math/big: fix rounding to smallest denormal for Float.Float32/64

Converting a big.Float value x to a float32/64 value did not correctly
round x up to the smallest denormal float32/64 if x was smaller than the
smallest denormal float32/64, but larger than 0.5 of a smallest denormal
float32/64.

Handle this case explicitly and simplify some code in the turn.

For #14651.

Change-Id: I025e24bf8f0e671581a7de0abf7c1cd7e6403a6c
Reviewed-on: https://go-review.googlesource.com/20816
Run-TryBot: Robert Griesemer <gri@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Alan Donovan <adonovan@google.com>
diff --git a/src/math/big/float.go b/src/math/big/float.go
index eca85d4..f19f21f 100644
--- a/src/math/big/float.go
+++ b/src/math/big/float.go
@@ -874,21 +874,43 @@
 			emax  = bias              //   127  largest unbiased exponent (normal)
 		)
 
-		// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float32 mantissa.
-		e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
-		p := mbits + 1 // precision of normal float
+		// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float32 mantissa.
+		e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
 
-		// If the exponent is too small, we may have a denormal number
-		// in which case we have fewer mantissa bits available: recompute
-		// precision.
+		// Compute precision p for float32 mantissa.
+		// If the exponent is too small, we have a denormal number before
+		// rounding and fewer than p mantissa bits of precision available
+		// (the exponent remains fixed but the mantissa gets shifted right).
+		p := mbits + 1 // precision of normal float
 		if e < emin {
+			// recompute precision
 			p = mbits + 1 - emin + int(e)
-			// Make sure we have at least 1 bit so that we don't
-			// lose numbers rounded up to the smallest denormal.
-			if p < 1 {
-				p = 1
+			// If p == 0, the mantissa of x is shifted so much to the right
+			// that its msb falls immediately to the right of the float32
+			// mantissa space. In other words, if the smallest denormal is
+			// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+			// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+			// If m == 0.5, it is rounded down to even, i.e., 0.0.
+			// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+				// underflow to ±0
+				if x.neg {
+					var z float32
+					return -z, Above
+				}
+				return 0.0, Below
+			}
+			// otherwise, round up
+			// We handle p == 0 explicitly because it's easy and because
+			// Float.round doesn't support rounding to 0 bits of precision.
+			if p == 0 {
+				if x.neg {
+					return -math.SmallestNonzeroFloat32, Below
+				}
+				return math.SmallestNonzeroFloat32, Above
 			}
 		}
+		// p > 0
 
 		// round
 		var r Float
@@ -898,12 +920,8 @@
 
 		// Rounding may have caused r to overflow to ±Inf
 		// (rounding never causes underflows to 0).
-		if r.form == inf {
-			e = emax + 1 // cause overflow below
-		}
-
-		// If the exponent is too large, overflow to ±Inf.
-		if e > emax {
+		// If the exponent is too large, also overflow to ±Inf.
+		if r.form == inf || e > emax {
 			// overflow
 			if x.neg {
 				return float32(math.Inf(-1)), Below
@@ -921,17 +939,10 @@
 		// Rounding may have caused a denormal number to
 		// become normal. Check again.
 		if e < emin {
-			// denormal number
-			if e < dmin {
-				// underflow to ±0
-				if x.neg {
-					var z float32
-					return -z, Above
-				}
-				return 0.0, Below
-			}
-			// bexp = 0
-			// recompute precision
+			// denormal number: recompute precision
+			// Since rounding may have at best increased precision
+			// and we have eliminated p <= 0 early, we know p > 0.
+			// bexp == 0 for denormals
 			p = mbits + 1 - emin + int(e)
 			mant = msb32(r.mant) >> uint(fbits-p)
 		} else {
@@ -983,21 +994,43 @@
 			emax  = bias              //  1023  largest unbiased exponent (normal)
 		)
 
