| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // Linux futex. |
| // |
| // futexsleep(uint32 *addr, uint32 val) |
| // futexwakeup(uint32 *addr) |
| // |
| // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. |
| // Futexwakeup wakes up threads sleeping on addr. |
| // Futexsleep is allowed to wake up spuriously. |
| |
| const ( |
| _FUTEX_WAIT = 0 |
| _FUTEX_WAKE = 1 |
| ) |
| |
| // Atomically, |
| // if(*addr == val) sleep |
| // Might be woken up spuriously; that's allowed. |
| // Don't sleep longer than ns; ns < 0 means forever. |
| //go:nosplit |
| func futexsleep(addr *uint32, val uint32, ns int64) { |
| var ts timespec |
| |
| // Some Linux kernels have a bug where futex of |
| // FUTEX_WAIT returns an internal error code |
| // as an errno. Libpthread ignores the return value |
| // here, and so can we: as it says a few lines up, |
| // spurious wakeups are allowed. |
| if ns < 0 { |
| futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0) |
| return |
| } |
| |
| // It's difficult to live within the no-split stack limits here. |
| // On ARM and 386, a 64-bit divide invokes a general software routine |
| // that needs more stack than we can afford. So we use timediv instead. |
| // But on real 64-bit systems, where words are larger but the stack limit |
| // is not, even timediv is too heavy, and we really need to use just an |
| // ordinary machine instruction. |
| if sys.PtrSize == 8 { |
| ts.set_sec(ns / 1000000000) |
| ts.set_nsec(int32(ns % 1000000000)) |
| } else { |
| ts.tv_nsec = 0 |
| ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) |
| } |
| futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0) |
| } |
| |
| // If any procs are sleeping on addr, wake up at most cnt. |
| //go:nosplit |
| func futexwakeup(addr *uint32, cnt uint32) { |
| ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0) |
| if ret >= 0 { |
| return |
| } |
| |
| // I don't know that futex wakeup can return |
| // EAGAIN or EINTR, but if it does, it would be |
| // safe to loop and call futex again. |
| systemstack(func() { |
| print("futexwakeup addr=", addr, " returned ", ret, "\n") |
| }) |
| |
| *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 |
| } |
| |
| func getproccount() int32 { |
| // This buffer is huge (8 kB) but we are on the system stack |
| // and there should be plenty of space (64 kB). |
| // Also this is a leaf, so we're not holding up the memory for long. |
| // See golang.org/issue/11823. |
| // The suggested behavior here is to keep trying with ever-larger |
| // buffers, but we don't have a dynamic memory allocator at the |
| // moment, so that's a bit tricky and seems like overkill. |
| const maxCPUs = 64 * 1024 |
| var buf [maxCPUs / (sys.PtrSize * 8)]uintptr |
| r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) |
| n := int32(0) |
| for _, v := range buf[:r/sys.PtrSize] { |
| for v != 0 { |
| n += int32(v & 1) |
| v >>= 1 |
| } |
| } |
| if n == 0 { |
| n = 1 |
| } |
| return n |
| } |
| |
| // Clone, the Linux rfork. |
| const ( |
| _CLONE_VM = 0x100 |
| _CLONE_FS = 0x200 |
| _CLONE_FILES = 0x400 |
| _CLONE_SIGHAND = 0x800 |
| _CLONE_PTRACE = 0x2000 |
| _CLONE_VFORK = 0x4000 |
| _CLONE_PARENT = 0x8000 |
| _CLONE_THREAD = 0x10000 |
| _CLONE_NEWNS = 0x20000 |
| _CLONE_SYSVSEM = 0x40000 |
| _CLONE_SETTLS = 0x80000 |
| _CLONE_PARENT_SETTID = 0x100000 |
| _CLONE_CHILD_CLEARTID = 0x200000 |
| _CLONE_UNTRACED = 0x800000 |
| _CLONE_CHILD_SETTID = 0x1000000 |
| _CLONE_STOPPED = 0x2000000 |
| _CLONE_NEWUTS = 0x4000000 |
| _CLONE_NEWIPC = 0x8000000 |
| |
| cloneFlags = _CLONE_VM | /* share memory */ |
| _CLONE_FS | /* share cwd, etc */ |
