x86.REG_TLS |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| q := Prog(x86.AMOVQ) |
| q.From.Type = obj.TYPE_MEM |
| q.From.Reg = r |
| q.From.Index = x86.REG_TLS |
| q.From.Scale = 1 |
| q.To.Type = obj.TYPE_REG |
| q.To.Reg = r |
| } |
| case ssa.OpAMD64CALLstatic: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(v.Aux.(*Sym)) |
| if Maxarg < v.AuxInt { |
| Maxarg = v.AuxInt |
| } |
| case ssa.OpAMD64CALLclosure: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v.Args[0]) |
| if Maxarg < v.AuxInt { |
| Maxarg = v.AuxInt |
| } |
| case ssa.OpAMD64CALLdefer: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(Deferproc.Sym) |
| if Maxarg < v.AuxInt { |
| Maxarg = v.AuxInt |
| } |
| // defer returns in rax: |
| // 0 if we should continue executing |
| // 1 if we should jump to deferreturn call |
| p = Prog(x86.ATESTL) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x86.REG_AX |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = x86.REG_AX |
| p = Prog(x86.AJNE) |
| p.To.Type = obj.TYPE_BRANCH |
| s.deferBranches = append(s.deferBranches, p) |
| case ssa.OpAMD64CALLgo: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(Newproc.Sym) |
| if Maxarg < v.AuxInt { |
| Maxarg = v.AuxInt |
| } |
| case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL, ssa.OpAMD64NEGW, ssa.OpAMD64NEGB, |
| ssa.OpAMD64NOTQ, ssa.OpAMD64NOTL, ssa.OpAMD64NOTW, ssa.OpAMD64NOTB: |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| p := Prog(regMoveAMD64(v.Type.Size())) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64SQRTSD: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpSP, ssa.OpSB: |
| // nothing to do |
| case ssa.OpAMD64SETEQ, ssa.OpAMD64SETNE, |
| ssa.OpAMD64SETL, ssa.OpAMD64SETLE, |
| ssa.OpAMD64SETG, ssa.OpAMD64SETGE, |
| ssa.OpAMD64SETGF, ssa.OpAMD64SETGEF, |
| ssa.OpAMD64SETB, ssa.OpAMD64SETBE, |
| ssa.OpAMD64SETORD, ssa.OpAMD64SETNAN, |
| ssa.OpAMD64SETA, ssa.OpAMD64SETAE: |
| p := Prog(v.Op.Asm()) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| |
| case ssa.OpAMD64SETNEF: |
| p := Prog(v.Op.Asm()) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| q := Prog(x86.ASETPS) |
| q.To.Type = obj.TYPE_REG |
| q.To.Reg = x86.REG_AX |
| // TODO AORQ copied from old code generator, why not AORB? |
| opregreg(x86.AORQ, regnum(v), x86.REG_AX) |
| |
| case ssa.OpAMD64SETEQF: |
| p := Prog(v.Op.Asm()) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| q := Prog(x86.ASETPC) |
| q.To.Type = obj.TYPE_REG |
| q.To.Reg = x86.REG_AX |
| // TODO AANDQ copied from old code generator, why not AANDB? |
| opregreg(x86.AANDQ, regnum(v), x86.REG_AX) |
| |
| case ssa.OpAMD64InvertFlags: |
| v.Fatalf("InvertFlags should never make it to codegen %v", v) |
| case ssa.OpAMD64REPSTOSQ: |
| p := Prog(x86.AXORL) // TODO: lift out zeroing into its own instruction? |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x86.REG_AX |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = x86.REG_AX |
| Prog(x86.AREP) |
| Prog(x86.ASTOSQ) |
| case ssa.OpAMD64REPMOVSB: |
| Prog(x86.AREP) |
| Prog(x86.AMOVSB) |
| case ssa.OpVarDef: |
| Gvardef(v.Aux.(*Node)) |
| case ssa.OpVarKill: |
| gvarkill(v.Aux.(*Node)) |
| default: |
| v.Unimplementedf("genValue not implemented: %s", v.LongString()) |
| } |
| } |
| |
| // movSizeByType returns the MOV instruction of the given type. |
| func movSizeByType(t ssa.Type) (asm int) { |
| // For x86, there's no difference between reg move opcodes |
| // and memory move opcodes. |
| asm = regMoveByTypeAMD64(t) |
| return |
| } |
| |
| // movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset |
| func movZero(as int, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) { |
| p := Prog(as) |
| // TODO: use zero register on archs that support it. |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 0 |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum |
| p.To.Offset = offset |
| offset += width |
| nleft = nbytes - width |
| return nleft, offset |
| } |
| |