-		// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float64 mantissa.
-		e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
-		p := mbits + 1 // precision of normal float
+		// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float64 mantissa.
+		e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
 
-		// If the exponent is too small, we may have a denormal number
-		// in which case we have fewer mantissa bits available: recompute
-		// precision.
+		// Compute precision p for float64 mantissa.
+		// If the exponent is too small, we have a denormal number before
+		// rounding and fewer than p mantissa bits of precision available
+		// (the exponent remains fixed but the mantissa gets shifted right).
+		p := mbits + 1 // precision of normal float
 		if e < emin {
+			// recompute precision
 			p = mbits + 1 - emin + int(e)
-			// Make sure we have at least 1 bit so that we don't
-			// lose numbers rounded up to the smallest denormal.
-			if p < 1 {
-				p = 1
+			// If p == 0, the mantissa of x is shifted so much to the right
+			// that its msb falls immediately to the right of the float64
+			// mantissa space. In other words, if the smallest denormal is
+			// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+			// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+			// If m == 0.5, it is rounded down to even, i.e., 0.0.
+			// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+			if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+				// underflow to ±0
+				if x.neg {
+					var z float64
+					return -z, Above
+				}
+				return 0.0, Below
+			}
+			// otherwise, round up
+			// We handle p == 0 explicitly because it's easy and because
+			// Float.round doesn't support rounding to 0 bits of precision.
+			if p == 0 {
+				if x.neg {
+					return -math.SmallestNonzeroFloat64, Below
+				}
+				return math.SmallestNonzeroFloat64, Above
 			}
 		}
+		// p > 0
 
 		// round
 		var r Float
@@ -1007,17 +1040,13 @@
 
 		// Rounding may have caused r to overflow to ±Inf
 		// (rounding never causes underflows to 0).
-		if r.form == inf {
-			e = emax + 1 // cause overflow below
-		}
-
-		// If the exponent is too large, overflow to ±Inf.
-		if e > emax {
+		// If the exponent is too large, also overflow to ±Inf.
+		if r.form == inf || e > emax {
 			// overflow
 			if x.neg {
-				return math.Inf(-1), Below
+				return float64(math.Inf(-1)), Below
 			}
-			return math.Inf(+1), Above
+			return float64(math.Inf(+1)), Above
 		}
 		// e <= emax
 
@@ -1030,17 +1059,10 @@
 		// Rounding may have caused a denormal number to
 		// become normal. Check again.
 		if e < emin {
-			// denormal number
-			if e < dmin {
-				// underflow to ±0
-				if x.neg {
-					var z float64
-					return -z, Above
-				}
-				return 0.0, Below
-			}
-			// bexp = 0
-			// recompute precision
+			// denormal number: recompute precision
+			// Since rounding may have at best increased precision
+			// and we have eliminated p <= 0 early, we know p > 0.
+			// bexp == 0 for denormals
 			p = mbits + 1 - emin + int(e)
 			mant = msb64(r.mant) >> uint(fbits-p)
 		} else {
diff --git a/src/math/big/float_test.go b/src/math/big/float_test.go
index 6fb4402..464619b 100644
--- a/src/math/big/float_test.go
+++ b/src/math/big/float_test.go
@@ -829,7 +829,7 @@
 	}{
 		{"0", 0, Exact},
 
-		// underflow
+		// underflow to zero
 		{"1e-1000", 0, Below},
 		{"0x0.000002p-127", 0, Below},
 		{"0x.0000010p-126", 0, Below},
@@ -843,25 +843,39 @@
 		{"1p-149", math.SmallestNonzeroFloat32, Exact},
 		{"0x.fffffep-126", math.Float32frombits(0x7fffff), Exact}, // largest denormal
 
