blob: ae6fd877c7014e78254e74e2a772b72599d75ff9 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "stack.h"
enum {
maxround = sizeof(uintptr),
};
uint32 runtime·panicking;
void (*runtime·destroylock)(Lock*);
/*
* We assume that all architectures turn faults and the like
* into apparent calls to runtime.sigpanic. If we see a "call"
* to runtime.sigpanic, we do not back up the PC to find the
* line number of the CALL instruction, because there is no CALL.
*/
void runtime·sigpanic(void);
int32
runtime·gotraceback(void)
{
byte *p;
p = runtime·getenv("GOTRACEBACK");
if(p == nil || p[0] == '\0')
return 1; // default is on
return runtime·atoi(p);
}
static Lock paniclk;
void
runtime·startpanic(void)
{
if(m->dying) {
runtime·printf("panic during panic\n");
runtime·exit(3);
}
m->dying = 1;
runtime·xadd(&runtime·panicking, 1);
runtime·lock(&paniclk);
}
void
runtime·dopanic(int32 unused)
{
static bool didothers;
if(g->sig != 0)
runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
g->sig, g->sigcode0, g->sigcode1, g->sigpc);
if(runtime·gotraceback()){
if(g != m->g0) {
runtime·printf("\n");
runtime·goroutineheader(g);
runtime·traceback(runtime·getcallerpc(&unused), runtime·getcallersp(&unused), 0, g);
}
if(!didothers) {
didothers = true;
runtime·tracebackothers(g);
}
}
runtime·unlock(&paniclk);
if(runtime·xadd(&runtime·panicking, -1) != 0) {
// Some other m is panicking too.
// Let it print what it needs to print.
// Wait forever without chewing up cpu.
// It will exit when it's done.
static Lock deadlock;
runtime·lock(&deadlock);
runtime·lock(&deadlock);
}
runtime·exit(2);
}
void
runtime·panicindex(void)
{
runtime·panicstring("index out of range");
}
void
runtime·panicslice(void)
{
runtime·panicstring("slice bounds out of range");
}
void
runtime·throwreturn(void)
{
// can only happen if compiler is broken
runtime·throw("no return at end of a typed function - compiler is broken");
}
void
runtime·throwinit(void)
{
// can only happen with linker skew
runtime·throw("recursive call during initialization - linker skew");
}
void
runtime·throw(int8 *s)
{
runtime·startpanic();
runtime·printf("throw: %s\n", s);
runtime·dopanic(0);
*(int32*)0 = 0; // not reached
runtime·exit(1); // even more not reached
}
void
runtime·panicstring(int8 *s)
{
Eface err;
if(m->gcing) {
runtime·printf("panic: %s\n", s);
runtime·throw("panic during gc");
}
runtime·newErrorString(runtime·gostringnocopy((byte*)s), &err);
runtime·panic(err);
}
int32
runtime·mcmp(byte *s1, byte *s2, uint32 n)
{
uint32 i;
byte c1, c2;
for(i=0; i<n; i++) {
c1 = s1[i];
c2 = s2[i];
if(c1 < c2)
return -1;
if(c1 > c2)
return +1;
}
return 0;
}
byte*
runtime·mchr(byte *p, byte c, byte *ep)
{
for(; p < ep; p++)
if(*p == c)
return p;
return nil;
}
uint32
runtime·rnd(uint32 n, uint32 m)
{
uint32 r;
if(m > maxround)
m = maxround;
r = n % m;
if(r)
n += m-r;
return n;
}
static int32 argc;
static uint8** argv;
Slice os·Args;
Slice os·Envs;
void
runtime·args(int32 c, uint8 **v)