| var blockJump = [...]struct { |
| asm, invasm int |
| }{ |
| ssa.BlockAMD64EQ: {x86.AJEQ, x86.AJNE}, |
| ssa.BlockAMD64NE: {x86.AJNE, x86.AJEQ}, |
| ssa.BlockAMD64LT: {x86.AJLT, x86.AJGE}, |
| ssa.BlockAMD64GE: {x86.AJGE, x86.AJLT}, |
| ssa.BlockAMD64LE: {x86.AJLE, x86.AJGT}, |
| ssa.BlockAMD64GT: {x86.AJGT, x86.AJLE}, |
| ssa.BlockAMD64ULT: {x86.AJCS, x86.AJCC}, |
| ssa.BlockAMD64UGE: {x86.AJCC, x86.AJCS}, |
| ssa.BlockAMD64UGT: {x86.AJHI, x86.AJLS}, |
| ssa.BlockAMD64ULE: {x86.AJLS, x86.AJHI}, |
| ssa.BlockAMD64ORD: {x86.AJPC, x86.AJPS}, |
| ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC}, |
| } |
| |
| type floatingEQNEJump struct { |
| jump, index int |
| } |
| |
| var eqfJumps = [2][2]floatingEQNEJump{ |
| {{x86.AJNE, 1}, {x86.AJPS, 1}}, // next == b.Succs[0] |
| {{x86.AJNE, 1}, {x86.AJPC, 0}}, // next == b.Succs[1] |
| } |
| var nefJumps = [2][2]floatingEQNEJump{ |
| {{x86.AJNE, 0}, {x86.AJPC, 1}}, // next == b.Succs[0] |
| {{x86.AJNE, 0}, {x86.AJPS, 0}}, // next == b.Succs[1] |
| } |
| |
| func oneFPJump(b *ssa.Block, jumps *floatingEQNEJump, likely ssa.BranchPrediction, branches []branch) []branch { |
| p := Prog(jumps.jump) |
| p.To.Type = obj.TYPE_BRANCH |
| to := jumps.index |
| branches = append(branches, branch{p, b.Succs[to]}) |
| if to == 1 { |
| likely = -likely |
| } |
| // liblink reorders the instruction stream as it sees fit. |
| // Pass along what we know so liblink can make use of it. |
| // TODO: Once we've fully switched to SSA, |
| // make liblink leave our output alone. |
| switch likely { |
| case ssa.BranchUnlikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 0 |
| case ssa.BranchLikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 1 |
| } |
| return branches |
| } |
| |
| func genFPJump(s *genState, b, next *ssa.Block, jumps *[2][2]floatingEQNEJump) { |
| likely := b.Likely |
| switch next { |
| case b.Succs[0]: |
| s.branches = oneFPJump(b, &jumps[0][0], likely, s.branches) |
| s.branches = oneFPJump(b, &jumps[0][1], likely, s.branches) |
| case b.Succs[1]: |
| s.branches = oneFPJump(b, &jumps[1][0], likely, s.branches) |
| s.branches = oneFPJump(b, &jumps[1][1], likely, s.branches) |
| default: |
| s.branches = oneFPJump(b, &jumps[1][0], likely, s.branches) |
| s.branches = oneFPJump(b, &jumps[1][1], likely, s.branches) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{q, b.Succs[1]}) |
| } |
| } |
| |
| func (s *genState) genBlock(b, next *ssa.Block) { |
| lineno = b.Line |
| |
| switch b.Kind { |
| case ssa.BlockPlain, ssa.BlockCall: |
| if b.Succs[0] != next { |
| p := Prog(obj.AJMP) |
| p.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{p, b.Succs[0]}) |
| } |
| case ssa.BlockExit: |
| case ssa.BlockRet: |
| if hasdefer { |
| s.deferReturn() |
| } |
| Prog(obj.ARET) |
| case ssa.BlockRetJmp: |
| p := Prog(obj.AJMP) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(b.Aux.(*Sym)) |
| |
| case ssa.BlockAMD64EQF: |
| genFPJump(s, b, next, &eqfJumps) |
| |
| case ssa.BlockAMD64NEF: |
| genFPJump(s, b, next, &nefJumps) |
| |
| case ssa.BlockAMD64EQ, ssa.BlockAMD64NE, |
| ssa.BlockAMD64LT, ssa.BlockAMD64GE, |
| ssa.BlockAMD64LE, ssa.BlockAMD64GT, |
| ssa.BlockAMD64ULT, ssa.BlockAMD64UGT, |
| ssa.BlockAMD64ULE, ssa.BlockAMD64UGE: |
| jmp := blockJump[b.Kind] |
| likely := b.Likely |
| var p *obj.Prog |
| switch next { |
| case b.Succs[0]: |
| p = Prog(jmp.invasm) |
| likely *= -1 |
| p.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{p, b.Succs[1]}) |
| case b.Succs[1]: |
| p = Prog(jmp.asm) |
| p.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{p, b.Succs[0]}) |
| default: |
| p = Prog(jmp.asm) |
| p.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| s.branches = append(s.branches, branch{q, b.Succs[1]}) |
| } |
| |
| // liblink reorders the instruction stream as it sees fit. |
| // Pass along what we know so liblink can make use of it. |
| // TODO: Once we've fully switched to SSA, |
| // make liblink leave our output alone. |