-		// special cases (see issue 14553)
-		{"0x0.bp-149", math.Float32frombits(0x000000000), Below}, // ToNearestEven rounds down (to even)
-		{"0x0.cp-149", math.Float32frombits(0x000000001), Above},
+		// special denormal cases (see issues 14553, 14651)
+		{"0x0.0000001p-126", math.Float32frombits(0x00000000), Below}, // underflow to zero
+		{"0x0.0000008p-126", math.Float32frombits(0x00000000), Below}, // underflow to zero
+		{"0x0.0000010p-126", math.Float32frombits(0x00000000), Below}, // rounded down to even
+		{"0x0.0000011p-126", math.Float32frombits(0x00000001), Above}, // rounded up to smallest denormal
+		{"0x0.0000018p-126", math.Float32frombits(0x00000001), Above}, // rounded up to smallest denormal
 
-		{"0x1.0p-149", math.Float32frombits(0x000000001), Exact},
+		{"0x1.0000000p-149", math.Float32frombits(0x00000001), Exact}, // smallest denormal
+		{"0x0.0000020p-126", math.Float32frombits(0x00000001), Exact}, // smallest denormal
+		{"0x0.fffffe0p-126", math.Float32frombits(0x007fffff), Exact}, // largest denormal
+		{"0x1.0000000p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
+
+		{"0x0.8p-149", math.Float32frombits(0x000000000), Below}, // rounded down to even
+		{"0x0.9p-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+		{"0x0.ap-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+		{"0x0.bp-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+		{"0x0.cp-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+
+		{"0x1.0p-149", math.Float32frombits(0x000000001), Exact}, // smallest denormal
 		{"0x1.7p-149", math.Float32frombits(0x000000001), Below},
 		{"0x1.8p-149", math.Float32frombits(0x000000002), Above},
 		{"0x1.9p-149", math.Float32frombits(0x000000002), Above},
 
 		{"0x2.0p-149", math.Float32frombits(0x000000002), Exact},
-		{"0x2.8p-149", math.Float32frombits(0x000000002), Below}, // ToNearestEven rounds down (to even)
+		{"0x2.8p-149", math.Float32frombits(0x000000002), Below}, // rounded down to even
 		{"0x2.9p-149", math.Float32frombits(0x000000003), Above},
 
 		{"0x3.0p-149", math.Float32frombits(0x000000003), Exact},
 		{"0x3.7p-149", math.Float32frombits(0x000000003), Below},
-		{"0x3.8p-149", math.Float32frombits(0x000000004), Above}, // ToNearestEven rounds up (to even)
+		{"0x3.8p-149", math.Float32frombits(0x000000004), Above}, // rounded up to even
 
 		{"0x4.0p-149", math.Float32frombits(0x000000004), Exact},
-		{"0x4.8p-149", math.Float32frombits(0x000000004), Below}, // ToNearestEven rounds down (to even)
+		{"0x4.8p-149", math.Float32frombits(0x000000004), Below}, // rounded down to even
 		{"0x4.9p-149", math.Float32frombits(0x000000005), Above},
 
 		// specific case from issue 14553
@@ -907,7 +921,7 @@
 			x := makeFloat(tx)
 			out, acc := x.Float32()
 			if !alike32(out, tout) || acc != tacc {
-				t.Errorf("%s: got %g (%#x, %s); want %g (%#x, %s)", tx, out, math.Float32bits(out), acc, test.out, math.Float32bits(test.out), tacc)
+				t.Errorf("%s: got %g (%#08x, %s); want %g (%#08x, %s)", tx, out, math.Float32bits(out), acc, test.out, math.Float32bits(test.out), tacc)
 			}
 
 			// test that x.SetFloat64(float64(f)).Float32() == f
@@ -929,21 +943,30 @@
 	}{
 		{"0", 0, Exact},
 
-		// underflow
+		// underflow to zero
 		{"1e-1000", 0, Below},
 		{"0x0.0000000000001p-1023", 0, Below},
 		{"0x0.00000000000008p-1022", 0, Below},
 