{
argc = c;
argv = v;
}
int32 runtime·isplan9;
int32 runtime·iswindows;
void
runtime·goargs(void)
{
String *s;
int32 i;
// for windows implementation see "os" package
if(Windows)
return;
s = runtime·malloc(argc*sizeof s[0]);
for(i=0; i<argc; i++)
s[i] = runtime·gostringnocopy(argv[i]);
os·Args.array = (byte*)s;
os·Args.len = argc;
os·Args.cap = argc;
}
void
runtime·goenvs_unix(void)
{
String *s;
int32 i, n;
for(n=0; argv[argc+1+n] != 0; n++)
;
s = runtime·malloc(n*sizeof s[0]);
for(i=0; i<n; i++)
s[i] = runtime·gostringnocopy(argv[argc+1+i]);
os·Envs.array = (byte*)s;
os·Envs.len = n;
os·Envs.cap = n;
}
byte*
runtime·getenv(int8 *s)
{
int32 i, j, len;
byte *v, *bs;
String* envv;
int32 envc;
bs = (byte*)s;
len = runtime·findnull(bs);
envv = (String*)os·Envs.array;
envc = os·Envs.len;
for(i=0; i<envc; i++){
if(envv[i].len <= len)
continue;
v = envv[i].str;
for(j=0; j<len; j++)
if(bs[j] != v[j])
goto nomatch;
if(v[len] != '=')
goto nomatch;
return v+len+1;
nomatch:;
}
return nil;
}
void
runtime·getgoroot(String out)
{
byte *p;
p = runtime·getenv("GOROOT");
out = runtime·gostringnocopy(p);
FLUSH(&out);
}
int32
runtime·atoi(byte *p)
{
int32 n;
n = 0;
while('0' <= *p && *p <= '9')
n = n*10 + *p++ - '0';
return n;
}
void
runtime·check(void)
{
int8 a;
uint8 b;
int16 c;
uint16 d;
int32 e;
uint32 f;
int64 g;
uint64 h;
float32 i;
float64 j;
void* k;
uint16* l;
struct x1 {
byte x;
};
struct y1 {
struct x1 x1;
byte y;
};
if(sizeof(a) != 1) runtime·throw("bad a");
if(sizeof(b) != 1) runtime·throw("bad b");
if(sizeof(c) != 2) runtime·throw("bad c");
if(sizeof(d) != 2) runtime·throw("bad d");
if(sizeof(e) != 4) runtime·throw("bad e");
if(sizeof(f) != 4) runtime·throw("bad f");
if(sizeof(g) != 8) runtime·throw("bad g");
if(sizeof(h) != 8) runtime·throw("bad h");
if(sizeof(i) != 4) runtime·throw("bad i");
if(sizeof(j) != 8) runtime·throw("bad j");
if(sizeof(k) != sizeof(uintptr)) runtime·throw("bad k");
if(sizeof(l) != sizeof(uintptr)) runtime·throw("bad l");
if(sizeof(struct x1) != 1) runtime·throw("bad sizeof x1");
if(offsetof(struct y1, y) != 1) runtime·throw("bad offsetof y1.y");
if(sizeof(struct y1) != 2) runtime·throw("bad sizeof y1");
uint32 z;
z = 1;
if(!runtime·cas(&z, 1, 2))
runtime·throw("cas1");
if(z != 2)
runtime·throw("cas2");
z = 4;
if(runtime·cas(&z, 5, 6))
runtime·throw("cas3");
if(z != 4)
runtime·throw("cas4");
runtime·initsig(0);
}
/*
* map and chan helpers for
* dealing with unknown types
*/
static uintptr
memhash(uint32 s, void *a)
{
byte *b;
uintptr hash;
b = a;
if(sizeof(hash) == 4)
hash = 2860486313U;
else
hash = 33054211828000289ULL;
while(s > 0) {
if(sizeof(hash) == 4)
hash = (hash ^ *b) * 3267000013UL;
else
hash = (hash ^ *b) * 23344194077549503ULL;
b++;
s--;
}
return hash;
}
static uint32
memequal(uint32 s, void *a, void *b)
{
byte *ba, *bb, *aend;
if(a == b)
return 1;
ba = a;
bb = b;
aend = ba+s;
while(ba != aend) {
if(*ba != *bb)
return 0;
ba++;
bb++;
}
return 1;