| _CLONE_FILES | /* share fd table */ |
| _CLONE_SIGHAND | /* share sig handler table */ |
| _CLONE_THREAD /* revisit - okay for now */ |
| ) |
| |
| // May run with m.p==nil, so write barriers are not allowed. |
| //go:nowritebarrier |
| func newosproc(mp *m, stk unsafe.Pointer) { |
| /* |
| * note: strace gets confused if we use CLONE_PTRACE here. |
| */ |
| if false { |
| print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n") |
| } |
| |
| // Disable signals during clone, so that the new thread starts |
| // with signals disabled. It will enable them in minit. |
| var oset sigset |
| rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset))) |
| ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart))) |
| rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset))) |
| |
| if ret < 0 { |
| print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") |
| throw("newosproc") |
| } |
| } |
| |
| // Version of newosproc that doesn't require a valid G. |
| //go:nosplit |
| func newosproc0(stacksize uintptr, fn unsafe.Pointer) { |
| stack := sysAlloc(stacksize, &memstats.stacks_sys) |
| if stack == nil { |
| write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) |
| exit(1) |
| } |
| ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) |
| if ret < 0 { |
| write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) |
| exit(1) |
| } |
| } |
| |
| var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") |
| var failthreadcreate = []byte("runtime: failed to create new OS thread\n") |
| |
| func osinit() { |
| ncpu = getproccount() |
| } |
| |
| var urandom_dev = []byte("/dev/urandom\x00") |
| |
| func getRandomData(r []byte) { |
| if startupRandomData != nil { |
| n := copy(r, startupRandomData) |
| extendRandom(r, n) |
| return |
| } |
| fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) |
| n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) |
| closefd(fd) |
| extendRandom(r, int(n)) |
| } |
| |
| func goenvs() { |
| goenvs_unix() |
| } |
| |
| // Called to do synchronous initialization of Go code built with |
| // -buildmode=c-archive or -buildmode=c-shared. |
| // None of the Go runtime is initialized. |
| //go:nosplit |
| //go:nowritebarrierrec |
| func libpreinit() { |
| initsig(true) |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| func mpreinit(mp *m) { |
| mp.gsignal = malg(32 * 1024) // Linux wants >= 2K |
| mp.gsignal.m = mp |
| } |
| |
| //go:nosplit |
| func msigsave(mp *m) { |
| smask := &mp.sigmask |
| rtsigprocmask(_SIG_SETMASK, nil, smask, int32(unsafe.Sizeof(*smask))) |
| } |
| |
| //go:nosplit |
| func msigrestore(sigmask sigset) { |
| rtsigprocmask(_SIG_SETMASK, &sigmask, nil, int32(unsafe.Sizeof(sigmask))) |
| } |
| |
| //go:nosplit |
| func sigblock() { |
| rtsigprocmask(_SIG_SETMASK, &sigset_all, nil, int32(unsafe.Sizeof(sigset_all))) |
| } |
| |
| func gettid() uint32 |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, cannot allocate memory. |
| func minit() { |
| // Initialize signal handling. |
| _g_ := getg() |
| |
| var st sigaltstackt |
| sigaltstack(nil, &st) |
| if st.ss_flags&_SS_DISABLE != 0 { |
| signalstack(&_g_.m.gsignal.stack) |
| _g_.m.newSigstack = true |
| } else { |
| // Use existing signal stack. |
| stsp := uintptr(unsafe.Pointer(st.ss_sp)) |
| _g_.m.gsignal.stack.lo = stsp |
| _g_.m.gsignal.stack.hi = stsp + st.ss_size |
| _g_.m.gsignal.stackguard0 = stsp + _StackGuard |
| _g_.m.gsignal.stackguard1 = stsp + _StackGuard |
| _g_.m.gsignal.stackAlloc = st.ss_size |
| _g_.m.newSigstack = false |
| } |
| |
| // for debuggers, in case cgo created the thread |
| _g_.m.procid = uint64(gettid()) |
| |