| switch likely { |
| case ssa.BranchUnlikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 0 |
| case ssa.BranchLikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 1 |
| } |
| |
| default: |
| b.Unimplementedf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString()) |
| } |
| } |
| |
| func (s *genState) deferReturn() { |
| // Deferred calls will appear to be returning to |
| // the CALL deferreturn(SB) that we are about to emit. |
| // However, the stack trace code will show the line |
| // of the instruction byte before the return PC. |
| // To avoid that being an unrelated instruction, |
| // insert an actual hardware NOP that will have the right line number. |
| // This is different from obj.ANOP, which is a virtual no-op |
| // that doesn't make it into the instruction stream. |
| s.deferTarget = Pc |
| Thearch.Ginsnop() |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(Deferreturn.Sym) |
| } |
| |
| // addAux adds the offset in the aux fields (AuxInt and Aux) of v to a. |
| func addAux(a *obj.Addr, v *ssa.Value) { |
| if a.Type != obj.TYPE_MEM { |
| v.Fatalf("bad addAux addr %s", a) |
| } |
| // add integer offset |
| a.Offset += v.AuxInt |
| |
| // If no additional symbol offset, we're done. |
| if v.Aux == nil { |
| return |
| } |
| // Add symbol's offset from its base register. |
| switch sym := v.Aux.(type) { |
| case *ssa.ExternSymbol: |
| a.Name = obj.NAME_EXTERN |
| a.Sym = Linksym(sym.Sym.(*Sym)) |
| case *ssa.ArgSymbol: |
| n := sym.Node.(*Node) |
| a.Name = obj.NAME_PARAM |
| a.Node = n |
| a.Sym = Linksym(n.Orig.Sym) |
| a.Offset += n.Xoffset // TODO: why do I have to add this here? I don't for auto variables. |
| case *ssa.AutoSymbol: |
| n := sym.Node.(*Node) |
| a.Name = obj.NAME_AUTO |
| a.Node = n |
| a.Sym = Linksym(n.Sym) |
| default: |
| v.Fatalf("aux in %s not implemented %#v", v, v.Aux) |
| } |
| } |
| |
| // extendIndex extends v to a full pointer width. |
| func (s *state) extendIndex(v *ssa.Value) *ssa.Value { |
| size := v.Type.Size() |
| if size == s.config.PtrSize { |
| return v |
| } |
| if size > s.config.PtrSize { |
| // TODO: truncate 64-bit indexes on 32-bit pointer archs. We'd need to test |
| // the high word and branch to out-of-bounds failure if it is not 0. |
| s.Unimplementedf("64->32 index truncation not implemented") |
| return v |
| } |
| |
| // Extend value to the required size |
| var op ssa.Op |
| if v.Type.IsSigned() { |
| switch 10*size + s.config.PtrSize { |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad signed index extension %s", v.Type) |
| } |
| } else { |
| switch 10*size + s.config.PtrSize { |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("bad unsigned index extension %s", v.Type) |
| } |
| } |
| return s.newValue1(op, Types[TUINTPTR], v) |
| } |
| |
| // ssaRegToReg maps ssa register numbers to obj register numbers. |
| var ssaRegToReg = [...]int16{ |
| x86.REG_AX, |
| x86.REG_CX, |
| x86.REG_DX, |
| x86.REG_BX, |
| x86.REG_SP, |
| x86.REG_BP, |
| x86.REG_SI, |
| x86.REG_DI, |
| x86.REG_R8, |
| x86.REG_R9, |
| x86.REG_R10, |
| x86.REG_R11, |
| x86.REG_R12, |
| x86.REG_R13, |
| x86.REG_R14, |
| x86.REG_R15, |
| x86.REG_X0, |
| x86.REG_X1, |
| x86.REG_X2, |
| x86.REG_X3, |
| x86.REG_X4, |
| x86.REG_X5, |
| x86.REG_X6, |
| x86.REG_X7, |
| x86.REG_X8, |
| x86.REG_X9, |
| x86.REG_X10, |
| x86.REG_X11, |
| x86.REG_X12, |
| x86.REG_X13, |
| x86.REG_X14, |
| x86.REG_X15, |
| 0, // SB isn't a real register. We fill an Addr.Reg field with 0 in this case. |
| // TODO: arch-dependent |
| } |
| |
| // regMoveAMD64 returns the register->register move opcode for the given width. |
| // TODO: generalize for all architectures? |
| func regMoveAMD64(width int64) int { |
| switch width { |
| case 1: |
| return x86.AMOVB |
| case 2: |
| return x86.AMOVW |
| case 4: |
| return x86.AMOVL |
| case 8: |
| return x86.AMOVQ |
| default: |
| panic("bad int register width") |
| } |
| } |
| |
| func regMoveByTypeAMD64(t ssa.Type) int { |