}
static void
memprint(uint32 s, void *a)
{
uint64 v;
v = 0xbadb00b;
switch(s) {
case 1:
v = *(uint8*)a;
break;
case 2:
v = *(uint16*)a;
break;
case 4:
v = *(uint32*)a;
break;
case 8:
v = *(uint64*)a;
break;
}
runtime·printint(v);
}
static void
memcopy(uint32 s, void *a, void *b)
{
if(b == nil) {
runtime·memclr(a,s);
return;
}
runtime·memmove(a,b,s);
}
static uint32
memequal8(uint32 s, uint8 *a, uint8 *b)
{
USED(s);
return *a == *b;
}
static void
memcopy8(uint32 s, uint8 *a, uint8 *b)
{
USED(s);
if(b == nil) {
*a = 0;
return;
}
*a = *b;
}
static uint32
memequal16(uint32 s, uint16 *a, uint16 *b)
{
USED(s);
return *a == *b;
}
static void
memcopy16(uint32 s, uint16 *a, uint16 *b)
{
USED(s);
if(b == nil) {
*a = 0;
return;
}
*a = *b;
}
static uint32
memequal32(uint32 s, uint32 *a, uint32 *b)
{
USED(s);
return *a == *b;
}
static void
memcopy32(uint32 s, uint32 *a, uint32 *b)
{
USED(s);
if(b == nil) {
*a = 0;
return;
}
*a = *b;
}
static uint32
memequal64(uint32 s, uint64 *a, uint64 *b)
{
USED(s);
return *a == *b;
}
static void
memcopy64(uint32 s, uint64 *a, uint64 *b)
{
USED(s);
if(b == nil) {
*a = 0;
return;
}
*a = *b;
}
static uint32
memequal128(uint32 s, uint64 *a, uint64 *b)
{
USED(s);
return a[0] == b[0] && a[1] == b[1];
}
static void
memcopy128(uint32 s, uint64 *a, uint64 *b)
{
USED(s);
if(b == nil) {
a[0] = 0;
a[1] = 0;
return;
}
a[0] = b[0];
a[1] = b[1];
}
static void
slicecopy(uint32 s, Slice *a, Slice *b)
{
USED(s);
if(b == nil) {
a->array = 0;
a->len = 0;
a->cap = 0;
return;
}
a->array = b->array;
a->len = b->len;
a->cap = b->cap;
}
static uintptr
strhash(uint32 s, String *a)
{
USED(s);
return memhash((*a).len, (*a).str);
}
static uint32
strequal(uint32 s, String *a, String *b)
{
int32 alen;
USED(s);
alen = a->len;
if(alen != b->len)
return false;
return memequal(alen, a->str, b->str);
}
static void
strprint(uint32 s, String *a)
{
USED(s);
runtime·printstring(*a);
}
static void
strcopy(uint32 s, String *a, String *b)
{
USED(s);
if(b == nil) {
a->str = 0;
a->len = 0;
return;
}
a->str = b->str;
a->len = b->len;
}
static uintptr
interhash(uint32 s, Iface *a)
{
USED(s);
return runtime·ifacehash(*a);
}
static void
interprint(uint32 s, Iface *a)
{
USED(s);
runtime·printiface(*a);
}
static uint32
interequal(uint32 s, Iface *a, Iface *b)
{
USED(s);
return runtime·ifaceeq_c(*a, *b);
}
static void
intercopy(uint32 s, Iface *a, Iface *b)
{
USED(s);
if(b == nil) {
a->tab = 0;
a->data = 0;
return;
}
a->tab = b->tab;
a->data = b->data;
}
static uintptr
nilinterhash(uint32 s, Eface *a)
{
USED(s);
return runtime·efacehash(*a);
}
static void
nilinterprint(uint32 s, Eface *a)
{
USED(s);
runtime·printeface(*a);
}
static uint32
nilinterequal(uint32 s, Eface *a, Eface *b)
{
USED(s);
return runtime·efaceeq_c(*a, *b);
}
static void
nilintercopy(uint32 s, Eface *a, Eface *b)
{
USED(s);
if(b == nil) {
a->type = 0;
a->data = 0;
return;
}
a->type = b->type;
a->data = b->data;
}
uintptr
runtime·nohash(uint32 s, void *a)
