blob: eb628bb1694c4ec77ed932f04f577c8f24b406e7 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"runtime/internal/math"
"runtime/internal/sys"
"unsafe"
)
type slice struct {
array unsafe.Pointer
len int
cap int
}
// A notInHeapSlice is a slice backed by runtime/internal/sys.NotInHeap memory.
type notInHeapSlice struct {
array *notInHeap
len int
cap int
}
func panicmakeslicelen() {
panic(errorString("makeslice: len out of range"))
}
func panicmakeslicecap() {
panic(errorString("makeslice: cap out of range"))
}
// makeslicecopy allocates a slice of "tolen" elements of type "et",
// then copies "fromlen" elements of type "et" into that new allocation from "from".
func makeslicecopy(et *_type, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer {
var tomem, copymem uintptr
if uintptr(tolen) > uintptr(fromlen) {
var overflow bool
tomem, overflow = math.MulUintptr(et.Size_, uintptr(tolen))
if overflow || tomem > maxAlloc || tolen < 0 {
panicmakeslicelen()
}
copymem = et.Size_ * uintptr(fromlen)
} else {
// fromlen is a known good length providing and equal or greater than tolen,
// thereby making tolen a good slice length too as from and to slices have the
// same element width.
tomem = et.Size_ * uintptr(tolen)
copymem = tomem
}
var to unsafe.Pointer
if et.PtrBytes == 0 {
to = mallocgc(tomem, nil, false)
if copymem < tomem {
memclrNoHeapPointers(add(to, copymem), tomem-copymem)
}
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
to = mallocgc(tomem, et, true)
if copymem > 0 && writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice to
// only contains nil pointers because it has been cleared during alloc.
//
// It's safe to pass a type to this function as an optimization because
// from and to only ever refer to memory representing whole values of
// type et. See the comment on bulkBarrierPreWrite.
bulkBarrierPreWriteSrcOnly(uintptr(to), uintptr(from), copymem, et)
}
}
if raceenabled {
callerpc := getcallerpc()
pc := abi.FuncPCABIInternal(makeslicecopy)
racereadrangepc(from, copymem, callerpc, pc)
}
if msanenabled {
msanread(from, copymem)
}
if asanenabled {
asanread(from, copymem)
}
memmove(to, from, copymem)
return to
}
func makeslice(et *_type, len, cap int) unsafe.Pointer {
mem, overflow := math.MulUintptr(et.Size_, uintptr(cap))
if overflow || mem > maxAlloc || len < 0 || len > cap {
// NOTE: Produce a 'len out of range' error instead of a
// 'cap out of range' error when someone does make([]T, bignumber).
// 'cap out of range' is true too, but since the cap is only being
// supplied implicitly, saying len is clearer.
// See golang.org/issue/4085.
mem, overflow := math.MulUintptr(et.Size_, uintptr(len))
if overflow || mem > maxAlloc || len < 0 {
panicmakeslicelen()
}
panicmakeslicecap()
}
return mallocgc(mem, et, true)
}
func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer {
len := int(len64)
if int64(len) != len64 {
panicmakeslicelen()
}
cap := int(cap64)
if int64(cap) != cap64 {
panicmakeslicecap()
}
return makeslice(et, len, cap)
}
// growslice allocates new backing store for a slice.
//
// arguments:
//
// oldPtr = pointer to the slice's backing array
// newLen = new length (= oldLen + num)
// oldCap = original slice's capacity.
// num = number of elements being added
// et = element type
//
// return values:
//
// newPtr = pointer to the new backing store
// newLen = same value as the argument
// newCap = capacity of the new backing store
//
// Requires that uint(newLen) > uint(oldCap).
// Assumes the original slice length is newLen - num
//
// A new backing store is allocated with space for at least newLen elements.
// Existing entries [0, oldLen) are copied over to the new backing store.
// Added entries [oldLen, newLen) are not initialized by growslice
// (although for pointer-containing element types, they are zeroed). They
// must be initialized by the caller.
// Trailing entries [newLen, newCap) are zeroed.
//
// growslice's odd calling convention makes the generated code that calls
// this function simpler. In particular, it accepts and returns the
// new length so that the old length is not live (does not need to be
// spilled/restored) and the new length is returned (also does not need
// to be spilled/restored).
func growslice(oldPtr unsafe.Pointer, newLen, oldCap, num int, et *_type) slice {
oldLen := newLen - num
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(oldPtr, uintptr(oldLen*int(et.Size_)), callerpc, abi.FuncPCABIInternal(growslice))
}
if msanenabled {
msanread(oldPtr, uintptr(oldLen*int(et.Size_)))
}
if asanenabled {
asanread(oldPtr, uintptr(oldLen*int(et.Size_)))
}
if newLen < 0 {
panic(errorString("growslice: len out of range"))
}
if et.Size_ == 0 {
// append should not create a slice with nil pointer but non-zero len.
// We assume that append doesn't need to preserve oldPtr in this case.
return slice{unsafe.Pointer(&zerobase), newLen, newLen}
}
newcap := nextslicecap(newLen, oldCap)
var overflow bool
var lenmem, newlenmem, capmem uintptr
// Specialize for common values of et.Size.
// For 1 we don't need any division/multiplication.