| width := t.Size() |
| if t.IsFloat() { |
| switch width { |
| case 4: |
| return x86.AMOVSS |
| case 8: |
| return x86.AMOVSD |
| default: |
| panic("bad float register width") |
| } |
| } else { |
| switch width { |
| case 1: |
| return x86.AMOVB |
| case 2: |
| return x86.AMOVW |
| case 4: |
| return x86.AMOVL |
| case 8: |
| return x86.AMOVQ |
| default: |
| panic("bad int register width") |
| } |
| } |
| |
| panic("bad register type") |
| } |
| |
| // regnum returns the register (in cmd/internal/obj numbering) to |
| // which v has been allocated. Panics if v is not assigned to a |
| // register. |
| // TODO: Make this panic again once it stops happening routinely. |
| func regnum(v *ssa.Value) int16 { |
| reg := v.Block.Func.RegAlloc[v.ID] |
| if reg == nil { |
| v.Unimplementedf("nil regnum for value: %s\n%s\n", v.LongString(), v.Block.Func) |
| return 0 |
| } |
| return ssaRegToReg[reg.(*ssa.Register).Num] |
| } |
| |
| // autoVar returns a *Node representing the auto variable assigned to v. |
| func autoVar(v *ssa.Value) *Node { |
| return v.Block.Func.RegAlloc[v.ID].(*ssa.LocalSlot).N.(*Node) |
| } |
| |
| // ssaExport exports a bunch of compiler services for the ssa backend. |
| type ssaExport struct { |
| log bool |
| unimplemented bool |
| mustImplement bool |
| } |
| |
| func (s *ssaExport) TypeBool() ssa.Type { return Types[TBOOL] } |
| func (s *ssaExport) TypeInt8() ssa.Type { return Types[TINT8] } |
| func (s *ssaExport) TypeInt16() ssa.Type { return Types[TINT16] } |
| func (s *ssaExport) TypeInt32() ssa.Type { return Types[TINT32] } |
| func (s *ssaExport) TypeInt64() ssa.Type { return Types[TINT64] } |
| func (s *ssaExport) TypeUInt8() ssa.Type { return Types[TUINT8] } |
| func (s *ssaExport) TypeUInt16() ssa.Type { return Types[TUINT16] } |
| func (s *ssaExport) TypeUInt32() ssa.Type { return Types[TUINT32] } |
| func (s *ssaExport) TypeUInt64() ssa.Type { return Types[TUINT64] } |
| func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] } |
| func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] } |
| func (s *ssaExport) TypeInt() ssa.Type { return Types[TINT] } |
| func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] } |
| func (s *ssaExport) TypeString() ssa.Type { return Types[TSTRING] } |
| func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) } |
| |
| // StringData returns a symbol (a *Sym wrapped in an interface) which |
| // is the data component of a global string constant containing s. |
| func (*ssaExport) StringData(s string) interface{} { |
| // TODO: is idealstring correct? It might not matter... |
| _, data := stringsym(s) |
| return &ssa.ExternSymbol{Typ: idealstring, Sym: data} |
| } |
| |
| func (e *ssaExport) Auto(t ssa.Type) fmt.Stringer { |
| n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list |
| e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here! |
| return n |
| } |
| |
| // Log logs a message from the compiler. |
| func (e *ssaExport) Logf(msg string, args ...interface{}) { |
| // If e was marked as unimplemented, anything could happen. Ignore. |
| if e.log && !e.unimplemented { |
| fmt.Printf(msg, args...) |
| } |
| } |
| |
| // Fatal reports a compiler error and exits. |
| func (e *ssaExport) Fatalf(msg string, args ...interface{}) { |
| // If e was marked as unimplemented, anything could happen. Ignore. |
| if !e.unimplemented { |
| Fatalf(msg, args...) |
| } |
| } |
| |
| // Unimplemented reports that the function cannot be compiled. |
| // It will be removed once SSA work is complete. |
| func (e *ssaExport) Unimplementedf(msg string, args ...interface{}) { |
| if e.mustImplement { |
| Fatalf(msg, args...) |
| } |
| const alwaysLog = false // enable to calculate top unimplemented features |
| if !e.unimplemented && (e.log || alwaysLog) { |
| // first implementation failure, print explanation |
| fmt.Printf("SSA unimplemented: "+msg+"\n", args...) |
| } |
| e.unimplemented = true |
| } |