{
USED(s);
USED(a);
runtime·panicstring("hash of unhashable type");
return 0;
}
uint32
runtime·noequal(uint32 s, void *a, void *b)
{
USED(s);
USED(a);
USED(b);
runtime·panicstring("comparing uncomparable types");
return 0;
}
Alg
runtime·algarray[] =
{
[AMEM] { memhash, memequal, memprint, memcopy },
[ANOEQ] { runtime·nohash, runtime·noequal, memprint, memcopy },
[ASTRING] { (void*)strhash, (void*)strequal, (void*)strprint, (void*)strcopy },
[AINTER] { (void*)interhash, (void*)interequal, (void*)interprint, (void*)intercopy },
[ANILINTER] { (void*)nilinterhash, (void*)nilinterequal, (void*)nilinterprint, (void*)nilintercopy },
[ASLICE] { (void*)runtime·nohash, (void*)runtime·noequal, (void*)memprint, (void*)slicecopy },
[AMEM8] { memhash, (void*)memequal8, memprint, (void*)memcopy8 },
[AMEM16] { memhash, (void*)memequal16, memprint, (void*)memcopy16 },
[AMEM32] { memhash, (void*)memequal32, memprint, (void*)memcopy32 },
[AMEM64] { memhash, (void*)memequal64, memprint, (void*)memcopy64 },
[AMEM128] { memhash, (void*)memequal128, memprint, (void*)memcopy128 },
[ANOEQ8] { runtime·nohash, runtime·noequal, memprint, (void*)memcopy8 },
[ANOEQ16] { runtime·nohash, runtime·noequal, memprint, (void*)memcopy16 },
[ANOEQ32] { runtime·nohash, runtime·noequal, memprint, (void*)memcopy32 },
[ANOEQ64] { runtime·nohash, runtime·noequal, memprint, (void*)memcopy64 },
[ANOEQ128] { runtime·nohash, runtime·noequal, memprint, (void*)memcopy128 },
};
int64
runtime·nanotime(void)
{
int64 sec;
int32 usec;
sec = 0;
usec = 0;
runtime·gettime(&sec, &usec);
return sec*1000000000 + (int64)usec*1000;
}
void
runtime·Caller(int32 skip, uintptr retpc, String retfile, int32 retline, bool retbool)
{
Func *f, *g;
uintptr pc;
uintptr rpc[2];
/*
* Ask for two PCs: the one we were asked for
* and what it called, so that we can see if it
* "called" sigpanic.
*/
retpc = 0;
if(runtime·callers(1+skip-1, rpc, 2) < 2) {
retfile = runtime·emptystring;
retline = 0;
retbool = false;
} else if((f = runtime·findfunc(rpc[1])) == nil) {
retfile = runtime·emptystring;
retline = 0;
retbool = true; // have retpc at least
} else {
retpc = rpc[1];
retfile = f->src;
pc = retpc;
g = runtime·findfunc(rpc[0]);
if(pc > f->entry && (g == nil || g->entry != (uintptr)runtime·sigpanic))
pc--;
retline = runtime·funcline(f, pc);
retbool = true;
}
FLUSH(&retpc);
FLUSH(&retfile);
FLUSH(&retline);
FLUSH(&retbool);
}
void
runtime·Callers(int32 skip, Slice pc, int32 retn)
{
// runtime.callers uses pc.array==nil as a signal
// to print a stack trace. Pick off 0-length pc here
// so that we don't let a nil pc slice get to it.
if(pc.len == 0)
retn = 0;
else
retn = runtime·callers(skip, (uintptr*)pc.array, pc.len);
FLUSH(&retn);
}
void
runtime·FuncForPC(uintptr pc, void *retf)
{
retf = runtime·findfunc(pc);
FLUSH(&retf);
}
uint32
runtime·fastrand1(void)
{
uint32 x;
x = m->fastrand;
x += x;
if(x & 0x80000000L)
x ^= 0x88888eefUL;
m->fastrand = x;
return x;
}