| // restore signal mask from m.sigmask and unblock essential signals |
| nmask := _g_.m.sigmask |
| for i := range sigtable { |
| if sigtable[i].flags&_SigUnblock != 0 { |
| sigdelset(&nmask, i) |
| } |
| } |
| rtsigprocmask(_SIG_SETMASK, &nmask, nil, int32(unsafe.Sizeof(nmask))) |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| //go:nosplit |
| func unminit() { |
| if getg().m.newSigstack { |
| signalstack(nil) |
| } |
| } |
| |
| func memlimit() uintptr { |
| /* |
| TODO: Convert to Go when something actually uses the result. |
| |
| Rlimit rl; |
| extern byte runtime·text[], runtime·end[]; |
| uintptr used; |
| |
| if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) |
| return 0; |
| if(rl.rlim_cur >= 0x7fffffff) |
| return 0; |
| |
| // Estimate our VM footprint excluding the heap. |
| // Not an exact science: use size of binary plus |
| // some room for thread stacks. |
| used = runtime·end - runtime·text + (64<<20); |
| if(used >= rl.rlim_cur) |
| return 0; |
| |
| // If there's not at least 16 MB left, we're probably |
| // not going to be able to do much. Treat as no limit. |
| rl.rlim_cur -= used; |
| if(rl.rlim_cur < (16<<20)) |
| return 0; |
| |
| return rl.rlim_cur - used; |
| */ |
| |
| return 0 |
| } |
| |
| //#ifdef GOARCH_386 |
| //#define sa_handler k_sa_handler |
| //#endif |
| |
| func sigreturn() |
| func sigtramp() |
| func cgoSigtramp() |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsig(i int32, fn uintptr, restart bool) { |
| var sa sigactiont |
| memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) |
| sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER |
| if restart { |
| sa.sa_flags |= _SA_RESTART |
| } |
| sigfillset(&sa.sa_mask) |
| // Although Linux manpage says "sa_restorer element is obsolete and |
| // should not be used". x86_64 kernel requires it. Only use it on |
| // x86. |
| if GOARCH == "386" || GOARCH == "amd64" { |
| sa.sa_restorer = funcPC(sigreturn) |
| } |
| if fn == funcPC(sighandler) { |
| if iscgo { |
| fn = funcPC(cgoSigtramp) |
| } else { |
| fn = funcPC(sigtramp) |
| } |
| } |
| sa.sa_handler = fn |
| rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsigstack(i int32) { |
| var sa sigactiont |
| if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { |
| throw("rt_sigaction failure") |
| } |
| if sa.sa_handler == 0 || sa.sa_handler == _SIG_DFL || sa.sa_handler == _SIG_IGN || sa.sa_flags&_SA_ONSTACK != 0 { |
| return |
| } |
| sa.sa_flags |= _SA_ONSTACK |
| if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 { |
| throw("rt_sigaction failure") |
| } |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func getsig(i int32) uintptr { |
| var sa sigactiont |
| |
| memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) |
| if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { |
| throw("rt_sigaction read failure") |
| } |
| if sa.sa_handler == funcPC(sigtramp) || sa.sa_handler == funcPC(cgoSigtramp) { |
| return funcPC(sighandler) |
| } |
| return sa.sa_handler |
| } |
| |
| //go:nosplit |
| func signalstack(s *stack) { |
| var st sigaltstackt |
| if s == nil { |
| st.ss_flags = _SS_DISABLE |
| } else { |
| st.ss_sp = (*byte)(unsafe.Pointer(s.lo)) |
| st.ss_size = s.hi - s.lo |
| st.ss_flags = 0 |
| } |
| sigaltstack(&st, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func updatesigmask(m sigmask) { |
| var mask sigset |
| sigcopyset(&mask, m) |
| rtsigprocmask(_SIG_SETMASK, &mask, nil, int32(unsafe.Sizeof(mask))) |
| } |
| |
| func unblocksig(sig int32) { |
| var mask sigset |
| sigaddset(&mask, int(sig)) |
| rtsigprocmask(_SIG_UNBLOCK, &mask, nil, int32(unsafe.Sizeof(mask))) |
| } |