// For goarch.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
// For powers of 2, use a variable shift.
noscan := et.PtrBytes == 0
switch {
case et.Size_ == 1:
lenmem = uintptr(oldLen)
newlenmem = uintptr(newLen)
capmem = roundupsize(uintptr(newcap), noscan)
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.Size_ == goarch.PtrSize:
lenmem = uintptr(oldLen) * goarch.PtrSize
newlenmem = uintptr(newLen) * goarch.PtrSize
capmem = roundupsize(uintptr(newcap)*goarch.PtrSize, noscan)
overflow = uintptr(newcap) > maxAlloc/goarch.PtrSize
newcap = int(capmem / goarch.PtrSize)
case isPowerOfTwo(et.Size_):
var shift uintptr
if goarch.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.TrailingZeros64(uint64(et.Size_))) & 63
} else {
shift = uintptr(sys.TrailingZeros32(uint32(et.Size_))) & 31
}
lenmem = uintptr(oldLen) << shift
newlenmem = uintptr(newLen) << shift
capmem = roundupsize(uintptr(newcap)<<shift, noscan)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
capmem = uintptr(newcap) << shift
default:
lenmem = uintptr(oldLen) * et.Size_
newlenmem = uintptr(newLen) * et.Size_
capmem, overflow = math.MulUintptr(et.Size_, uintptr(newcap))
capmem = roundupsize(capmem, noscan)
newcap = int(capmem / et.Size_)
capmem = uintptr(newcap) * et.Size_
}
// The check of overflow in addition to capmem > maxAlloc is needed
// to prevent an overflow which can be used to trigger a segfault
// on 32bit architectures with this example program:
//
// type T [1<<27 + 1]int64
//
// var d T
// var s []T
//
// func main() {
// s = append(s, d, d, d, d)
// print(len(s), "\n")
// }
if overflow || capmem > maxAlloc {
panic(errorString("growslice: len out of range"))
}
var p unsafe.Pointer
if et.PtrBytes == 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from oldLen to newLen.
// Only clear the part that will not be overwritten.
// The reflect_growslice() that calls growslice will manually clear
// the region not cleared here.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if lenmem > 0 && writeBarrier.enabled {
// Only shade the pointers in oldPtr since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
//
// It's safe to pass a type to this function as an optimization because
// from and to only ever refer to memory representing whole values of
// type et. See the comment on bulkBarrierPreWrite.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldPtr), lenmem-et.Size_+et.PtrBytes, et)
}
}
memmove(p, oldPtr, lenmem)
return slice{p, newLen, newcap}
}
// nextslicecap computes the next appropriate slice length.
func nextslicecap(newLen, oldCap int) int {
newcap := oldCap
doublecap := newcap + newcap
if newLen > doublecap {
return newLen
}
const threshold = 256
if oldCap < threshold {
return doublecap
}
for {
// Transition from growing 2x for small slices
// to growing 1.25x for large slices. This formula
// gives a smooth-ish transition between the two.
newcap += (newcap + 3*threshold) >> 2
// We need to check `newcap >= newLen` and whether `newcap` overflowed.
// newLen is guaranteed to be larger than zero, hence
// when newcap overflows then `uint(newcap) > uint(newLen)`.
// This allows to check for both with the same comparison.
if uint(newcap) >= uint(newLen) {
break
}
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
return newLen
}
return newcap
}
//go:linkname reflect_growslice reflect.growslice
func reflect_growslice(et *_type, old slice, num int) slice {
// Semantically equivalent to slices.Grow, except that the caller
// is responsible for ensuring that old.len+num > old.cap.
num -= old.cap - old.len // preserve memory of old[old.len:old.cap]
new := growslice(old.array, old.cap+num, old.cap, num, et)
// growslice does not zero out new[old.cap:new.len] since it assumes that
// the memory will be overwritten by an append() that called growslice.
// Since the caller of reflect_growslice is not append(),
// zero out this region before returning the slice to the reflect package.
if et.PtrBytes == 0 {
oldcapmem := uintptr(old.cap) * et.Size_
newlenmem := uintptr(new.len) * et.Size_
memclrNoHeapPointers(add(new.array, oldcapmem), newlenmem-oldcapmem)
}
new.len = old.len // preserve the old length
return new
}
func isPowerOfTwo(x uintptr) bool {
return x&(x-1) == 0
}
// slicecopy is used to copy from a string or slice of pointerless elements into a slice.
func slicecopy(toPtr unsafe.Pointer, toLen int, fromPtr unsafe.Pointer, fromLen int, width uintptr) int {
if fromLen == 0 || toLen == 0 {
return 0
}
n := fromLen
if toLen < n {
n = toLen
}
if width == 0 {
return n
}
size := uintptr(n) * width
if raceenabled {
callerpc := getcallerpc()
pc := abi.FuncPCABIInternal(slicecopy)
racereadrangepc(fromPtr, size, callerpc, pc)
racewriterangepc(toPtr, size, callerpc, pc)
}
if msanenabled {
msanread(fromPtr, size)
msanwrite(toPtr, size)
}
if asanenabled {
asanread(fromPtr, size)
asanwrite(toPtr, size)
}
if size == 1 { // common case worth about 2x to do here
// TODO: is this still worth it with new memmove impl?
*(*byte)(toPtr) = *(*byte)(fromPtr) // known to be a byte pointer
} else {
memmove(toPtr, fromPtr, size)
}
return n
}
//go:linkname bytealg_MakeNoZero internal/bytealg.MakeNoZero
func bytealg_MakeNoZero(len int) []byte {
if uintptr(len) > maxAlloc {
panicmakeslicelen()
}
return unsafe.Slice((*byte)(mallocgc(uintptr(len), nil, false)), len)
}