 		// denormals
 		{"0x0.0000000000000cp-1022", math.SmallestNonzeroFloat64, Above}, // rounded up to smallest denormal
-		{"0x0.0000000000001p-1022", math.SmallestNonzeroFloat64, Exact},  // smallest denormal
+		{"0x0.00000000000010p-1022", math.SmallestNonzeroFloat64, Exact}, // smallest denormal
 		{"0x.8p-1073", math.SmallestNonzeroFloat64, Exact},
 		{"1p-1074", math.SmallestNonzeroFloat64, Exact},
 		{"0x.fffffffffffffp-1022", math.Float64frombits(0x000fffffffffffff), Exact}, // largest denormal
 
-		// special cases (see issue 14553)
-		{"0x0.bp-1074", math.Float64frombits(0x00000000000000000), Below}, // ToNearestEven rounds down (to even)
-		{"0x0.cp-1074", math.Float64frombits(0x00000000000000001), Above},
+		// special denormal cases (see issues 14553, 14651)
+		{"0x0.00000000000001p-1022", math.Float64frombits(0x00000000000000000), Below}, // underflow to zero
+		{"0x0.00000000000004p-1022", math.Float64frombits(0x00000000000000000), Below}, // underflow to zero
+		{"0x0.00000000000008p-1022", math.Float64frombits(0x00000000000000000), Below}, // rounded down to even
+		{"0x0.00000000000009p-1022", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+		{"0x0.0000000000000ap-1022", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+
+		{"0x0.8p-1074", math.Float64frombits(0x00000000000000000), Below}, // rounded down to even
+		{"0x0.9p-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+		{"0x0.ap-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+		{"0x0.bp-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+		{"0x0.cp-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
 
 		{"0x1.0p-1074", math.Float64frombits(0x00000000000000001), Exact},
 		{"0x1.7p-1074", math.Float64frombits(0x00000000000000001), Below},
@@ -951,15 +974,15 @@
 		{"0x1.9p-1074", math.Float64frombits(0x00000000000000002), Above},
 
 		{"0x2.0p-1074", math.Float64frombits(0x00000000000000002), Exact},
-		{"0x2.8p-1074", math.Float64frombits(0x00000000000000002), Below}, // ToNearestEven rounds down (to even)
+		{"0x2.8p-1074", math.Float64frombits(0x00000000000000002), Below}, // rounded down to even
 		{"0x2.9p-1074", math.Float64frombits(0x00000000000000003), Above},
 
 		{"0x3.0p-1074", math.Float64frombits(0x00000000000000003), Exact},
 		{"0x3.7p-1074", math.Float64frombits(0x00000000000000003), Below},
-		{"0x3.8p-1074", math.Float64frombits(0x00000000000000004), Above}, // ToNearestEven rounds up (to even)
+		{"0x3.8p-1074", math.Float64frombits(0x00000000000000004), Above}, // rounded up to even
 
 		{"0x4.0p-1074", math.Float64frombits(0x00000000000000004), Exact},
-		{"0x4.8p-1074", math.Float64frombits(0x00000000000000004), Below}, // ToNearestEven rounds down (to even)
+		{"0x4.8p-1074", math.Float64frombits(0x00000000000000004), Below}, // rounded down to even
 		{"0x4.9p-1074", math.Float64frombits(0x00000000000000005), Above},
 
 		// normals
@@ -1005,7 +1028,7 @@
 			x := makeFloat(tx)
 			out, acc := x.Float64()
 			if !alike64(out, tout) || acc != tacc {
-				t.Errorf("%s: got %g (%#x, %s); want %g (%#x, %s)", tx, out, math.Float64bits(out), acc, test.out, math.Float64bits(test.out), tacc)
+				t.Errorf("%s: got %g (%#016x, %s); want %g (%#016x, %s)", tx, out, math.Float64bits(out), acc, test.out, math.Float64bits(test.out), tacc)
 			}
 
 			// test that x.SetFloat64(f).Float64() == f